富士火山南西部の地質

山元孝広

Takahiro Yamamoto (2014) Geology of the southwestern part of Fuji Volcano. Open-File Report of the Geological Survey of Japan, AIST, no.606, p.1-27, 23figs., 2tables.

1. はじめに

産総研地質調査総合センター(当時は地質調査所) から発行された富士火山の地質図(津屋, 1968:中 野・石塚編, 2002)の全面改訂版が, 地質調査総 合センター研究資料集 no. 592(高田ほか、2014) として公開された.この改訂のための調査研究は, 1999年の1/5万「富士宮」地質図幅作成(富士山の 南西部分)の研究として始められたもので、その後 2000-2001 年に発生した富士山直下の低周波地震を 契機に, 富士山全域の現地調査による地質図全面改 訂をめざすこととなった。ただし、今回公表された 地質調査総合センター研究資料集 no. 592(高田ほか、 2014) は富士火山の地質図及び凡例のみであり、全 体の層序区分を記載した解説は収録していない。そこ で、既にひととおり完成している今回の地質図の内の 富士山南西部分の層序のみを記載した地質解説を,続 報として公開するものである。その内容は、山元が担 当した 1/5 万「富士宮」地質図幅調査の成果を元に, 山元ほか(2007)として公表した論文を、図幅説明 書として大幅に加筆修正したものである。残りの部分 の地質の記載も、今後、随時公開していく予定である.

2. 研究史

富士火山形成史については津屋弘逵による一連の 地質学的・岩石学的研究(Tsuya, 1935; 1937; 津 屋, 1938a; 1938b; 1940; 1944; Tsuya, 1955; 1962; 津屋, 1968; 1971 など)によりその全体像 が示され,その成果は「1/5万富士火山地質図」とし て昭和 43年に出版されている(津屋, 1968).その 後,降下火砕物層序学による噴火履歴の詳細化(町田, 1964; 1977; 泉ほか,1977; 上杉ほか,1979; 1987; 宮地,1988 など)があったが,溶岩流の層序 を基に層序を組み立てた津屋の富士火山形成史の大 枠は,ほとんど見直されることなく最近まで受け継 がれてきた(例えば山本ほか,2002).津屋(1940; 1968; 1971 など)の層序で最も重要な点は,それ 以前の研究(平林,1899; 石原,1925)とは異なり, 富士山を古富士火山と新富士火山に区分したことであ る. 津屋の区分の根拠は、次の3つである. 1) 古富 士火山噴出物は富士川河口断層系(図1)により明瞭 な変位を受けるが、新富士火山噴出物はそうではない ことによる構造地質学的な違い。2) 新富士火山噴出 物は侵食された古富士火山噴出物を谷埋めする層序関 係の違い。3) 山麓の古富士火山噴出物は火山砕屑物 が卓越するのに、新富士火山噴出物は山麓でも溶岩流 が卓越する活動様式の違い.しかし、これら3つの 違いは独立であり、同時に発生した必然性はない. ま た,津屋の古富士火山/新富士火山の概念はその後の 研究でも受け継がれてきたが、研究者ごとに区分の 基準が異なることに注意しなければならない。町田 (1977) は山麓の降下火砕物の編年から古期富士テフ ラ群/新期富士テフラ群を分けているがその境界は降 下火砕物が少ない富士黒土層においており、津屋の区 分とは基準が異なる。

山元ほか(2005)の系統的な放射性炭素年代測定 による新編年では、津屋の古富士/新富士移行時の 不整合の形成(田貫湖岩屑なだれの発生)は Cal BC 18,000 年頃、新富士旧期の大規模な溶岩流流出は Cal BC 15,000 ~ Cal BC 6,000 年頃、新富士中期の 噴火活動は Cal BC 3,600 ~ Cal BC 1,700 年頃、新 富士新期前半の爆発的噴火活動は Cal BC 1,500 ~ Cal BC 300 年頃、新富士新期後半の山腹割れ目噴火 活動は Cal BC 300 年頃以降となった。津屋の設定し た層序の個々のステージ境界は、山体の構造や活動様 式の変化時期と良く対応しており、ある時間継続し た火山活動を特徴付ける上で意味のあるものである。 しかし、個々の境界の性格はそれぞれ異なっており、 10 万年に達する富士火山の活動を津屋に従い新旧2 つに分けることはそれほど重要ではなくなっている。

