
Open-File Report of the Geological Survey of Japan, AIST, no. 767

Machine Learning-Based Seismic Signal

Discriminator and Station Association Method

Kodai Sagae1, Suguru Yabe1, and Takahiko Uchide1

1Research Institute of Earthquake and Volcano Geology, Geological Survey of Japan,

AIST

1. Abstract
This document provides weight parameters of a machine-learning model DiET, which

is designed to classify signals as earthquake, tectonic tremor (hereafter referred to as
tremor), or noise. It also includes the corresponding Python code. In addition, it
provides Python code for GrASP, a method for associating detection results from
multiple stations. For details on the methodology, please refer to Sagae et al. (2025,
preprint).

2. Environment setup
This program is written in Python and requires the following packages.

l python (3.11+)
l tensorflow (2.15.0)
l keras (2.15.0)
l numpy
l scipy
l scikit-learn
l pandas
l pyproj
l matplotlib

Please unzip the attached zip file (`GSJ_open.zip`) and create the `GSJ_open`

directory. We recommend using `Conda` to set up your environment. Users can build a
virtual environment for this program by executing the following commands in the
`Shell`. These commands use the `environment.yml` file located in the
`GSJ_open` directory.

Open-File Report of the Geological Survey of Japan, AIST, no. 767

Please move to the `GSJ_open` directory
conda env create -n [environment name] -f environment.yml
conda activate [environment name]

3. How to use
Python test codes for DiET and GrASP are included in the `GSJ_open/Examples`

directory. The `DiET` and `GrASP` packages in the `Methods` directory contain the
functions used in these Python test codes. The following sections describe usage
examples for each Python test code.

3.1. Discriminator for Earthquake and Tremor (DiET)
DiET is a machine learning model that takes three-component spectrograms as inputs

and outputs the signal probabilities for earthquakes, tremors, and noise, respectively.
First, we provide Python code for spectrogram creation below.

`Show_spectrogram.py`

Please move to the `Examples/DiET` directory
import sys
sys.path.append("../../Methods")
from DiET import Make_Spec

Make spectrogram
Spec_scale, t_sample, f_sample = Make_Spec(Waveform_data)

Users can calculate a spectrogram (Spec_scale) by inputting one-minute waveform

data (Waveform_data), with the instrument response removed, into the Make_Spec()
function. By executing the `Show_spectrogram.py` script located in the
`Examples/DiET` directory, users can calculate and display a spectrogram of
randomly generated data. We describe parameters for spectrogram creation within
`Params_DiET.py` located in the `Methods/DiET` directory. Except for the

Open-File Report of the Geological Survey of Japan, AIST, no. 767

sampling frequency of waveform data (sampling_freq), all parameters must remain
unchanged.

In the next step, we show Python code to load and apply the DiET model.

`Model_apply.py`

import numpy as np
import sys
sys.path.append("../../Methods")
from DiET import Params_DiET, get_model

Load model
model = get_model()

Station_number = 2
Spectrogram with all pixel values of 1 is predicted as noise.
Input_data=np.ones((Station_number, Params_DiET.frequency_size,
Params_DiET.time_size, Params_DiET.num_channels))
Remain only the spectrogram power in the 2-8 Hz.
Input_data[0,25:73,:,:] = 0.2

Model prediction
pred_result = model.predict(Input_data, batch_size =
Station_number, verbose = 0)

Users can load the DiET model using the get_model() function. When performing

prediction using this model, users input the followings.

l Input_data: A 4th-order tensor with following dimensions: the number of

stations, frequency (73), time (71), and velocity components (3). The velocity
components should be ordered as VX, VY, and VZ, with the vertical component
recommended to be assigned to VZ.

l batch_size: The number of stations.

Open-File Report of the Geological Survey of Japan, AIST, no. 767

In the predictions (pred_result), the 1st, 2nd, and 3rd columns represent the signal
probabilities for earthquake, tremor, and noise, respectively. By executing the
`Model_apply.py` script located in the `Examples/DiET` directory, you can
output the signal probabilities for the pseudo data.

