The accuracy and determination limits of rock chemical analysis by X-ray fluorescence spectrometry at Mineral Resources Research Group, Geological Survey of Japan

Sayaka Morita, Tetsuichi Takagi*, Yoshiaki Kon, and Daisuke Araoka

Mineral Resources Research Group, Research Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567 Japan

* Corresponding author

1. Introduction

Mineral Resources Research Group installed an X-ray fluorescence spectrometer (XRF) at the 7-6-1110 room of Geological Survey of Japan in March 2013. Since the installation, we have created calibration lines for various compositional rocks. In this report, we have shown the accuracy and determination limits of rock chemical analysis using the calibration lines as of January 2016.

The XRF is RIGAKU ZSX Primus III+, a wavelength dispersive spectrometer with an Rh tube of 3 kW. The tube irradiates X-ray to a sample obliquely downward. The software provided by RIGAKU on PC can control all machinery setting. A sample autoloader enables us continuous analysis up to 39 samples.

2. Standard samples and sample preparation

2.1 Quantitative analysis of major elements using fused disks

We created calibration lines of SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O and P₂O₅ using the GSJ standard samples JA-1, JA-2, JA-3, JA-1a, JB-2, JB-3, JB-1a, JG-2, JG-3, JGb-1, JGb-2, JR-1, JR-2, and JR-3. We adopted the recommended analytical values of the standard samples by Imai et al. (1995) and Terashima et al. (1998) for creating calibration lines. To minimize matrix and mineral effects, we used the fused disk method, and set the dilution ratio of sample by flux 1:10. In practice, we weighed sample 0.5 g and flux (Spectromelt A10: $Li_2B_4O_7$) 5 g, and mixed them completely with an agate mortar. We usually added two drops of remover (LiBr 33% aqueous solution) to the mixture of sample and flux. Fused disks were produced by a

microwave bead sampler (Herzog HAG-M-HF) using crucibles of Pt 95% and Au 5% alloy at 1250°C. We temporarily named the quantitative analytical program "GB (2014_06)".

2.2 Quantitative analysis of SiO₂, Al₂O₃, TiO₂, and Fe₂O₃ in high-silica rocks

For the analysis of high-silica rocks, we used the standard samples Silicon dioxide (Spec pure) made by Johnson Matthey (JM) and JG-2. The mixing samples of JM and JG-2 (five steps) were produced to create calibration lines. The chemical compositions of the standard samples are listed in Table 1. The specification of fused disks is the same as in the former section. We temporarily named the quantitative analytical program "high_SiAlTiFe".

2.3 Quantitative analysis of major and minor elements using powder pellets

We created calibration lines of SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O and P₂O₅ (major elements) and Ba, Cu, Nb, Co, Ni, Rb, Sr, V, Zn, Zr, La, Ce, Nd, Sm, Yb, Ga, Th, U, Y, Sn, and Ta (minor elements) using the GSJ standard samples JA-1, JA-2, JB-2, JB-3, JG-2, JG-3, JGb-1, JP-1, JR-1, JR-2 and JR-3. Due to the higher contents of Cr in JP-1 and Zr in JR-3, we produced mixing samples of JP-1 with silicon dioxide (three steps) and JR-3 with silicon dioxide (two steps). The chemical compositions of the standard samples are listed in Table 2. Powder pellets were formed by a hydraulic molding press machine (TYPE-BRE-33, Maekawa) using aluminum rings 20 mm in inner diameter. The pressure and time of molding were 20 MPa and 30 seconds, respectively. We adopted the recommended values of the standard samples by Imai et al. (1995), and temporarily named the quantitative analytical program "REE (GIS)".

3. Analytical procedure

We set voltage and current of the Rh tube 50 kV and 50 mA, respectively. The condition of the sample chamber was in vacuum. A sample holder with mask 20 mm in inner diameter is made of stainless steel, and is rotated during analysis. We referred analytical conditions and times to Johnson et al (1999), Seno et al. (2002), and Kawano (2010). The analytical time of GB(2014_06) was 11 minutes/sample, high_SiAlTiFe 4

minutes/sample, and REE(GIS) 225 minutes/sample. The detailed analytical conditions of GB(2014_06), high_SiAlTiFe, and REE(GIS) are listed in Tables 3, 4 and 5, respectively.

In the analysis using REE(GIS), we applied the matrix correction (JIS model) for all elements except for Si. We also applied the overlap correction for interfered specific X-ray. In the analysis, the overlapped X-ray peaks were identified as follows: Cu-K α and Th-L β , Nb-K α and Y-K β , Co-K α and Nd-L γ , Ni-K α and Rb-K β , Sm-L α and La-L γ , Yb-L α and Ni-K α and Rb-K β and Co-K β , Ga-K α and Nb-K β , Ta-L α and U-L β , Y-K α and Rb-K β and Th-L β . The software provided by RIGAKU automatically calculated all of the matrix and overlap corrections. The correction coefficients are listed in Tables 6 and 7.

The accuracy (ACR) of calibration lines were calculated by the following equation:

$$ACR = \sqrt{\frac{\sum (Cm - Cr)^2}{n - 2}}$$

Cm= analysis of each element, Cr= analysis of each standard value

n= number of standard samples for the calibration line

The 95% confidence interval of each calibration line was calculated using the predict function based on the linear regression model. We used Statistic free software R (R core team, 2014, ver. 3.1.1) for the predict function. To verify the accuracy of each analytical program, we analyzed the standard samples issued by GSJ and Natural Resources Canada.

4. Analytical results and discussions

4.1 GB(2014_06) program

The calibration lines are shown in Figure 1. The correlation factors of SiO₂, MgO, K_2O , CaO, TiO₂ and Fe₂O₃ are greater than 0.999, and Al₂O₃, P₂O₅, MnO and Na₂O greater than 0.99. The relative errors for each element were less than 0.4%. Thus, the accuracy of quantitative analysis using GB(2014_06) is enough high. To determine hypothetical determination limit, we calculated the 95% confidence interval and relative errors for each calibration line. In this program, we defined that the compositional range of which it is within the 95% confidence interval and has less relative error than 10% from the recommended value is the hypothetical determination limit (Table 8).

To verify the applicability of the calibration lines, we analyzed the following standard samples, which were not used for creating the calibration line: JF-1, JZn-1, JP-1, JMs-2, JDo-1, JCh-1, JSd-1 and JH-1 (Table 9). When the rock analyses are lower than the hypothetical determination limit, most of the analyses were divergent from the recommended values. Thus, we cannot extrapolate the calibration lines for lower concentration side from the hypothetical determination limit. In contrast, when the rock analyses are higher than the hypothetical determination limit, even if the rocks are not only silicate but also carbonate, most of the analyses were within the relative error limit. However, the rocks of extreme compositions such as JCh-1, JMs-1 and JP-1, some elements showed divergent compositions from the recommended values. On the basis of the results above, we practically defined the determination limit of the calibration lines as shown in Table 10.

4.2 high_SiAlTiFe program

The calibration lines for quantitative analysis of SiO₂, Al₂O₃, TiO₂ and Fe₂O₃ are shown in Figure 2. All elements showed high correlation factors greater than 0.99, and the relative errors were 0.55, 0.062, 0.002 and 0.006 %, respectively. When we use the same definition as the former section, the hypothetical determination limit is shown in Table 11. To verify the applicability of the calibration lines, we analyzed the following standard samples, which were not used for creating the calibration lines: JF-1, JCh-1, JP-1, JDo-1, and the mixture samples JG2M3, JG2M4 and JG2M5 (Table 12). On the basis of the results above, we practically defined the determination limit of the calibration lines as shown in Table 13.

4.3 REE(GIS) program

The calibration line for each element and the analyses after the matrix correction are shown in Figure 3. Though, most of the elements showed the correlation factors greater than 0.97, those of Sm, Yb, Ga, U and Sn were 0.88, 0.57, 0.82, 0.73, and 0.89, respectively. The specific X-ray of Ta cannot be enough detected (only 2 of 19 points). Thus, the accuracy of the analysis Sm, Yb, Ga, U, Sn and Ta using this calibration lines is not sufficient. In this program, we defined that the ranges of which the divergent rate from the recommended values is less than 30% are the hypothetical determination limit (Table 14). To verify the applicability of the calibration lines, we analyzed the

following standard samples, which were not used for creating the calibration lines: JLs-1, JLk-1, JDo-1, JMs-1, JMn-1, JZn-1, JCu-1, SY-4 (Certificate of analysis by Canadian Certified Reference Material Project (CCRMP), 1993) and WPR-1a (Certificate analysis by CCRMP, 2012) (Table 15). When the rock analyses are lower than the hypothetical determination limit, most of the analyses were divergent from the recommended values. When the analyses are within the hypothetical determination limit, the accuracy is enough high in general. Though, the analyses are within the hypothetical determination limit, some elements of extreme compositional rocks (e.g., Fe_2O_3 and Na₂O in JZn-1, Ba in JLs-1, Rb in SY-4, Sr in JLs-1 and JDo-1, Y and Zn in JDo-1 and Ce in JLk-1) occasionally showed divergent compositions from the recommended values. Thus, when the rocks are different types from the standard samples used for creating calibration lines, the accuracy of their analyses would not be enough. On the basis of the results above, we practically defined the determination limit of the calibration lines as shown in Table 16.

In the analysis using powder pellets, we cannot ignore the grain-size and mineral effects for analyses. However, the calculation of the effects was only valid for the standard samples for creating the calibration lines, and thus we cannot apply REE(GIS) for different type of rocks from the standard samples. To enhance the accuracy of analysis using powder pellets, we should create specific calibration lines for each rock types.

Acknowledgments

We greatly appreciate Dr. T. Okai for his providing standard samples. We also thank Mr. S. Ikeda (RIGAKU) for his technical support.