3. 新たな層序

富士火山を含む地質図の作成に当たっては、これま での津屋や町田の新旧二分法による層序ではなく、新 たな層序を設定する(図2;山元ほか、2007).新提 案の層序は下位から星山期/富士宮期/須走期に大分

¹ 活断層・火山研究部門 (AIST, Geological Survey of Japan, Institute of Earthquake and Volcano Geology)

図1 富士火山南西部の空中写真.

白線は,富士川河口断層帯(Ag = 安居山断層; ly = 入山瀬断層; Om = 大宮断層; Sb = 芝川断層)で,富士山に対して羽鮒・星山丘陵側が隆起する西上がりの逆断層として,富士火山噴出物に変位を与えている。2014年2月17日撮影。

図2 富士火山噴出物の層序.

酸素同位体比曲線は Bassinot *et al.* (1994) による。数字は海洋酸素同位体ステージ。東山麓層序は、町田(1964; 1977) による。AT = 姶良 Tn テフラ; Hk-TP = 箱根東京テフラ; On-Pm1 = 御岳第1 テフラ.

され,各期はさらに須走-a期,須走-b期のように細 分される.星山期/富士宮期/須走期の区分は,南西 部の富士宮市内で掘削された複数のコアの大まかな岩 相変化に対応しており(図3),堆積物で示される噴 火様式の違いを表している.

3-1. 星山期

津屋の古富士火山のうち, 星山・羽鮒の両丘陵

(図1)を構成する Yamazaki (1992)の Mf-I 面相 当の火山麓扇状地IV堆積物の離水時までを星山 - a 期, Yamazaki (1992)の Mf-III 面相当の火山麓扇状地III 堆積物の離水時までを星山 - b 期とする.この区分で は,星山 - a 期が 100 ka ~ 50 ka 頃,星山 - b 期が 50 ka ~ Cal BC 18,000年頃となる.噴火様式としては 玄武岩マグマのプリニー式~サブプリニー式噴火が卓 越しており,町田 (1977)の古期富士テフラ群の大

図 3 南西山麓掘削コアの柱状図と地点図. H-TnK = 田貫湖岩屑なだれ堆積物. 地形イメージは国土地理院の数値地図 50m メッシュ (標高)から作成. 山元ほか (2005) による.

部分が両期に噴出している.ただし、両期を分ける火 山麓扇状地IV堆積物と火山麓扇状地III堆積物の形成 は、火山活動を直接反映したものではなく、気候変動 を反映したものである可能性が大きい.すなわち、両 火山麓扇状地の累積と離水は海洋酸素同位体ステージ (MIS)の4と2に対応しており(図2)、日本各地で この時期の河川地形面が形成されている.その理由は、 氷期には台風や梅雨前線が日本列島まで北上しなくな り、降水量、とくに豪雨が減少し、その結果河川の流 量が減じ、運搬力が弱まり堆積が促進したためと説明 されている(例えば貝塚、1977).

星山 -a 期及び -b 期の堆積物中の火山岩は,液相濃 集元素に乏しい玄武岩で特徴付けられる(富樫ほか, 1991;2007;高橋ほか,1991).津屋は北東山腹や 南東山腹に玄武岩質溶岩流や火砕物からなる古富土火 山噴出物の分布を示しているが,これらの噴出時期は 確定していない.星山 -b 期末には,星山期山体が南 西に向かって斜面崩壊し,田貫湖岩屑なだれ発生が発 生している.次の星山 -c 期(Cal BC 18,000 ~ Cal BC 15,000 年頃)には,崩壊した山体の中央で,小 規模な溶岩流流出が続いていたが,現在は全て地下に 伏在している.この期の溶岩が掘削された広見コアで は,噴出物は星山-a・-b 期玄武岩組成と富士宮期玄 武岩組成の両方の特徴を持ち,マグマ組成の変化移行 期とみられる(宮地ほか,2001).