3.2. Graph-based Associator with Signal Probability (GrASP)
GrASP is a method for extracting station groups where signals are detected, based on

the signal probabilities at each station. To prepare for using GrASP, users need to
create a station location information file in the following format:

l 1st column: Station name
l 2nd column: Latitude [deg]
l 3rd column: Longitude [deg]

Specifically, please refer to `Station_info.csv` in the `Data` directory.
Additionally, users need to save the signal probability outputs from the DiET model in
the following format:

l 1st column: Year
l 2nd column: Month
l 3rd column: Day
l 4th column: Hour
l 5th column: Minute
l From the 6th column onward: Signal probability for each station, in the same row

order as in `Station_info.csv`.

Specifically, please refer to `Probability_T.csv` and `Probability_EQ.csv`
in the `Data/Probability` directory.

We show Python code for associating tremor-detected stations using GrASP.

`GrASP_Tremor.py`

Please move to the `Examples/GrASP` directory
import numpy as np
import pandas as pd

Open-File Report of the Geological Survey of Japan, AIST, no. 767

import pyproj
import sys
sys.path.append("../../Methods")
from GrASP import Params_GrASP, kNN_graph, Make_Stadis_array,
Apply_Tremor

Load Station location
Station_loc = pd.read_csv('../../Data/Station_info.csv')
Station_loc_data = Station_loc.values

Make adjacency matrix (permanent adjacency)
Stadis_array_original = Make_Stadis_array(Station_loc_data)
Stadis_array = kNN_graph(Stadis_array_original, k_neareast =
Params_GrASP.k_neareast)

Converted to XY coordinates
transformer=pyproj.Transformer.from_crs(Params_GrASP.EPSG_base,
Params_GrASP.EPSG_proj, always_xy=True)
Station_locx,Station_locy=transformer.transform(Station_loc_dat
a[:, 2], Station_loc_data[:, 1])
Station_loc_data_XY = np.vstack((Station_loc_data[:, 0],
Station_locx, Station_locy))
Station_loc_data_XY = Station_loc_data_XY.T

Load Tremor probability
Read_Detection=pd.read_csv('../../Data/Probability/Probability_
T.csv')
Data = Read_Detection.values

GrASP for Tremor
Save_Candidate = Apply_Tremor(Data, Stadis_array,
Station_loc_data_XY)

The Apply_Tremor() function can be used to perform GrASP for tremor detection.

The required input data are as follows:

Open-File Report of the Geological Survey of Japan, AIST, no. 767

l Data: Load the tremor probabilities from `Probability_T.csv`.
l Stadis_array: Adjacency matrix obtained by inputting a distance matrix to the

kNN_graph() function. The distance matrix is calculated by inputting
`Station_info.csv` to the Make_Stadis_array() function.

l Station_loc_data_XY: Station locations in a cartesian coordinate system.

Since the distance matrix (Stadis_array_original) is used multiple times, we

recommend saving it as a separate file (`Data/Stadis_array_original.csv`).
The output, Save_Candidate, follows the same format as `Probability_T.csv`
and lists extracted station groups. Users can execute this process using the
`GrASP_Tremor.py` script located in the `Examples/GrASP` directory.

Next, we show Python code for associating earthquake-detected stations using

GrASP.

`GrASP_EQ.py`

import sys
sys.path.append("../../Methods")
from GrASP import Params_GrASP, kNN_graph, Apply_Nocut

Loading EQ probability
Read_Detection=pd.read_csv('../../Data/Probability/Probability_
EQ.csv')
Data = Read_Detection.values

GrASP for EQ
Save_Candidate = Apply_Nocut(Data, Stadis_array)

The Apply_Nocut() function can be used to perform GrASP without graph

partitioning. The required input data are as follows:

l Data: Load the earthquake probabilities from `Probability_EQ.csv`.
l Stadis_array: Same as the matrix used in the Apply_Tremor() function.

Open-File Report of the Geological Survey of Japan, AIST, no. 767

The output, Save_Candidate, follows the same format as
`Probability_EQ.csv` and lists extracted station groups. The Apply_Nocut()
function is also designed to accept tremor probabilities as input. When applying GrASP
to a different seismic network, we recommend providing tremor probabilities over a
certain period as validation data to the Apply_Nocut() function. Subsequently, you
should examine the characteristics of the resulting station groups (e.g., Graph std:
spatial spread of the stations, please refer to Sagae et al. (2025, preprint)). Based on
these characteristics, parameters (described later) can be adjusted accordingly. Once this
setup is complete, you can perform continuous analysis using the Apply_Tremor()
function. Users can execute this process using the `GrASP_EQ.py` script located in the
`Examples/GrASP` directory.