References

- Imai, N., Terashima, S., Itoh, S. and Ando, A. (1995), 1994 composition values for GSJ reference samples "Igneous rock series". Geochm.J., 29, 91-95
- Johnson, D.M., Hooper, P.R. and Conrey, R.M. (1999), XRF analysis of Rocks and Minerals for Major and Trace elements on a single low dilution Li-tetraborate fused bead, JCPDS-International Centre for diffraction data, 843-867

- Kawano, Y. (2010) Quantitative analyses of silicate rocks and sediments using X-ray fluorescence spectrometer ZSX Primus II, Chikyu-Kankyo Kenkyu, 12, 85-97. (in Japanese with English abstract)
- R Core Team (2014), R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
- Seno, K., Ishizuka, H., Motoyoshi, Y. and Shiraishi, K. (2002), Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: (3) Rare earth elements, Nankyoku Shiryo (Antarctic Record), 46-1, 15-33. (in Japanese with English abstract)
- Terashima, S., Taniguchi, M., Mikoshiba, M. and Imai, N. (1998), Preparation of two new GSJ geochemical reference materials: basalt JB-1b and coal fly ash JCFA-1, Geostandards newsletter, 22-1, 113-117.

Table 1. Standard sa	mples in hig	th_SiAl		
	SiO_2	Al_2O_3	TiO_2	Fe ₂ O ₃
JG-2	76.830	12.470	0.044	0.970
JM+JG2(1/2)	88.420	6.235	0.022	0.485
JM+JG2(1/3)	92.277	4.157	0.015	0.323
JM+JG2(1/4)	94.200	3.118	0.011	0.243
JM+JG2(1/10)	97.683	1.247	0.004	0.097
JM+JG2(1/56)	99.594	0.222	0.001	0.017
JM	100.000	0.000	0.000	0.000

\frown
$\mathbf{\Sigma}$
G
<u> </u>
2
l
.Н
S
ole
μ
ar
S
Б
la]
nc
[a]
Σ
ai
le
ab
[H

	SiO_2	Al_2O_3	P_2O_5	K_2O	CaO	TiO_2	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	MnO	Na_2O	MgO
JA-1	63.97	15.22	0.17	0.77	5.70	0.85	7.07	0.16	3.84	1.57
JA-2	56.42	15.41	0.15	1.81	6.29	0.66	6.21	0.11	3.11	7.60
JB-2	53.25	14.64	0.10	0.42	9.82	1.19	14.25	0.22	2.04	4.62
JB-3	50.96	17.20	0.29	0.78	9.79	1.44	11.82	0.18	2.73	5.19
JG-2	76.83	12.47	0.00	4.71	0.70	0.04	0.97	0.02	3.54	0.04
JG-3	67.29	15.48	0.12	2.64	3.69	0.48	3.69	0.07	3.96	1.79
JGb-1	43.66	17.49	0.06	0.24	11.90	1.60	15.06	0.19	1.20	7.85
JP-1	42.38	0.66	0.00	0.00	0.55	0.01	8.37	0.12	0.02	44.60
JP-1(1/2)	71.19	0.33	0.00	0.00	0.28	0.00	4.19	0.06	0.01	22.30
JP-1(1/4)	85.60	0.17	0.00	0.00	0.14	0.00	2.09	0.03	0.01	11.15
JP-1(1/8)	92.80	0.08	0.00	0.00	0.07	0.00	1.05	0.02	0.00	5.58
JR-1	75.45	12.83	0.02	4.41	0.67	0.11	0.89	0.10	4.02	0.12
JR-1 (1/2)	87.73	6.42	0.01	2.21	0.34	0.06	0.45	0.05	2.01	0.06
JR-1 (1/4)	93.86	3.21	0.01	1.10	0.17	0.03	0.22	0.02	1.01	0.03
JR-1 (1/8)	96.93	1.60	0.00	0.55	0.08	0.01	0.11	0.01	0.50	0.02
JR-3	72.76	11.90	0.02	4.29	0.09	0.21	4.72	0.08	4.69	0.05
JR-3(1/2)	86.38	5.95	0.01	2.15	0.05	0.11	2.36	0.04	2.35	0.03
JR-3 (1/4)	93.19	2.98	0.00	1.07	0.02	0.05	1.18	0.02	1.17	0.01
JR-3 (1/8)	96.60	1.49	0.00	0.54	0.01	0.03	0.59	0.01	0.59	0.01

	Ba	Cu	Nb	Co	Ni	Rb	Sr	Λ	Υ	Zn
JA-1	311.00	43.00	1.85	12.30	3.49	12.30	263.00	105.00	30.60	90.90
JA-2	321.00	29.70	9.47	29.50	130.00	72.90	248.00	126.00	18.30	64.70
JB-2	222.00	225.00	1.58	38.00	16.60	7.37	178.00	575.00	24.90	108.00
JB-3	245.00	194.00	2.47	34.30	36.20	15.10	403.00	372.00	26.90	100.00
JG-2	81.00	0.49	14.70	3.62	4.35	301.00	17.90	3.78	86.50	13.60
JG-3	466.00	6.81	5.88	11.70	14.30	67.30	379.00	70.10	17.30	46.50
JGb-1	64.30	85.70	3.34	60.10	25.40	6.87	327.00	635.00	10.40	109.00
JP-1	19.50	6.72	1.48	116.00	2460.00	0.80	3.32	27.60	1.54	41.80
JP-1(1/2)	9.75	3.36	0.74	58.00	1230.00	0.40	1.66	13.80	0.77	20.90
JP-1(1/4)	4.88	1.68	0.37	29.00	615.00	0.20	0.83	6.90	0.39	10.45
JP-1(1/8)	2.44	0.84	0.19	14.50	307.50	0.10	0.42	3.45	0.19	5.23
JR-1	50.30	2.68	15.20	0.83	1.67	257.00	29.10	7.00	45.10	30.60
JR-1 (1/2)	9.75	3.36	7.60	0.42	0.84	128.50	14.55	3.50	22.55	15.30
JR-1 (1/4)	4.88	1.68	3.80	0.21	0.42	64.25	7.28	1.75	11.28	7.65
JR-1 (1/8)	2.44	0.84	1.90	0.10	0.21	32.13	3.64	0.88	5.64	3.83
JR-3	65.80	2.90	510.00	0.98	1.60	453.00	10.40	4.20	166.00	209.00
JR-3(1/2)	32.90	1.45	255.00	0.49	0.80	226.50	5.20	2.10	83.00	104.50
JR-3 (1/4)	16.45	0.73	127.50	0.25	0.40	113.25	2.60	1.05	41.50	52.25
JR-3 (1/8)	8.23	0.36	63.75	0.12	0.20	56.63	1.30	0.53	20.75	26.13

Table 2. (Continued)

Table 2. (Continued	(1)									
	Zr	La	Ce	Nd	Sm	Yb	Ga	Th	U	Sn	Та
JA-1	88.30	5.24	13.30	10.90	3.52	3.03	16.70	0.82	0.34	1.16	0.13
JA-2	116.00	15.80	32.70	13.90	3.11	1.62	16.90	5.03	2.21	1.68	0.80
JB-2	51.20	2.35	6.76	6.63	2.31	2.62	17.00	0.35	0.18	0.95	0.13
JB-3	97.80	8.81	21.50	15.60	4.27	2.55	19.80	1.27	0.48	0.94	0.15
JG-2	97.60	19.90	48.30	26.40	7.78	6.85	18.60	31.60	11.30	3.00	2.76
JG-3	144.00	20.60	40.30	17.20	3.39	1.77	17.10	8.28	2.21	1.40	0.70
JGb-1	32.80	3.60	8.17	5.47	1.49	1.06	17.90	0.48	0.13	0.48	0.18
JP-1	5.92	0.08	0.19	0.07	0.02	0.02	0.70	0.19	0.04	0.05	0.02
JP-1(1/2)	2.96	0.04	0.10	0.04	0.01	0.01	0.35	0.10	0.02	0.03	0.01
JP-1(1/4)	1.48	0.02	0.05	0.02	0.00	0.01	0.18	0.05	0.01	0.01	0.01
JP-1(1/8)	0.74	0.01	0.02	0.01	0.00	0.00	0.09	0.02	0.00	0.01	0.00
JR-1	99.90	19.70	47.20	23.30	6.03	4.55	16.10	26.70	8.88	2.86	1.86
JR-1 (1/2)	49.95	9.85	23.60	11.65	3.02	2.28	8.05	13.35	4.44	1.43	0.93
JR-1 (1/4)	24.98	4.93	11.80	5.83	1.51	1.14	4.03	6.68	2.22	0.72	0.47
JR-1 (1/8)	12.49	2.46	5.90	2.91	0.75	0.57	2.01	3.34	1.11	0.36	0.23
JR-3	1494.00	179.00	327.00	107.00	21.30	20.30	36.60	112.00	21.10	17.40	36.80
JR-3(1/2)	747.00	89.50	163.50	53.50	10.65	10.15	18.30	56.00	10.55	8.70	18.40
JR-3 (1/4)	373.50	44.75	81.75	26.75	5.33	5.08	9.15	28.00	5.28	4.35	9.20
JR-3 (1/8)	186.75	22.38	40.88	13.38	2.66	2.54	4.58	14.00	2.64	2.18	4.60