3-2. 富士宮期

津屋の新富士旧期(町田の古期富士火山第Ⅱ期)を, 富士宮期とする。その年代は、Cal BC 15,000 ~ Cal BC 6,000 年頃である (図 4). この期に山麓部の大 規模な溶岩流の流出が卓越した.また、町田(1964) の古期富士テフラ群の噴出は Cal BC 7,800 年頃まで 続いていた(山元ほか,2005) 津屋の新富士旧期 噴出物は液相濃集元素に富む玄武岩で特徴付けられ るとされていたが(富樫ほか, 1991; 2007; 高橋ほ か、1991)、吉原・広見コアでは津屋の古富士から 新富士噴出物へのマグマ組成は連続的で(富樫ほか, 1997; 宮地ほか, 2001), 化学組成のみから両者を 分けることは難しい.むしろ富士宮期溶岩流の FeO*/ MgO比には下位のものが1.7~2.3,上位のものが2.2 ~ 2.8 と明らかな違いがあり(図 5), この組成変化 は富士宮期途中の Cal BC 9,600 ~ BC 8,600 年頃に 起きている(山元ほか, 2007).

図 4 星山期末〜富士宮期堆積物の放射性炭素暦年代分布. 山元ほか(2005),山元ほか(2007)による.

富士火山南西部の地質

図 5 GSJ-FJM-1 (a) と -2 (b) コアの全岩化学組成の垂直変化. ハッチ部 (DA) は田貫湖岩屑なだれ堆積物. ■,星山期火山砕屑岩中の礫;〇,富士宮期の溶岩;×,須走期の溶岩. 山元ほか (2007) による

3-3. 須走期

町田の新期富士火山を,須走期とする.この時期 に須走の頭文字Sで始まる名称の東山麓で見られる 玄武岩降下スコリア群(泉ほか,1977;上杉ほか, 1979;1987;宮地,1988)が噴出した.この期は、 以下のように、須走 -a 期から須走 -d 期の4つに細分 される. 須走 -a 期は, Cal BC 6,000 ~ Cal BC 3,600 年頃の活動低下期で, S-0からS-4の小規模な玄武岩 質降下スコリア堆積物群が噴出した。また、この期に 町田の富士黒土層の大部分が形成されている。 須走 -b 期は、Cal BC 3,600 ~ Cal BC 1,700 年頃で、S-5 から S-9 の玄武岩質降下スコリア堆積物群が噴出した (図6). この期には山頂及び山腹からの玄武岩質溶岩 流の流出が相次ぎ,現火山錐が形成された.津屋の新 富士中期溶岩の大部分は、須走-b期に噴出している。 また, Cal BC 2,800 ~ Cal BC 2,400 年頃には南東 ~南西~西山腹を玄武岩質火砕流が複数回流下して いる(山元ほか, 2005;田島ほか, 2006;高田・小

林,2007;北垣ほか,2007).須走-c期は,Cal BC 1,500 ~ Cal BC 300 年頃で,S-10 からS-22 の玄武 岩質降下スコリア堆積物群が噴出した(図7).この 期には、山頂及び山腹での爆発的噴火が卓越していた. 山頂からの爆発的噴火に伴って、西側急斜面では火砕 流(Yamamoto *et al.*,2005)や根無し溶岩が繰り返 し流下している.須走-d期は、Cal BC 300 年頃以 降で,S-23 以降の玄武岩質降下スコリア堆積物群が 噴出した(図8).この期には山腹割れ目噴火が卓越 し、山頂噴火は起きていない.津屋の新富士新期溶岩 は、須走-c期と須走-d期に噴出している.