Finally, we show how to classify tremor-detected station groups into two categories.

`GrASP_Category.py`

import sys
sys.path.append("../../Methods")
from GrASP import Params_GrASP, kNN_graph, Apply_Categorization

Load Tremor and EQ association results
Tremor_Association=pd.read_csv('../../Results/Tremor_candidate.
csv')
Data_T = Tremor_Association.values
EQ_Association = pd.read_csv('../../Results/EQ_candidate.csv')
Data_EQ = EQ_Association.values

GrASP for Tremor Categorization
Save_result = Apply_Categorization(Stadis_array, Data_T,
Data_EQ)

Users can assign categories to tremor-detected station groups using the
Apply_Categorization() function. The required input data are as follows:

Open-File Report of the Geological Survey of Japan, AIST, no. 767

l Stadis_array: Same as used in the Apply_Tremor() function.
l Data_T and Data_EQ: Association results for tremor and earthquake.

The output, Save_result, has a category added to the last column of Data_T, with

Category 1 indicating probable tremor and Category 2 indicating possible tremor. Users
can execute this process using the `GrASP_Category.py` script located in the
`Examples/GrASP` directory.

We describe the parameters for GrASP within `Params_GrASP.py` located in the
`Methods/GrASP` directory. When changing the application area of GrASP from the
Japan Trench, users will need to adjust the following parameters:

l EPSG_proj: Change to the EPSG code of the UTM coordinate system that

includes the target area (refer to resources such as https://spatialreference.org/ for
the EPSG code).

l k_nearest: Adjust according to the number of stations. It is recommended to set
this value to approximately √𝑁, where 𝑁 is the number of stations.

l Std_thres: This is a teleseismic event removal parameter. Adjust it based on the
characteristics of the station groups extracted from the validation data using the
Apply_Nocut() function. Following Sagae et al. (2025, preprint), we recommend
setting this value to 3σ of Graph_std, which represent spatial spread of stations.

l Max_eigen: Threshold related to the cumulative contribution rate of the second
smallest eigenvalue. Adjustment may be necessary if graph partitioning occurs
frequently.

4. Disclaimer
l We have tested this program on Ubuntu 22.04. We cannot guarantee that it will

work properly in other environments.
l The Geological Survey of Japan, AIST is not responsible or liable for any damages

that may result from the use of this program.

5. Development Team
Key members
l Principal developer: Kodai Sagae (k.sagae@aist.go.jp)
l Code review, Draft check: Suguru Yabe (s.yabe@aist.go.jp)
l Project administrator: Takahiko Uchide (t.uchide@aist.go.jp)

Open-File Report of the Geological Survey of Japan, AIST, no. 767

Contributor
l Quick review: Masayuki Kano

6. Terms of use
l Please cite the following if you use this program:
Kodai Sagae, Suguru Yabe, and Takahiko Uchide (2025) Machine Learning-Based

Seismic Signal Discriminator and Station Association Method, Open-File Report of
Geological Survey of Japan, AIST, no. 767.

l Please contact the development team to report bugs.

7. Acknowledgements
In developing the DiET model, we used the velocity waveform data from the Seafloor

Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net),
operated by the National Research Institute for Earth Science and Disaster Resilience
(NIED). We used hypocenter and phase data in the JMA Unified Earthquake Catalog.
This research was supported by JSPS KAKENHI Grant Number JP21H05205,
JP21H05203 in Grant-in-Aid for Transformative Research Areas (A) “Science of Slow-
to-Fast Earthquakes”.

8. Licence
This package is licensed under the BSD 3-Clause License (see the `LICENSE` file for

full license details).
Copyright (c) 2025, National Institute of Advanced Industrial Science and Technology
(AIST). All rights reserved.

9. Reference
Kodai Sagae, Masayuki Kano, Suguru Yabe, Takahiko Uchide, 2025 (preprint),

Machine Learning-Based Detection and Localization of Tectonic Tremors in the
Japan Trench. ESS Open Archive . February 19, 2025.
DOI: 10.22541/essoar.174000875.59692909/v1