11. J. 1	oro (mi		10n0 101				(vv)						
Elomont		Lotton	E:14.04	C1:t	Analyzing ,		A LI G		20			Time	
LIGIIICII	TIIIC	Ialger	LIIU	IIIC	Crystal	COULLEL	ГПА	Peak	B.G.1	B.G.2	Peak	B.G.1	B.G.2
Si	Kα	Rh	out	S4	PET	PC	100-300	109.09	107.00	110.60	40	10	10
Ti	Kα	Rh	out	S2	LiF (200)	SC	100-300	86.14	85.26	86.80	20	10	10
Al	Kα	Rh	out	$\mathbf{S4}$	PET	PC	100-300	144.84	140.60	147.15	40	10	10
Fe	Kα	Rh	out	S2	LiF (200)	SC	100-300	57.51	56.54	58.20	20	10	10
Mn	Kα	Rh	out	S2	LiF (200)	SC	100-300	62.97	62.42	63.48	20	10	10
Mg	Kα	Rh	out	$\mathbf{S4}$	RX25	PC	100-250	37.89	36.00	39.45	40	10	10
Ca	Kα	Rh	out	$\mathbf{S4}$	LiF (200)	PC	100-300	113.13	111.00	114.80	40	10	10
Na	Kα	Rh	out	$\mathbf{S4}$	RX25	PC	100-250	46.04	44.60	47.45	40	10	10
К	Kα	Rh	out	$\mathbf{S4}$	LiF (200)	PC	100-300	136.71	134.50	138.45	40	10	10
Р	Κα	Rh	out	S4	Ge	PC	100-300	141.14	138.60	142.70	40	10	10

Table 3. Analysis condition for each element in GB(2014_06)

		.G.2	10	10	10	10
	Time	B.G.1 B	10	10	10	10
		Peak	40	40	20	20
		B.G.2	110.55	147.50	86.90	58.16
	20	B.G.1	106.85	140.70	84.94	56.34
		Peak	109.09	144.83	86.12	57.51
TiFe2.	νпα	F 117	100-300	100-300	100-300	100-300
gh_SiAl	Countor	COULIE	PC	PC	SC	SC
ment in hig	Analyzing	Crystal	PET	PET	LiF1	LiF1
ach ele	C1:+	1110	$\mathbf{S4}$	$\mathbf{S4}$	S2	S2
tion for e	E:1400	LIUUI	out	out	out	out
al condit	Totat	Iaigci	Rh	Rh	Rh	Rh
Analytic			Κα	Κα	Κα	Κα
Table 4. ¹	Elamont		Si	Al	Ti	Fe

• • વ

lement Line Target Filter Slit Analyzing C Crystal	Line Target Filter Slit Analyzing C Crystal	Target Filter Slit Analyzing C Crystal	Filter Slit Analyzing C Crystal	Slit Analyzing C Crystal	Analyzing C Crystal		lounter	PHA	Peak	2 0 B.G.1	B.G.2 I	Peak B	ime .G.1 B.	G.2
Si Ka Rh out S4 P	Kα Rh out S4 P	Rh out S4 P	out S4 P	S4 P	Ч	ΈT	PC	100-300	109.03	107.25	110.40	20	10	10
Al K α Rh out S4 I	K α Rh out S4 I	Rh out S4 I	out S4 I	S4 I	Ц	ET	PC	100-300	144.77	141.30	147.00	20	10	10
P K α Rh out S4	Kα Rh out S4	Rh out S4	out S4	$\mathbf{S4}$		Ge	PC	100-300	141.05	138.10	146.65	40	20	20
K Ka Rh out S4 Li	Ka Rh out S4 Li	Rh out S4 Li	out S4 Li	S4 Li	Li	F(200)	PC	100-300	136.68	135.00	138.20	40	20	20
Ca Kα Rh out S4 Li	K α Rh out S4 Li	Rh out S4 Li	out S4 Li	S4 Li	Li	F(200)	PC	100-300	113.12	111.60	114.35	20	10	10
Ti Ka Rh out S2 Li	Ka Rh out S2 Li	Rh out S2 Li	out S2 Li	S2 Li	Li	F(200)	SC	100-300	86.11	85.24	86.82	40	20	20
Fe Ka Rh out S2 Li	Kα Rh out S2 Li	Rh out S2 Li	out S2 Li	S2 Li	Li	F(200)	SC	100-300	57.50	57.02	57.98	20	10	10
Mn Ka Rh out S2 Li	Kα Rh out S2 Li	Rh out S2 Li	out S2 Li	S2 Li	Li	F(200)	SC	100-300	62.95	62.44	63.54	20	10	10
Na Ka Rh out S4 R	K α Rh out S4 R	Rh out S4 R	out S4 R	S4 R	A	X25	PC	100-300	46.04	44.65	47.15	40	20	20
Mg Ka Rh out S4 F	Kα Rh out S4 F	Rh out S4 F	out S4 H	S4 F	щ	XZ5	PC	100-300	37.91	36.25	39.20	40	20	20

Table 5. Analytical condition for each element in REE (JIS)

Table 5. (Cc	ontinued	(1)											
Elomont		Totecot	D:14.04	C1:+	Analyzing	Conterno	A 11d		20		ĽI.	me (s)	
LICIIC	TILLE	laigei	LILLEI	llic	Crystal	rounter	ГПА	Peak	B.G.1	B.G.2]	Peak E	G.1 B.	.G.2
Ba	Lα	Rh	out	S2	LiF(200)	SC	100-300	87.13	86.66	87.70	320	160	160
Cu	Κα	Rh	out	S2	LiF(200)	SC	100-300	45.01	44.54	45.54	100	50	50
Nb	$K\alpha$	Rh	out	S2	LiF(200)	SC	100-300	21.39	21.01	21.74	200	100	100
Co	Κα	Rh	out	S2	LiF(200)	SC	100-300	52.77	52.46	53.00	100	50	50
Ni	$K\alpha$	Rh	out	S2	LiF(200)	SC	100-300	48.65	47.98	49.50	160	80	80
Rb	Κα	Rh	out	S2	LiF(200)	SC	100-300	26.60	26.14	27.08	100	50	50
Sr	Κα	Rh	out	S2	LiF(200)	SC	100-300	25.13	24.48	25.76	100	50	50
Λ	$K\alpha$	Rh	out	S2	LiF(200)	SC	100-300	76.91	76.66	77.04	160	80	80
Υ	$K\alpha$	Rh	out	S2	LiF(200)	SC	100-300	23.78	23.44	24.24	160	80	80
Zn	$K\alpha$	Rh	out	S2	LiF(200)	SC	100-300	41.78	41.40	42.20	100	50	50
Zr	$K\alpha$	Rh	out	S2	LiF(200)	SC	100-300	22.54	22.04	22.96	60	30	30
La	Lα	Rh	out	S2	LiF(200)	SC	100-300	82.88	82.30	84.00	160	80	80
Ce	Lα	Rh	out	S2	LiF(200)	SC	100-300	78.98	77.50	79.90	200	100	100
Nd	Lα	Rh	out	S2	LiF(200)	SC	100-300	72.10	71.74	72.52	200	100	100
Sm	Lα	Rh	out	S2	LiF(200)	SC	100-300	66.20	65.90	·	600	009	ī
$\mathbf{Y}\mathbf{b}$	Lα	Rh	out	S2	LiF(200)	SC	100-300	49.04	49.52	·	006	900	ı
Ga	$K\alpha$	Rh	out	S2	LiF(200)	SC	100-300	39.90	38.30	39.60	100	50	50
Th	Lα	Rh	out	S2	LiF(200)	SC	100-300	27.45	27.10	27.78	200	100	100
U	Lα	Rh	out	S2	LiF(200)	SC	100-300	26.13	25.78	26.26	006	900	10
Sn	$K\alpha$	Rh	out	S2	LiF(200)	SC	100-300	14.03	13.50	14.50	006	450	450
Та	Lα	Rh	out	S2	LiF(200)	SC	100-300	44.4	43.90	45.00	600	300	300