4. 星山期火山噴出物

富士山南西山麓の星山・羽鮒の両丘陵(図1)には 津屋(1940;1968;1971)が古富士泥流と呼んだ 堆積物が分布している.津屋自身が述べたように,こ の堆積物の成因は多様で火砕噴火によって発生した泥 流や山体の崩壊物で構成される泥流などがこれには含

図7 須走-c期火山噴出物の放射性炭素暦年代分布. 山元ほか(2005)による.

図 8 須走 -d 期火山噴出物の放射性炭素暦年代分布. 山元ほか(2005)による.

まれている.本報告では両丘陵に分布するこの堆積物 を,前述したように星山期火山噴出物として層序を組 み立てている.町田(1977)は,南西山麓に分布す る津屋の古富士泥流をテフラ層序から新旧2つに分 けているが,本報告も基本的にこの区分を踏襲してお り,火山麓扇状地IV堆積物と火山麓扇状地III堆積物が これに相当する.また,田貫湖周辺や富士宮市元村山 に分布する古富士泥流は山体崩壊起源の岩屑なだれ堆 積物であり(宮地ほか,2001),これを田貫湖岩屑な だれ堆積物と呼ぶ(山元ほか,2007).

星山期の火山麓扇状地堆積物には、滝戸溶岩流など の溶岩流も挟まれているが、その量はごく僅かであ る.富士宮市の青木D-1コア(下川ほか、1996)では、 深度250~550m間すべてが星山期火山麓扇状地堆 積物からなり、溶岩流は1枚も挟まれていない.また 富士宮市が掘削した山宮観測井でも深度75~190m の星山期火山麓扇状地堆積物中には、2枚の溶岩流が 挟まれるだけである(図3).このうち下位の溶岩流(深 度161.3~165.5m)は、SiO2含有量53.9wt%のか んらん石含有斜方輝石単斜輝石安山岩からなり、富士 火山噴出物の中ではSiO2含有量が特に多いものであ る(表1).

4-1. 火山麓扇状地Ⅳ堆積物 (vf4)

Yamazaki (1992) は古富士泥流を5つの地形面に 区分しているが、そのうち彼の最高位の Mf-I' 面と次 の Mf-I 面を構成するものが本堆積物に相当する.た だし、羽鮒丘陵の Mf-I' 面と Mf-I 面は地形的に滑ら かに連続しており、標高の違いは断層運動による変形 量の違いであると見られる.また、星川丘陵の Mf-I' 面は基盤の別所礫層に刻まれた侵食面である.

模式地 富士宮市安居山の採石場 (図 9).

分布・構造 星山丘陵頂部の南東に傾動した標高 200 ~ 150 mの平坦面,羽鮒丘陵頂部の南西に傾動した 標高 350 ~ 200 mの平坦面を構成している.丘陵部 に分布する本堆積物は,丘陵側隆起の断層運動によっ て地表に現れたもので,堆積物の大部分は丘陵の北東 にある富士火山噴出物下に伏在している.

層序関係別所礫層を傾斜不整合で覆う.本堆積物の 上位には,層厚3~4mの土壌化した風成層が重なる. **層厚** 羽鮒・星山丘陵での層厚は50~80m.一方, 富士宮市の青木 D-1 コアでは,火山麓扇状地Ⅲ・Ⅳ 堆積物を合わせたものが深度550mまで連続してい る(図2).

岩相 粗粒~中粒砂の基質を持つ基質支持の塊状礫岩, 粗粒~中粒砂の基質を持つ岩片支持の塊状礫岩,連続

図9 火山麓扇状地IV堆積物. 富士宮市安居山(35.21813°N, 138.58436°E). 急傾斜した別所層(B)を緩傾斜の火山麓扇状地IV 堆積物(vf4)が不整合に覆う.

性の悪い平行層理を持つ中礫混じりの極粗粒~中粒砂 岩,平行葉理を持つ粗粒~細粒砂岩の互層からなる. 砕屑物は良く固結している.塊状礫岩の単層厚は最大 3m前後で,礫の最大粒径は2m前後である.構成礫 種は,長径が1~2mmの斜長石斑晶に富むかんらん 石玄武岩が卓越している.本堆積物の岩相は火山麓扇 状地Ⅲ堆積物とほとんど共通しており,岩相だけから 両者を区別することは難しい.

年代 Yamazaki (1992) は、本堆積物の直上の風成 層中から箱根東京テフラを検出している。今回の調査 では、このテフラを露頭で追認できなかったが、風成 層の層序と層厚から判断して、Yamazaki (1992) の 対比に問題があるとは考えていない。箱根東京テフラ 中の炭化木片の AMS 放射性炭素年代は 52ka である ので(中村ほか、1992)、本堆積物の離水年代もその 直前の MIS4 となる (図 2).

4-2. 火山麓扇状地Ⅲ堆積物 (vf3)

Yamazaki (1992) は古富士泥流を5つの地形面に 区分しているが,そのうち彼の Mf-II・Mf-III 面を構 成するものが本堆積物に相当する.

模式地 調査中の2000年から2001年頃には, 星山 丘陵の富士宮市山本において, 第二東名高速道の法面 工事現場に大露頭が出現したが, 現在は植生により被 覆されている. 模式地としては, 岩相の観察が容易な, 富士宮市白糸の滝 (図10)から狩宿にかけての芝川 沿いを指定する.

分布・構造 星山丘陵の火山麓扇状地IV堆積物がつ くる平坦面を刻んだ谷を埋めて分布し,標高160~ 70mの2段の地形面をつくる.面の高度は北西部で 高く,南東部で低い.第二東名高速道の法面工事現場 の大露頭で観察した限りでは,Yamzaki (1992)の Mf-II・Mf-III面は,一続きの堆積物(vf3)の上に刻 まれている.本堆積物は星川丘陵東縁の富士川河口断 層帯大宮断層(図1のOm)による南西隆起の変位 を受けており,落下側の本堆積物は主に富士宮市街 地の潤井川沿いに分布する. Mf-III 面を基準にとると, 丘陵側の隆起量は約80mである(Yamazaki, 1992). また,本堆積物は,富士宮市の白糸の滝から狩宿間の 芝川沿いで,田貫湖岩屑なだれ堆積物の下位に露出す る.

層序関係火山麓扇状地IV堆積物を下刻した高角度 の侵食面を谷埋めする.不整合関係は第二東名高速道 の法面大露頭でよく観察されたが,現在は露頭が被覆 されている.模式地では,田貫湖岩屑なだれ堆積物に 整合で覆われる.

層厚 星山丘陵での層厚は約 50m. 一方, 富士宮市 青木の AokiD-1 コアでは, 火山麓扇状地Ⅲ・Ⅳ堆積 物を合わせたものが深度 550m まで連続している(図 3).

岩相 粗粒~中粒砂の基質を持つ基質支持の塊状礫岩, 粗粒~中粒砂の基質を持つ岩片支持の塊状礫岩,連続 性の悪い平行層理を持つ中礫混じりの極粗粒~中粒砂 岩,平行葉理を持つ粗粒~細粒砂岩の互層からなる. 砕屑物は良く固結している.塊状礫岩の単層厚は最大 3m前後で,礫の最大粒径は2m前後である.構成礫 種は,長径が1~2mmの斜長石斑晶に富むかんらん 石玄武岩が卓越している.本堆積物の岩相は火山麓扇 状地IV堆積物とほとんど共通しており,岩相だけから 両者を区別することは難しい.