					Analytical ele	ments				
	SiO_2	Al_2O_3	P_2O_5	K_2O	CaO	TiO_2	Fe_2O_3	MnO	Na_2O	MgO
SiO_2	ı		ı						ı	
Al_2O_3	ı		-8.65×10^{-4}	-1.02×10^{-3}	-1.07×10^{-3}	-1.13×10^{-3}	-1.25×10^{-3}	-1.23×10^{-3}	-7.94×10^{-4}	-7.41×10^{-4}
P_2O_5	-5.40×10^{-3}	9.51×10^{-4}	·	9.61×10^{-4}	9.71×10^{-4}	7.36×10^{-4}	9.05×10^{-4}	8.69×10^{-4}	9.73×10^{-4}	9.51×10^{-4}
$\rm K_2O$	-5.52×10^{-3}	1.47×10^{-3}	-5.93×10^{-3}	ı	2.21×10^{-2}	2.05×10^{-2}	2.33×10^{-2}	2.27×10^{-2}	2.38×10^{-3}	2.04×10^{-3}
CaO	-5.08×10^{-3}	2.67×10^{-3}	-5.54×10^{-3}	-4.75×10^{-3}	·	2.14×10^{-2}	2.37×10^{-2}	2.31×10^{-2}	3.94×10^{-3}	3.39×10^{-3}
TiO_2	-4.44×10^{-3}	4.31×10^{-3}	-4.93×10^{-3}	-5.16×10^{-3}	-4.92×10^{-3}		2.33×10^{-2}	2.26×10^{-2}	5.61×10^{-3}	5.08×10^{-3}
$\mathrm{Fe}_2\mathrm{O}_3$	-1.55×10^{-3}	1.16×10^{-2}	-2.23×10^{-3}	-3.65×10^{-3}	-3.92×10^{-3}	-4.38×10^{-3}	·	3.73×10^{-3}	1.28×10^{-2}	1.24×10^{-2}
MnO	-2.12×10^{-3}	1.02×10^{-2}	-2.78×10^{-3}	-4.18×10^{-3}	-4.39×10^{-3}	-4.59×10^{-3}	6.83×10^{-3}	I	$1.14{ imes}10^{-2}$	1.10×10^{-2}
Na_2O	-1.50×10^{-3}	1.19×10^{-2}	-2.19×10^{-3}	-2.59×10^{-3}	-2.67×10^{-3}	-2.70×10^{-3}	-2.96×10^{-3}	-2.91×10^{-3}	ı	1.30×10^{-2}
MgO	-4.17×10^{-4}	1.43×10^{-2}	-1.11×10^{-3}	-1.46×10^{-3}	-1.55×10^{-3}	-1.76×10^{-3}	-1.96×10^{-3}	-1.92×10^{-3}	-1.92×10^{-3}	
Ba	5.04×10^{-7}	2.62×10^{-6}	$4.74{\times}10^{-7}$	8.53×10^{-7}	9.97×10^{-7}	1.68×10^{-6}	7.91×10^{-6}	6.75×10^{-6}	1.87×10^{-6}	2.35×10^{-6}
Cu	3.54×10^{-7}	2.44×10^{-6}	2.64×10^{-7}	1.17×10^{-7}	$8.20{ imes}10^{-8}$	-2.72×10^{-8}	-3.01×10^{-7}	-2.34×10^{-7}	2.21×10^{-6}	2.53×10^{-6}
Νb	-5.64×10^{-8}	1.07×10^{-6}	2.48×10^{-8}	2.38×10^{-6}	2.43×10^{-6}	2.46×10^{-6}	2.34×10^{-6}	2.43×10^{-6}	7.16×10^{-7}	8.95×10^{-7}
Co	1.06×10^{-7}	1.81×10^{-6}	2.32×10^{-8}	-1.72×10^{-7}	-2.13×10^{-7}	-2.94×10^{-7}	1.09×10^{-6}	-4.38×10^{-7}	1.88×10^{-6}	1.88×10^{-6}
Ni	2.65×10^{-7}	2.21×10^{-6}	1.79×10^{-7}	2.38×10^{-8}	-1.13×10^{-8}	-1.11×10^{-7}	-2.56×10^{-7}	-2.47×10^{-7}	2.35×10^{-6}	2.31×10^{-6}
Rb	-2.61×10^{-7}	5.29×10^{-7}	1.08×10^{-6}	1.40×10^{-6}	1.41×10^{-6}	1.41×10^{-6}	1.12×10^{-6}	1.26×10^{-6}	$2.28{ imes}10^{-7}$	3.75×10^{-7}
\mathbf{Sr}	-1.89×10^{-7}	6.83×10^{-7}	1.27×10^{-6}	1.65×10^{-6}	1.67×10^{-6}	1.65×10^{-6}	1.39×10^{-6}	1.53×10^{-6}	3.43×10^{-7}	5.07×10^{-7}
Λ	-3.05×10^{-7}	7.74×10^{-7}	-3.61×10^{-7}	-4.28×10^{-7}	-4.08×10^{-7}	3.11×10^{-7}	4.94×10^{-6}	4.82×10^{-6}	8.79×10^{-7}	8.45×10^{-7}
Υ	-1.70×10^{-7}	7.68×10^{-7}	-4.16×10^{-8}	1.83×10^{-6}	1.85×10^{-6}	1.91×10^{-6}	1.96×10^{-6}	1.81×10^{-6}	4.09×10^{-7}	5.75×10^{-7}
Zn	5.03×10^{-7}	2.80×10^{-6}	4.10×10^{-7}	2.72×10^{-7}	2.36×10^{-7}	8.64×10^{-8}	-2.33×10^{-7}	-1.33×10^{-7}	$2.49{ imes}10^{-6}$	2.88×10^{-6}
Zr	-8.08×10^{-8}	9.84×10^{-7}	5.37×10^{-8}	2.13×10^{-6}	2.16×10^{-6}	2.18×10^{-6}	$2.00{ imes}10^{-6}$	2.11×10^{-6}	5.97×10^{-7}	7.87×10^{-7}
La	5.89×10^{-7}	2.84×10^{-6}	5.60×10^{-7}	9.48×10^{-7}	1.08×10^{-6}	1.58×10^{-6}	$8.24{ imes}10^{-6}$	6.99×10^{-6}	$1.78{ imes}10^{-6}$	2.44×10^{-6}
Ce	6.97×10^{-7}	3.12×10^{-6}	6.48×10^{-7}	9.73×10^{-7}	1.09×10^{-6}	1.65×10^{-6}	$7.87{\times}10^{-6}$	5.71×10^{-6}	$2.76{ imes}10^{-6}$	2.99×10^{-6}
Νd	8.32×10^{-7}	3.23×10^{-6}	7.69×10^{-7}	1.07×10^{-6}	1.18×10^{-6}	1.58×10^{-6}	$6.57{\times}10^{-6}$	2.98×10^{-6}	1.91×10^{-6}	2.34×10^{-6}
Sm	1.07×10^{-6}	3.60×10^{-6}	1.01×10^{-6}	1.28×10^{-6}	1.37×10^{-6}	1.62×10^{-6}	$3.40{ imes}10^{-6}$	2.97×10^{-6}	7.05×10^{-8}	2.83×10^{-6}
Yb	1.28×10^{-6}	9.84×10^{-7}	$1.50{ imes}10^{-6}$	2.03×10^{-6}	2.13×10^{-6}	2.39×10^{-6}	2.83×10^{-6}	2.65×10^{-6}	4.51×10^{-7}	6.96×10^{-7}
Ga Ga	5.88×10^{-7}	3.01×10^{-6}	4.92×10^{-7}	3.87×10^{-7}	3.60×10^{-7}	2.68×10^{-7}	-1.28×10^{-7}	7.64×10^{-9}	-2.24×10^{-7}	2.63×10^{-6}
Th	1.97×10^{-7}	1.80×10^{-6}	1.92×10^{-7}	1.17×10^{-6}	4.23×10^{-6}	4.93×10^{-6}	6.53×10^{-6}	6.42×10^{-6}	1.19×10^{-6}	1.48×10^{-6}
N	1.51×10^{-7}	1.69×10^{-6}	1.36×10^{-7}	1.01×10^{-6}	$2.70{ imes}10^{-6}$	4.87×10^{-6}	6.61×10^{-6}	6.46×10^{-6}	1.11×10^{-6}	1.48×10^{-6}
Sn	7.91×10^{-8}	1.62×10^{-6}	$4.89{ imes}10^{-8}$	7.28×10^{-7}	9.90×10^{-7}	4.98×10^{-6}	5.62×10^{-6}	5.46×10^{-6}	1.53×10^{-6}	1.59×10^{-6}
Та	5.72×10^{-7}	1.17×10^{-6}	1.52×10^{-6}	2.51×10^{-6}	2.66×10^{-6}	3.01×10^{-6}	3.80×10^{-6}	3.51×10^{-6}	6.26×10^{-7}	8.95×10^{-7}

Table 6. Theoretical matrix correction coefficients in REE(GIS)

Table 6. (Continued)