年代 富士宮市街地の潤井川沿いに露出する本堆積物 にはしばしば未炭化樹幹化石が含まれることから多く の放射性炭素年代値が報告されている。例えば津屋 (1971)には24,100±100yBPから17,700±300yBP の4個の年代値が掲載されている。また、福原・和田 (1997)は27,900±600yBPから18,690±300yBPの 15個の年代値を報告している。また、富士宮市天母 山で行ったGSJ-FJM-2のコアでは、田貫湖岩屑なだ れ堆積物基底(深度104.4m)直下の本堆積物のうち 深度106.4mで17,290±120yBP(FJM331),深度 106.7mで18,790±70yBP(FJM332),深度106.8m

図10 火山麓扇状地III堆積物. 富士宮市白糸の滝(35.31301°N, 138.58740°E). 火山麓扇状地III堆積物(vf3)を白糸溶岩流(F-Srt) が不整合に覆う. で 18,820±150yBP (FJM333), 深 度 107.1m で 19,250±70yBP (FJM334)の年代値を得ている(図 3;山元ほか,2005). 従って,本堆積物は MIS3 ~ 2 に形成されている(図 2).

4-3. 滝 戸 溶 岩 流 (H-Tkd)

地層名 この溶岩流の存在は,平成7年度に地質 調査所が実施した富士川河口断層系調査(下川ほか, 1996)で確認されていたが,特に固有名は付けられ ていなかった.その後,山本ほか(2002)がこれを 滝戸溶岩と呼んでいる.

模式地 富士市滝戸.

分布・構造 模式地にのみ分布.

層序関係火山麓扇状地Ⅲ堆積物の岩片支持の塊状礫 岩・平行層理を持つ極粗粒~中粒砂岩に,整合に挟ま れる.

層厚 2m 前後.

岩相 斜長石斑晶に富むかんらん石玄武岩の塊状の溶 岩流からなる.溶岩の上面は礫層により削剥されて, 塊状部が露出しており,初生的な溶岩流の表面構造 は確認できない.斜長石斑晶の最大長径は2.5mmで, 汚濁帯を持つものが多く,集斑晶をなす.かんらん石 斑晶は最大長径2.0mmで,反応縁を持っている.石 基は,粗粒のインターグラニュラー組織を持つ.

4-4. 田 貫 湖 岩 屑 な だ れ 堆 積 物 (H-Tnk)

地層名山元ほか(2007)による.

模式地 富士宮市狩宿の芝川右岸.

分布・構造 富士宮市の田貫湖周辺から模式地にかけての,標高 650 ~ 400m の丘陵に分布する.また,富士山南西火山麓の富士宮市元村山から小泉にかけての標高 550 ~ 100m の範囲にも分布がある.堆積物自体は地下で連続しており,GSJ-FJM-1 コアでは地下150 m付近,GSJ-FJM-2 コアでは地下 100m 付近で本堆積物を確認している(図 3)

層序関係 模式地で,火山麓扇状地 III 堆積物を整合 に覆う.

層厚 田貫湖付近で厚く,最大層厚は 50m 前後.

岩相本岩屑なだれ堆積物は,無層理で,無淘汰の玄 武岩角礫からなる.構成する玄武岩岩片は,長径が1 ~2mmの斜長石斑晶に富む新鮮なかんらん石玄武岩 が比較的多いものの,場所によっては黄色や赤褐色の 変質により粘土化した玄武岩が卓越する.岩屑なだれ 堆積物の岩塊相に相当する部分では,特定岩種のみか らなる単源で岩片支持の角礫岩として現れることが多 い.岩塊相を構成する岩片の面角は鋭角で,溶岩に普 通に見られる冷却節理とは,割れ方が異なっている. また,岩片は三次元のジグゾーパズルのように,互い に緩く接しており,破砕岩片相互の変位量がごく小さ い.そのため,岩塊相中では初生的な山体の内部構造 が破砕後も保存されている(図11).異なる岩塊相の 間には、多種の岩片が混在する淘汰の悪い基質支持の 角礫岩からなる基質相が現れる.基質相では種々の岩 片が粉砕されてできた砂~泥サイズの粒子が卓越する が、堆積物の内部では混合作用は必ずしも完全ではな く、特定の岩種が局所的に濃集したり、母材の異なる 細粒物がつくる縞状構造の発達した不均質なマトリッ クス相もしばしば認められる.これらの産状は岩屑な だれ流走中にその内部で発生した強い剪断作用の反映 で、大規模な斜面崩壊堆積物に普通に認められるもの である.本堆積物の底面は平らで、下位の火山麓扇 状地 III 堆積物の層理面と平行である.級化構造等は 特に認められない.