				Ans	ulytical eleme	ents				
	Ba	Cu	Nb	Co	Ni	Rb	Sr	Λ	Υ	Zn
SiO_2	ı	ı	ı	ı	I	I	ı	ı	ı	1
Al_2O_3	-1.15×10^{-3}	-1.31×10^{-3}	-1.37×10^{-3}	-1.28×10^{-3}	-1.30×10^{-3}	-1.36×10^{-3}	-1.36×10^{-3}	-1.18×10^{-3}	-1.36×10^{-3}	-1.32×10^{-3}
P_2O_5	7.45×10^{-4}	1.01×10^{-3}	1.25×10^{-3}	9.47×10^{-4}	9.82×10^{-4}	1.19×10^{-3}	1.20×10^{-3}	7.88×10^{-4}	1.22×10^{-3}	$1.04{ imes}10^{-3}$
K_2O	2.08×10^{-2}	2.53×10^{-2}	3.01×10^{-2}	2.41×10^{-2}	2.47×10^{-2}	2.87×10^{-2}	2.90×10^{-2}	2.14×10^{-2}	2.94×10^{-2}	2.58×10^{-2}
CaO	2.17×10^{-2}	2.54×10^{-2}	3.09×10^{-2}	2.44×10^{-2}	2.49×10^{-2}	2.91×10^{-2}	2.95×10^{-2}	2.21×10^{-2}	3.00×10^{-2}	2.60×10^{-2}
TiO_2	-3.91×10^{-4}	2.56×10^{-2}	3.24×10^{-2}	2.42×10^{-2}	2.49×10^{-2}	3.03×10^{-2}	3.08×10^{-2}	4.04×10^{-4}	3.14×10^{-2}	2.63×10^{-2}
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	-4.66×10^{-3}	5.19×10^{-2}	7.00×10^{-2}	8.07×10^{-3}	5.01×10^{-2}	6.44×10^{-2}	6.57×10^{-2}	-4.58×10^{-3}	6.73×10^{-2}	5.38×10^{-2}
MnO	-4.79×10^{-3}	5.07×10^{-2}	6.44×10^{-2}	4.81×10^{-2}	4.95×10^{-2}	5.99×10^{-2}	6.09×10^{-2}	-4.42×10^{-3}	6.22×10^{-2}	5.20×10^{-2}
Na_2O	-2.74×10^{-3}	-3.15×10^{-3}	-3.58×10^{-3}	-3.04×10^{-3}	-3.10×10^{-3}	-3.44×10^{-3}	-3.47×10^{-3}	-2.79×10^{-3}	-3.51×10^{-3}	-3.20×10^{-3}
MgO	-1.79×10^{-3}	-2.10×10^{-3}	-2.44×10^{-3}	-2.02×10^{-3}	-2.06×10^{-3}	-2.33×10^{-3}	-2.35×10^{-3}	-1.83×10^{-3}	-2.39×10^{-3}	-2.14×10^{-3}
Ba	ı	$8.59{\times}10^{-6}$	1.15×10^{-5}	8.16×10^{-6}	8.38×10^{-6}	1.05×10^{-5}	1.07×10^{-5}	2.11×10^{-6}	1.10×10^{-5}	8.83×10^{-6}
Cu	-4.98×10^{-8}	·	1.39×10^{-5}	-3.72×10^{-7}	1.57×10^{-6}	1.27×10^{-5}	1.30×10^{-5}	-8.16×10^{-8}	1.33×10^{-5}	2.46×10^{-6}
Nb	2.46×10^{-6}	$1.84{ imes}10^{-6}$		$2.28{ imes}10^{-6}$	2.03×10^{-6}	-7.36×10^{-7}	-1.11×10^{-6}	2.49×10^{-6}	7.34×10^{-6}	$1.60{ imes}10^{-6}$
Co	-3.21×10^{-7}	$8.69{\times}10^{-6}$	1.13×10^{-5}	·	1.80×10^{-6}	1.05×10^{-5}	1.07×10^{-5}	-3.28×10^{-7}	1.09×10^{-5}	8.96×10^{-6}
Ni	-1.35×10^{-7}	$2.24{ imes}10^{-6}$	1.32×10^{-5}	1.42×10^{-6}	ı	1.21×10^{-5}	1.24×10^{-5}	-1.51×10^{-7}	1.27×10^{-5}	9.92×10^{-6}
Rb	1.40×10^{-6}	4.60×10^{-7}	2.43×10^{-5}	1.01×10^{-6}	6.93×10^{-7}	ı	7.05×10^{-6}	1.40×10^{-6}	7.50×10^{-6}	$1.80{ imes}10^{-7}$
Sr	1.65×10^{-6}	7.52×10^{-7}	2.58×10^{-5}	1.29×10^{-6}	9.83×10^{-7}	$5.24{ imes}10^{-6}$	·	1.65×10^{-6}	7.95×10^{-6}	$4.70{ imes}10^{-7}$
Λ	3.61×10^{-7}	5.31×10^{-6}	$6.52{\times}10^{-6}$	$5.08{ imes}10^{-6}$	5.21×10^{-6}	$6.12{ imes}10^{-6}$	$6.21{\times}10^{-6}$		$6.32{ imes}10^{-6}$	5.43×10^{-6}
Υ	1.90×10^{-6}	1.11×10^{-6}	1.04×10^{-5}	1.61×10^{-6}	1.32×10^{-6}	5.48×10^{-6}	$6.29{ imes}10^{-6}$	1.91×10^{-6}	·	8.37×10^{-7}
Zn	6.30×10^{-8}	1.95×10^{-6}	1.58×10^{-5}	-3.37×10^{-7}	-5.74×10^{-7}	1.43×10^{-5}	1.47×10^{-5}	3.59×10^{-8}	1.51×10^{-5}	
Zr	$2.18{ imes}10^{-6}$	1.46×10^{-6}	1.09×10^{-5}	1.93×10^{-6}	1.66×10^{-6}	-1.03×10^{-6}	6.25×10^{-6}	2.19×10^{-6}	7.06×10^{-6}	1.22×10^{-6}
La	$1.78{\times}10^{-6}$	9.12×10^{-6}	1.24×10^{-5}	8.56×10^{-6}	8.85×10^{-6}	1.13×10^{-5}	1.16×10^{-5}	2.13×10^{-6}	1.19×10^{-5}	9.42×10^{-6}
Ce	1.72×10^{-6}	9.85×10^{-6}	1.35×10^{-5}	9.29×10^{-6}	9.58×10^{-6}	1.22×10^{-5}	1.25×10^{-5}	$2.08{ imes}10^{-6}$	1.29×10^{-5}	1.02×10^{-5}
Nd	1.81×10^{-6}	1.10×10^{-5}	1.50×10^{-5}	9.10×10^{-6}	1.07×10^{-5}	1.36×10^{-5}	1.40×10^{-5}	2.04×10^{-6}	1.43×10^{-5}	1.13×10^{-5}
Sm	1.66×10^{-6}	1.20×10^{-5}	1.65×10^{-5}	7.52×10^{-6}	1.03×10^{-5}	1.49×10^{-5}	1.53×10^{-5}	1.81×10^{-6}	1.57×10^{-5}	1.24×10^{-5}
Yb	2.42×10^{-6}	5.16×10^{-6}	2.34×10^{-5}	3.56×10^{-6}	3.96×10^{-6}	$2.08{ imes}10^{-5}$	2.14×10^{-5}	2.46×10^{-6}	2.21×10^{-5}	5.61×10^{-6}
ед 16	2.44×10^{-7}	-7.05×10^{-7}	1.62×10^{-5}	-2.64×10^{-7}	-5.46×10^{-7}	1.45×10^{-5}	1.49×10^{-5}	2.05×10^{-7}	1.54×10^{-5}	2.05×10^{-6}
Тh	4.97×10^{-6}	6.86×10^{-6}	3.28×10^{-5}	6.71×10^{-6}	6.76×10^{-6}	1.17×10^{-5}	1.36×10^{-5}	5.75×10^{-6}	1.69×10^{-5}	$6.94{ imes}10^{-6}$
N	$4.94{ imes}10^{-6}$	7.09×10^{-6}	1.79×10^{-5}	6.83×10^{-6}	$6.94{ imes}10^{-6}$	1.18×10^{-5}	1.27×10^{-5}	$5.09{ imes}10^{-6}$	1.49×10^{-5}	7.25×10^{-6}
Sn	5.06×10^{-6}	$6.12{ imes}10^{-6}$	7.38×10^{-6}	$5.82{ imes}10^{-6}$	5.98×10^{-6}	7.07×10^{-6}	7.15×10^{-6}	5.17×10^{-6}	7.24×10^{-6}	$6.28{ imes}10^{-6}$
Ta	3.07×10^{-6}	5.23×10^{-6}	2.63×10^{-6}	4.18×10^{-6}	4.65×10^{-6}	2.33×10^{-5}	2.40×10^{-5}	3.15×10^{-6}	2.48×10^{-5}	5.98×10^{-6}

	t	÷	C		Analytica	l elements	C	Ē	T T	c	F
	Zr	La	Ce	Nd	Nm	Υb	Ua	In		Sn	Ia
SiO_2	ı	ı		·	ı		ı	·			ı
Al_2O_3	-1.36×10^{-3}	-1.17×10^{-3}	-1.18×10^{-3}	-1.22×10^{-3}	-1.24×10^{-3}	-1.33×10^{-3}	-1.33×10^{-3}	-1.45×10^{-3}	-1.43×10^{-3}	-1.25×10^{-3}	-1.35×10^{-3}
P_2O_5	1.24×10^{-3}	7.66×10^{-4}	7.89×10^{-4}	8.31×10^{-4}	8.67×10^{-4}	1.00×10^{-3}	1.07×10^{-3}	1.27×10^{-3}	1.26×10^{-3}	1.21×10^{-3}	1.05×10^{-3}
$ m K_2O$	2.97×10^{-2}	2.12×10^{-2}	2.16×10^{-2}	2.23×10^{-2}	2.29×10^{-2}	2.53×10^{-2}	2.62×10^{-2}	3.06×10^{-2}	3.05×10^{-2}	2.93×10^{-2}	2.62×10^{-2}
CaO	3.04×10^{-2}	2.20×10^{-2}	2.23×10^{-2}	2.29×10^{-2}	2.34×10^{-2}	2.55×10^{-2}	2.64×10^{-2}	3.11×10^{-2}	3.10×10^{-2}	$3.10{ imes}10^{-2}$	2.64×10^{-2}
TiO_2	3.18×10^{-2}	-3.35×10^{-4}	-2.69×10^{-4}	$2.20{\times}10^{-2}$	2.27×10^{-2}	2.55×10^{-2}	2.69×10^{-2}	3.23×10^{-2}	3.22×10^{-2}	3.29×10^{-2}	2.65×10^{-2}
$\mathrm{Fe_2O_3}$	6.85×10^{-2}	-4.65×10^{-3}	-4.78×10^{-3}	-4.89×10^{-3}	3.29×10^{-3}	5.12×10^{-2}	5.53×10^{-2}	6.86×10^{-2}	6.88×10^{-2}	7.23×10^{-2}	5.39×10^{-2}
MnO	6.32×10^{-2}	-4.61×10^{-3}	-4.61×10^{-3}	2.87×10^{-3}	5.58×10^{-3}	5.06×10^{-2}	5.31×10^{-2}	6.39×10^{-2}	6.38×10^{-2}	6.61×10^{-2}	5.26×10^{-2}
Na_2O	-3.54×10^{-3}	-2.77×10^{-3}	-2.81×10^{-3}	-2.88×10^{-3}	-2.94×10^{-3}	-3.17×10^{-3}	-3.23×10^{-3}	-3.68×10^{-3}	-3.65×10^{-3}	-3.47×10^{-3}	-3.25×10^{-3}
MgO	-2.41×10^{-3}	-1.81×10^{-3}	-1.84×10^{-3}	-1.89×10^{-3}	-1.94×10^{-3}	-2.11×10^{-3}	-2.17×10^{-3}	-2.49×10^{-3}	-2.48×10^{-3}	-2.37×10^{-3}	-2.17×10^{-3}
Ba	1.12×10^{-5}	1.89×10^{-6}	$2.01{ imes}10^{-6}$	2.13×10^{-6}	6.79×10^{-6}	8.58×10^{-6}	9.04×10^{-6}	1.11×10^{-5}	1.11×10^{-5}	8.95×10^{-6}	8.92×10^{-6}
Cu	1.36×10^{-5}	-7.81×10^{-8}	-1.12×10^{-7}	-1.86×10^{-7}	-2.90×10^{-7}	2.04×10^{-6}	1.07×10^{-5}	1.35×10^{-5}	1.36×10^{-5}	1.46×10^{-5}	2.18×10 ⁻⁶
ЧN	$8.38{\times}10^{-6}$	2.46×10^{-6}	2.46×10 ⁻⁶	2.44×10^{-6}	2.40×10^{-6}	1.83×10^{-6}	$1.30{\times}10^{-6}$	-1.77×10^{-6}	$6.63{\times}10^{-6}$	3.81×10^{-5}	1.56×10^{-6}
Co	1.11×10^{-5}	-3.32×10^{-7}	-3.57×10^{-7}	-4.07×10^{-7}	-5.22×10^{-7}	1.57×10^{-6}	9.18×10^{-6}	1.12×10^{-5}	1.12×10^{-5}	1.16×10^{-5}	$9.02{ imes}10^{-6}$
Ni	1.30×10^{-5}	-1.53×10^{-7}	$-1.81{\times}10^{-7}$	-2.33×10^{-7}	-3.12×10^{-7}	1.93×10^{-6}	1.02×10^{-5}	1.29×10^{-5}	1.30×10^{-5}	1.38×10 ⁻⁵	2.04×10^{-6}
Rb	2.35×10^{-5}	1.38×10^{-6}	1.37×10^{-6}	1.31×10^{-6}	1.23×10^{-6}	4.76×10^{-7}	-1.04×10^{-7}	6.54×10^{-6}	$6.70{\times}10^{-6}$	2.82×10^{-5}	1.49×10^{-7}
Sr	8.48×10^{-6}	1.63×10^{-6}	1.62×10^{-6}	1.57×10^{-6}	1.50×10^{-6}	7.69×10^{-7}	1.64×10^{-7}	7.01×10^{-6}	7.17×10^{-6}	2.99×10^{-5}	4.44×10^{-7}
Λ	$6.41\!\times\!10^{-6}$	5.43×10^{-7}	$5.70{ imes}10^{-7}$	6.05×10^{-7}	4.87×10^{-6}	5.33×10^{-6}	5.52×10^{-6}	$6.54{\times}10^{-6}$	$6.52{ imes}10^{-6}$	6.59×10^{-6}	5.51×10^{-6}
Υ	9.64×10^{-6}	1.89×10^{-6}	1.88×10^{-6}	1.84×10^{-6}	1.78×10^{-6}	1.10×10^{-6}	5.30×10^{-7}	5.85×10^{-6}	8.17×10^{-6}	3.32×10^{-5}	8.00×10^{-7}
Zn	1.54×10^{-5}	3.28×10^{-8}	-5.56×10^{-10}	-7.94×10^{-8}	-1.92×10^{-7}	1.64×10^{-6}	2.99×10^{-6}	1.53×10^{-5}	1.53×10^{-5}	1.66×10^{-5}	2.61×10^{-6}
Zr	I	2.17×10^{-6}	2.16×10^{-6}	2.14×10^{-6}	2.08×10^{-6}	1.46×10^{-6}	9.15×10^{-7}	5.87×10^{-6}	6.33×10^{-6}	3.51×10^{-5}	1.18×10^{-6}
La	1.21×10^{-5}	ı	$2.08{ imes}10^{-6}$	2.29×10^{-6}	5.14×10^{-6}	9.06×10^{-6}	9.67×10^{-6}	1.20×10^{-5}	1.21×10^{-5}	1.06×10^{-5}	9.48×10^{-6}
Ce	1.32×10^{-5}	2.00×10^{-6}	I	2.49×10^{-6}	2.52×10^{-6}	9.80×10^{-6}	1.04×10^{-5}	1.30×10^{-5}	1.30×10^{-5}	1.28×10^{-5}	1.02×10^{-5}
Nd	1.47×10^{-5}	1.94×10^{-6}	$2.20{ imes}10^{-6}$	ı	2.87×10^{-6}	1.09×10^{-5}	1.16×10^{-5}	1.45×10^{-5}	1.46×10^{-5}	1.57×10^{-5}	1.14×10^{-5}
Sm	1.61×10^{-5}	1.75×10^{-6}	2.06×10^{-6}	2.49×10^{-6}	·	1.05×10^{-5}	1.27×10^{-6}	1.59×10^{-5}	1.60×10^{-5}	1.80×10^{-5}	1.25×10^{-5}
qY	2.27×10^{-5}	2.45×10^{-6}	2.48×10^{-6}	2.56×10^{-6}	2.66×10^{-6}	·	1.15×10^{-5}	2.21×10^{-5}	2.23×10^{-5}	2.68×10^{-5}	5.49×10^{-6}
Gà	1.58×10^{-5}	2.09×10^{-7}	1.73×10^{-7}	8.45×10^{-8}	-2.65×10^{-8}	-7.70×10^{-7}	ı	1.53×10^{-5}	1.55×10^{-5}	1.76×10^{-5}	1.95×10^{-6}
Πh	1.81×10^{-5}	5.02×10^{-6}	5.76×10 ⁻⁶	$6.34{\times}10^{-6}$	6.43×10^{-6}	6.76×10^{-6}	7.02×10^{-6}		1.59×10^{-6}	5.56×10^{-5}	6.90×10^{-6}
Ŋ	1.68×10^{-5}	5.01×10^{-6}	5.08×10^{-6}	5.89×10^{-6}	6.48×10^{-6}	6.99×10^{-6}	7.38×10^{-6}	1.25×10^{-5}	ı	5.75×10^{-5}	7.23×10^{-6}
Sn	7.30×10^{-6}	5.13×10^{-6}	5.21×10^{-6}	5.36×10^{-6}	5.50×10^{-6}	6.09×10^{-6}	6.40×10^{-6}	7.46×10 ⁻⁶	7.37×10^{-6}	ı	6.32×10^{-6}
Та	2.55×10^{-5}	3.13×10^{-6}	3.20×10^{-6}	3.35×10^{-6}	3.54×10^{-6}	4.92×10^{-6}	6.56×10^{-6}	2.48×10^{-5}	2.51×10^{-5}	3.02×10^{-5}	I

Table 6. (Continued)

	ements	Zr Sm Yb Ga Ta	0.064 -	0.005	0.011	0.007	-0.073	 	1.040	 	 	
		Ga	-0.06	5	-		Ι	Ι	Ι	Ι	Ι	
		γb	I	-0.00	-0.01	-00.00-	Ι	I	Ι	Ι	Ι	
		Sm	I	Ι	I	I	I	I	-1.040	I	I	
	ments	Zr	1	I	I	I	-0.073	I	I	I	I	
EE(GIS)	lytical ele	γ	I	I	I	-0.159	I	I	I	I	-0.183	
ient in Rl	Ana	Ni	I	I	I	-0.085	I	I	I	I	I	
ig coeffic		Co	I	I	I	I	I	I	I	-0.014	I	
correctin		Nb	1	I	I	I	I	-0.034	I	I	I	
. Overlap		Cu	1	I	I	I	I	I	I	I	-0.066	
Table 7.			Nb	Co	Ni	Rb	Sr	Υ	La	Nd	Тћ	,

(GIS)
REE(
t in
oefficien
correcting c
Overlap (
le 7.

Figure 1. Calibration lines in GB(2014_06) analyses file

 $\begin{array}{c} \begin{array}{c} 1.5 \\ 1.4 \\ -2.6 \\$

Content (Wt %)

relative error(%)		\Diamond	\Diamond	\Diamond	Ş	Ş	\Diamond	9>	4>	<5
ermination	77.705	23.802	8.411	4.688	0.297	4.698	14.163	1.620	15.059	0.223
dete mit	1	ı	ı	ı	ı	ı	ı	ı	ı	ı
Hypothetical lii	43.320	11.720	0.626	0.885	0.054	0.040	0.658	0.091	1.850	0.068
element	SiO_2	Al_2O_3	MgO	Na_2O	P_2O_5	K_2O	CaO	TiO_2	Fe_2O_3	MnO
	element Hypothetical determination relative error(%)	elementHypothetical determination limitrelative error(%)SiO243.32077.705<1	element Hypothetical determination relative error(%) $\lim_{1 \le 0_3} H_{2}O_3 + 3.320 + 77.705 < 1$	element Hypothetical determination relative error(%) $\lim_{1 \le 10^2} Hypothetical determination relative error(%) \\ SiO_2 43.320 - 77.705 <1 \\ Al_2O_3 11.720 - 23.802 <3 \\ MgO 0.626 - 8.411 <3$	elementHypothetical determinationrelative error(%) $limit$ $limit$ $relative error(%)$ SiO_2 43.320 -77.705 <1 Al_2O_3 11.720 $ 23.802$ <3 MgO 0.626 $ 8.411$ <3 Na_2O 0.885 $ 4.688$ <3	elementHypothetical determination limitrelative error(%) SiO_2 43.320 -77.705 <1 SiO_2 43.320 -77.705 <1 M_2O_3 11.720 -23.802 <3 MgO 0.626 -8.411 <3 Na_2O 0.885 -4.688 <3 P_2O_5 0.054 -0.297 <5	elementHypothetical determination limitrelative error(%)SiO2 43.320 $ 77.705$ <1 Na2O3 11.720 $ 23.802$ <3 MgO 0.626 $ 8.411$ <3 Na2O 0.885 $ 4.688$ <3 P2O5 0.054 $ 0.297$ <5 K2O 0.040 $ 4.698$ <5	elementHypothetical determination limitrelative error(%)SiO2 43.320 $ 77.705$ <1 SiO2 43.320 $ 77.705$ <1 MgO 0.626 $ 23.802$ <3 MgO 0.626 $ 8.411$ <3 Na2O 0.885 $ 4.688$ <3 P2O5 0.054 $ 4.688$ <3 K2O 0.040 $ 4.698$ <5 CaO 0.658 $ 14.163$ <5	elementHypothetical determination limitrelative error(%)SiO2 43.320 $ 77.705$ <1 SiO2 43.320 $ 77.705$ <1 MgO 0.626 $ 23.802$ <3 MgO 0.626 $ 8.411$ <3 Na ₂ O 0.626 $ 4.688$ <3 P ₂ O ₅ 0.054 $ 4.688$ <3 CaO 0.054 $ 4.698$ <5 TiO2 0.658 $ 14.163$ <5 TiO2 0.091 $ 1.620$ <6	elementHypothetical determination limitrelative error(%)SiO2 43.320 77.705 <1 Na2O3 43.320 <77.705 <1 MgO 0.626 <23.802 <3 MgO 0.626 <23.802 <3 Na2O 0.885 <4.688 <3 P2O5 0.054 <4.688 <3 K2O 0.040 <4.698 <5 TiO2 0.658 <1.4698 <5 TiO2 0.091 <1.620 <5 Fe ₂ O3 1.850 <1.5059 <4