年代 GSJ-FJM-2 のコアにおける,田貫湖岩屑なだ れ堆積物基底(深度104.4m)直下の火山麓扇状地 III 堆積物中の木片の年代値(FJM331)から,本岩屑 なだれの発生時期は,ほぼ Cal BC 18,000 年頃とさ れている(山元ほか, 2005).

5. 富士宮期火山噴出物

津屋(1968, 1971)の層序では,彼の新富士火山 噴出物のうち層序的に下位にあり,主に山麓に露出す る溶岩流を旧期噴出物としている.本報告ではこの旧 期溶岩を,前述したように富士宮期火山噴出物として 層序を組み立てている.溶岩流は玄武岩質のアア及び パホイホイ溶岩で,東山麓を除くほぼ全域に流下した. 山麓に分布する津屋の旧期溶岩流のほとんどが鬼界— アカホヤテフラを挟む黒色土壌層(富士黒土層)に覆 われている(町田, 1964;1977;宮地, 1988).山 元ほか(2005)の放射性炭素年代編年では,富士宮 期は Cal BC 15,000~BC 6,000年頃である(図4). 本報告の南西山麓の富士宮期噴出物の上下関係は,図 12のようにまとめられる.

 図11 田貫湖岩屑なだれ堆積物の岩塊相.
 富士宮市田貫湖の南(35.33458°N, 138.56586°E).
 灰色と赤褐色の玄武岩角礫がつくるパッチワーク状の構造は、元の山体内部の成層構造を保ちつつ、岩 屑なだれ流走時に破砕変形を受けて形成されている.スケールは1m.

図 12 富士宮期堆積物の層序関係と放射年代値. 山元ほか(2007)による.

5-1. 水 神 溶 岩 流 (F-Sij)

地層名 山元ほか (2007). この溶岩流は, 津屋 (1968, 1971) では大淵溶岩流 (SSW1) とされ, 富 士市厚原に向かって扇状に流れ下ったものが潤井川西 方の沖積層下に没したのち, 更に西方の富士川沿いで 地表に現れると図示されていた. しかし, 今回の図幅 調査では, この溶岩と同じパホイホイ溶岩が富士川沿 いの芝川溶岩流の下位に点々と露出するのを確認して いる. 単純に考えればこの溶岩も芝川溶岩流と同じく 富士川沿いに流れたとするのが自然であるので, 大淵 溶岩流とは区別して水神溶岩流と呼んでいる. また, 全岩化学組成も本溶岩流と大淵溶岩流とは一致しない. 模式地 富士市水神の富士川右岸 (図 13).

図13 パホイホイ・トウからなる水神溶岩流 富士市水神の富士川左岸(35.15152°N, 138.62641°E).

分布・構造 富士宮市沼久保から模式地にかけての富 士川河床に点々と露出する.一方,沼久保よりも上流 の富士川や芝川沿いでは,上位の芝川溶岩流が本溶岩 流を欠いて下位層を覆っておる.従って,本溶岩流は 羽鮒・星川丘陵を切る安居山断層東側の低地帯を通っ て,富士川に流れ込んだものと判断されよう.

層序関係 富士川町中野の富士川左岸では,層厚 1m 前後の高密度洪水流堆積物を挟んで,芝川溶岩に覆わ れる.模式地では,河川堆積物を覆う.

層厚 2m から 6m 以上.

岩相本溶岩流は、シート状のパホイホイ溶岩が卓越 するが、部分的にアア・クリンカーを下にひく場合が ある.様々な大きさの気泡を持ち、発泡の程度は良い. 模式地では、パホイホイ・トウの断面が、良く観察で きる.