Table 8. The hypothetical determination limits indicating each calibration line in GB(2014_06)

Iaule	7. THE I	CSUIL UL	quailitiau	VC allaly	SIS IIICU		n(2014)	(or				
		JF-1			JZn-1			JP-1			JMs-2	
mass%	m. v.	r.v.	r.e.	m. v.	r.v.	r.e.	m. v.	r.v.	r.e.	m. v.	r.v.	r.e.
SiO_2	67.686	66.690	1.471	44.441	43.950	1.105	42.684	42.380	0.713	40.177	41.780	3.989
Al_2O_3	18.809	18.080	3.877	6.190	6.320	2.108	0.654	0.660	0.887	13.067	14.180	8.514
MgO	0.029	0.006	79.167	1.827	1.940	6.208	45.542	44.600	2.068	2.902	3.240	11.657
Na_2O	3.327	3.370	1.305	0.402	0.450	11.885	0.249	0.021	91.580	5.202	5.790	11.302
P_2O_5	0.015	0.010	34.211	0.061	0.005	91.857	0.011	0.002	81.481	1.258	1.260	0.196
K_2O	10.239	9.990	2.428	0.845	0.830	1.829	0.014	0.003	78.261	2.570	2.700	5.053
CaO	0.901	0.930	3.196	18.494	18.100	2.132	0.609	0.550	9.658	4.492	4.680	4.190
TiO_2	-0.003	0.005	247.059	0.194	0.200	2.881	-0.005	0.006	230.435	1.384	1.400	1.146
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	-0.052	0.080	255.039	15.882	16.860	6.348	9.330	8.370	10.289	10.551	10.960	3.872
MnO	-0.025	0.001	104.065	1.464	1.490	1.767	0.093	0.121	30.108	2.275	2.260	0.671
		JD0-1			JCh-1			JSd-1			JH-1	
mass%	m. v.	r.v.	r.e.	m. v.	r.v.	r.e.	m. v.	r.v.	r.e.	m. v.	r.v.	r.e.
SiO_2	3.036	0.216	92.885	99.082	97.810	1.284	63.540	66.550	4.737	46.386	48.180	3.867
Al_2O_3	0.001	0.017	1142.857	0.769	0.734	4.527	14.320	14.650	2.303	5.457	5.660	3.717
MgO	18.562	18.470	0.495	0.093	0.075	19.099	1.753	1.813	3.399	16.156	16.730	3.552
Na_2O	0.170	0.013	92.412	0.187	0.031	83.672	2.709	2.727	0.657	0.725	0.710	2.001
P_2O_5	0.046	0.034	25.758	0.019	0.017	11.170	0.119	0.122	2.867	0.098	0.099	1.538
$\rm K_2O$	-0.001	0.002	332.000	0.214	0.221	3.175	2.136	2.183	2.191	0.526	0.530	0.697
CaO	37.730	33.960	9.992	0.075	0.045	39.812	2.947	3.034	2.938	14.721	15.020	2.032
T_{iO_2}	-0.008	0.001	115.833	0.016	0.032	92.683	0.663	0.643	3.046	0.648	0.670	3.475
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	-0.113	0.021	118.440	0.248	0.356	43.780	5.197	5.059	2.652	9.954	10.270	3.171
MnO	-0.009	0.007	169.894	0.008	0.017	105.952	0.093	0.092	0.645	0.175	0.190	8.883
m.v; n	neasurec	l value,	r.v.; rec	commenc	led valı	le, r.e	; relative	error				

Table 9. The result of quantitative analysis method in GB(2014–06)

ing each	
indicat	
limits	(90-
ination	3(2014
determ	e in GF
0. The	ion lin
Table 1	calibrat

element	detern	nination limit	relative error(%)
SiO_2	41.780	- 97.810	4>
Al_2O_3	0.660	- 23.802	6>
MgO	0.626	- 44.600	<12
Na_2O	0.450	- 5.790	<12
P_2O_5	0.054	- 0.297	₹ S
K_2O	0.040	- 9.990	9>
CaO	0.550	- 33.960	<10
TiO_2	0.091	- 1.620	9>
$\mathrm{Fe_2O_3}$	1.850	- 16.860	<11
MnO	0.068	- 2.260	6>

Figure 2. Calibration lines in high_SiAlFeTi2 (Continued)

The both upper figures show whole of calibration lines in high_SiAlTiFe2. The lower figures indicates the extended parts surrounded into a square at each upper figure.

its indicating	
able 11. The hypothetical determination lim	Ich calibration curve in high_SiAlTiFe2

relative error(%)	\heartsuit	\gtrsim	\Diamond	<10	\Diamond
nination limit (%)	98.850	12.600	0.047	0.240	0.981
deterr	1	I	I	I	I
Hypothetical	75.740	0.130	0.020	0.081	0.241
element	SiO_2	Al_2O_3	TiO_2	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	

Table 12. The result of quantitative analysis method in high_SiAlTiFe

	r.e.	1.297	3.253	38.675	16.084						
JF-1	r.v.	66.690	18.080	0.005	0.080						
	m. v.	67.567	18.688	0.004	0.095						
	r.e.	3.631	5.782	9.091	8.442			r.e.	0.410	54.167	100.000
JP-1	r.v.	42.380	0.660	0.006	8.370		JG2M5	r.v.	99.897	0.056	0.000
	m. v.	43.977	0.701	0.006	9.142			m. v.	99.489	0.036	-0.001
	r.e.	0.721	3.717	23.117	7.931			r.e.	0.248	5.799	33.333
JCh-1	r.v.	97.810	0.734	0.032	0.356		JG2M4	r.v.	99.202	0.445	0.002
	m. v.	97.110	0.762	0.026	0.387			m. v.	98.944	0.471	0.003
	r.e.	96.824 63.750 33.000 40.571						r.e.	0.224	5.240	'
JDo-1	r.v.	0.216	0.017	0.001	0.021		IG2M3	r.v.	98.701	0.741	0.003
	m. v.	6.801	0.048	0.001	0.035		ſ	m. v.	98.480	0.704	0.003
JDo-1 JCh-1 JP-1 JF-1 JF-1	mass%	SiO2	A12O3	TiO2	Fe2O3			mass%	SiO_2	Al_2O_3	TiO_2

500.000

0.004

0.001

17.978

0.035

0.030

9.615

0.058

0.052

 ${\rm Fe_2O_3}$

26

-4 :-. : • -T.L.1. 13 TL

*:the rocks excepting Granite and Quartz

non *:all rocks

Figure 3. Calibration lines in REE(GIS)

ACR: accuracy R²: coefficient of determination

- A: matrix correction constants (shown to Table 7), B: overlap correction constants (shown to Table 8) C: standard value of the target element, F: standard value of measurement elements excepting Si or Al O: estimated value (Xi^{\wedge}); It was calculated in following equation. Xi^{\wedge}=(C i - ΣB j F j) / (1+ ΣA j F j)
 - Figure 3. (Continued) : quantitative value (Wi); $W_i = X_i (1 + \sum A j F j) + \sum B j F$ Xi: each of calibration line

29

vai ucici ii iii auoii ii iii ii s iiiu cauuz caui cauutauoii iii c iii	Hypothetical relative error(%) etermination limit (%)	42.38 - 96.93 <8	3.21 - 17.49 <17	0.056 - 0.294 <22	1.10 - 4.71 <27	0.023 - 0.137 <17	0.138 - 11.09 <9	0.026 - 1.60 <14	1.20 - 4.69 < <20	4.62 - 44.6 <27	0.071 - 0.218 <15	0.59 - 15.06 < 12
REE(GIS)	element Hypothetic determination lir	SiO2 42.38 -	Al2O3 3.21 -	P2O5 0.056 -	K20 1.10 -	CaO 0.023 -	0.138 -	TiO2 0.026 -	Na2O 1.20 -	MgO 4.62 -	MnO 0.071 -	Fe2O3 0.59 -

alibration line in the -.+.. ation limits indic مامار امم otho dti Table 14. The hyp

	othetical tion limit (%) relative error(%)	- 466 <11	- 225 <20	- 510 <17	- 12.2 <13	- 116 <4	- 2460 <9	- 453 <6	- 403 <14	- 635 <21	- 166 <6	- 209 <8	- 1494 <15	- 179 <18	- 327 <14	- 107 <27	
ntinued)	Hypothetical determination limit	311 -	6.72 -	15.2 -	3.62 -	12.3 -	16.6 -	6.87 -	1.3 -	372 -	5.64 -	15.3 -	12.5 -	15.8 -	48.3 -	10.9 -	
able 14. (Co	element	Ba	Cu	Nb	Co		Ni	Rb	Sr	Λ	Υ	Zn	Zr	La	Ce	Nd	

onec
ntii
ũ
1 4.
ole
1

GIS)
REE(
in
q
ho
met
IS.
ys
al
an
/e
tiv
ita
nti
ua
਼ੁਰ
of
lt
ns
re
Je
Ē
S.
—
ole
at
μ

		II.s.1			П.k-1			1Do-1			Ms-1			Mn-1	
element	n v	rv	re	n v	r v	re	n v	rv	re	, n	r v	re	n u	r V	re
SiO2	13.76	0.12	99.13	60.28	57.16	5.18	18.34	0.22	98.82	56.59	53.74	5.03	29.91	14.11	52.83
A12O3	-0.05	0.02	140.59	16.32	16.73	2.50	-0.07	0.02	125.97	15.27	15.82	3.63	4.09	4.30	5.15
P2O5	0.03	0.03	2.75	0.20	0.21	5.05	0.04	0.03	22.63	0.16	0.18	9.31	0.49	0.54	10.05
K20	-0.03	0.00	109.79	2.99	2.81	6.07	-0.04	0.00	105.52	2.18	2.24	2.72	0.88	0.94	7.43
CaO	91.03	55.09	39.48	0.72	0.69	5.20	55.39	33.96	38.69	1.99	2.13	6.89	3.13	2.91	6.90
TiO2	-0.02	0.00	112.77	0.79	0.67	14.90	-0.01	0.00	113.30	0.73	0.70	4.24	1.23	1.06	13.82
Fe2O3	-0.47	0.02	103.57	8.07	6.93	14.11	-0.32	0.02	106.54	7.14	6.90	3.35	17.09	14.40	15.72
MnO	0.01	0.00	58.20	0.30	0.27	11.14	0.01	0.01	45.25	0.10	0.10	0.33	30.95	33.09	6.91
Na2O	-0.16	0.00	101.22	0.68	1.05	53.58	-0.13	0.01	109.85	3.30	4.07	23.42	1.32	2.80	12.01
MgO	1.18	0.61	48.85	2.40	1.74	27.54	20.68	18.47	10.70	3.82	2.87	24.89	3.98	3.12	21.56
Ba	829.33	476.00	42.60	691.33	574.00	16.97	46.33	6.14	86.75	295.00	307.00	4.07	1975.67	1714.00	13.24
Cu	4.00	0.27	93.30	71.00	62.90	11.41	5.00	1.41	71.80	87.67	88.00	0.38	9787.67	11132.00	13.73
Nb	5.00	1.00	80.00	16.00	15.80	1.25	3.00	0.40	86.67	9.00		ı	33.00	27.60	16.36
Co	0.00	0.08	0.00	20.67	18.00	12.90	0.33	0.17	49.60	16.67	18.10	8.60	1740.33	1732.00	0.48
Ni	-2.00	0.36	118.10	38.00	35.00	7.89	10.00	2.90	71.00	55.33	53.00	4.22	12747.67	12632.00	0.91
Rb	-2.67	0.18	106.75	171.67	147.00	14.37	6.00	1.75	70.83	95.67	88.00	8.01	14.67	10.90	25.68
Sr	462.67	295.00	36.24	76.67	67.50	11.96	185.67	116.00	37.52	151.00	154.00	1.99	813.00	792.00	2.58
Λ	111.33	3.59	96.78	85.33	117.00	37.11	85.00	3.14	96.31	88.67	127.00	43.23	452.67	424.00	6.33
Υ	0.67	0.22	66.55	50.00	40.00	20.00	18.00	10.30	42.78	23.00	24.30	5.65	119.00	111.00	6.72
Zn	2.33	3.19	36.71	170.00	152.00	10.59	56.33	35.40	37.16	268.00	264.00	1.49	1109.00	1068.00	3.70
Zr	16.33	4.19	74.35	149.33	137.00	8.26	9.33	6.21	33.46	119.00	132.00	10.92	383.33	344.00	10.26
La	-23.33	0.15	100.66	41.67	40.60	2.56	6.00	7.93	32.17	17.67		ı	149.67	122.00	18.49
9 33	64.67	0.52	99.19	-12.67	87.90	793.95	1.33	2.49	86.75	-101.00		ı	243.33	277.00	13.84
Nd	-23.00	0.14	100.59	49.33	35.70	27.64	-5.33	5.25	198.44	16.33		ı	213.00	137.00	35.68
Th	-2.00	0.03	101.44	22.00	19.50	11.36	-2.00	ı	ı	7.00		ı	13.33	11.70	12.25
m.v; n	leasure	d valu	e, r./	v.; reco	mmen	ded val	ue,	r.e; re	lative e	STTOT					

inued)
(Cont
Table 15

. .		JZn-1			JCu-1			SY-4			WPR-1a	
element -	m.v	r.v	r.e	m.v	r.v	r.e	m.v	r.v	r.e	m.v	r.v	r.e
Si02	44.63	43.95	1.52	31.85	28.68	96.6	49.33	49.90	1.16	44.87	36.64	18.34
A12O3	5.80	6.32	8.97	0.11	0.29	168.52	18.53	20.69	11.66	4.91	4.95	0.73
P205	0.07	0.01	92.42	0.08	0.01	93.51	0.12	0.13	9.17	0.06	0.07	8.38
K20	0.87	0.83	5.11	-0.03	0.02	143.69	1.78	1.66	6.64	0.16	0.19	17.99
CaO	18.49	18.10	2.12	23.93	23.50	1.80	8.91	8.05	9.61	3.52	3.54	0.63
Ti02	0.21	0.20	5.21	0.01	0.01	85.71	0.34	0.29	16.08	0.58	0.59	2.08
Fe2O3	17.52	11.80	32.65	23.32	17.50	24.95	5.78	6.21	7.51	15.67	16.21	3.43
MnO	1.54	1.49	3.35	0.57	0.59	2.67	0.11	0.11	3.57	0.16	0.18	10.56
Na2O	0.02	0.45	2077.42	-0.18	0.05	128.62	6.24	7.10	13.72	-0.10	0.08	182.19
MgO	2.66	1.94	26.99	2.00	2.13	6.34	1.25	0.54	56.71	30.84	25.24	18.16
Ba	282.33	208.00	26.33	-394.00	3.50	100.89	433.00	340.00	21.48	-10.67	70.60	761.88
Cu	30.33	29.00	4.40	36133.67	37300.00	3.23	7.67	7.00	8.70	2429.67	2990.00	23.06
Νb	9.33		ı	5.00		ı	11.33	13.00	14.71	6.00	3.88	35.33
Co	28.00	24.00	14.29	299.67	324.00	8.12	3.33	2.80	16.00	181.67	213.00	17.25
Ni	2.00	6.00	200.00	396.33	425.00	7.23	12.67	9.00	28.95	3517.00	4390.00	24.82
Rb	50.67	42.00	17.11	8.00	1.90	76.25	79.33	55.00	30.67	8.33	7.06	15.28
\mathbf{Sr}	362.67	358.00	1.29	72.67	75.00	3.21	1233.00	1191.00	3.41	19.67	19.50	0.85
Λ	40.33	24.00	40.50	57.00	9.00	84.21	-0.33	8.00	2500.00	113.67	135.00	18.77
Υ	-18.67		·	-1.00		ı	137.33	119.00	13.35	8.67	8.39	3.19
Zn	23649.67	22200.00	6.13	657.00			95.33	93.00	2.45	159.00	160.00	0.63
Zr	63.33			16.00		ı	486.67	517.00	6.23	44.00	41.80	5.00
La	8.00		ı	-6.33		ı	56.67	58.00	2.35	-4.33	4.04	193.23
о Се 34	-176.67		ı	-9.33		ı	104.00	122.00	17.31	-133.33	9.69	107.27
Nd	-2.00		ı	-22.00		ı	83.67	57.00	31.87	6.67	6.26	6.10
Th	9.67		ı	-1.33		ı	-1.00	1.40	240.00	-0.33	0.64	292.00
m.v; m	easured v	value, 1	r.v.; recc	mmende	d value,	r.e; r	elative (ILOL				

	relative error(%)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<17	<22	<27	<17	6>	<14	<20	<27	<15	<12	
	ait (ppm)	96.93	20.69	0.540	4.71	0.137	23.5	1.6	4.69	44.6	33.09	15.06	
	ation lin		ı	ı	ı	ı	ı	ı	ı	ı	ı	I	
	determina	42.38	3.21	0.056	1.1	0.023	0.138	0.026	1.2	4.62	0.071	0.59	
NEL	element	Si02	A12O3	P205	K20	CaO		Ti02	*Na2O	MgO	MnO	*Fe2O3	

Table 16. The determination limits indicating each calibration line in the DEE/CIC *: This limitation range can apply only the type of rocks used in Calibration lines.

Table 16. (Continued)

lative ror(%)	<11	<20	<17	<13	4>	6>	9>	<14	<21	9>	8	<15	<18	<14	<27	<11	
; (ppm) ^{re}	466	37300	510	12.2	116	12632	453	403	635	166	209	1494	179	327	107	112	
tion limit		ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	
letermina	311	6.72	15.2	3.62	12.3	16.6	6.87	1.3	372	5.64	15.3	12.5	15.8	48.3	10.9	3.34	
element c	*Ba	Cu	Νb	Co		Ni	*Rb	*Sr	\mathbf{V}	$\Lambda *$	*Zn	Zr	La	*Ce	Nd	Th	

*: This limitation range can apply only the type of rocks used in Calibration lines.