本溶岩流の岩質は、大型の斜長石斑晶に富む斜方輝 石単斜輝石かんらん石玄武岩である。斜長石斑晶の最 大長径は8mmで、清澄なものが多く、その一部が集 斑晶をつくる。かんらん石斑晶も量がやや多く、最大 長径は1.4mmで、反応縁は持たない。単斜輝石と斜 方輝石は量がやや少ないものの、共に最大長径2.5mm の集斑晶をつくり、単独の斑晶としては現れない。石 基は、中~粗粒のインターグラニュラー組織を持 つ。SiO2含有量は49.6wt%、K2O含有量は0.64wt%, FeO*/MgO 比は1.8 である(表1)。

年代 模式地の,本溶岩流直下の砂層に含まれる炭 化木 (FJM304)から,14,180±70yBPの補正年代値 が得られた(山元ほか,2005).その暦年は Cal BC 15,000 年頃である.

5-2. 芝川溶岩流 (F-Sbk)

地層名 津屋(1968, 1971)の芝川溶岩流 I (SW1) と横手沢溶岩流 I (SW15)に相当する.名称を統一 するため,これらを芝川溶岩流として再定義された(山 元ほか, 2007).

模式地 富士宮市沼久保,蓬莱橋の上流 300m の富 士川左岸.

分布・構造 富士宮市内野よりも下流の芝川沿いと, 芝川町瀬戸島から富士川町中野までの富士川沿いに分 布する.特に,芝川合流点から富士宮市沼久保にかけ ての富士川沿いでは,現河床から,比高約70mの段 丘状の地形をつくる.本溶岩流上面の地形は,芝川上 流へと単調に比高が小さくなり,富士宮市精進川では 比高がほとんどなくなる.しかし,精進川付近を通る 芝川断層の西側では,本溶岩流の上面は再び河床に対 して約70mの比高を持っており,この断層による累 積変位があるものと見られる.ただし,本溶岩流と芝 川断層の直接の関係は,露頭で確認できていない.

層序関係 富士川・芝川沿いの礫質河川流路堆積物や 高密度洪水流堆積物を覆う.また,本溶岩流は,芝川 町大鹿窪において、間に厚さ2~4cmの褐色土壌を 挟んで、厚さ7cmの村山降下スコリア堆積物に覆わ れる.山本ほか(2003)は本溶岩流(彼らの芝川溶岩 I) が, 富士宮市沼久保の蓬莱橋付近で外神溶岩流(彼ら の北山溶岩II)を覆うとしている。しかしながら、蓬 莱橋上流 250m の富士川左岸では、外神溶岩流が侵 食された芝川溶岩流の崖にアバットしており、山本ほ か(2002)の考える層序関係はおかしい.その層序 関係は、津屋(1968, 1971)が元々確立しているよ うに、芝川溶岩流の方が下位である.また、山本ほか (2002) は本溶岩流(彼らの横手沢溶岩 I)が、富士 宮市精進川付近で精進川溶岩流(彼らの芝川溶岩Ⅱ) に対して地形的段差を持って接することから、本溶岩 流を精進川溶岩流の上位と考えている.しかし、こ の場所には西隆起の活断層である芝川断層(Fig. 1の Sb)があり、彼らの地形解釈による層序関係は成立 しない.

層厚 最も厚い富士川・芝川合流点では,70m 程度の層厚を持つ.

岩相 一枚の厚いアア溶岩からなり,下面には常にア ア・クリンカー層をひいている.塊状部は柱状節理の 発達が良く,その断面が富士川・芝川沿いで好露頭を つくっている.溶岩流の上面については,アア・クリ ンカーで覆われる場合もあれば,芝川町大鹿窪で観察 されるように,パホイホイ溶岩に特徴的な縄状のしわ やプレッシャー・リッジが発達する場合もある.

本溶岩流の岩質は、大型の斜長石斑晶に富む斜方輝 石単斜輝石かんらん石玄武岩である。斜長石斑晶の最 大長径は 6mm で、清澄なものに混じって、汚濁帯を 持つものが含まれる。また、斜長石斑晶の一部は、集 斑晶をつくる。かんらん石斑晶は普通に含まれ、最大 長径は 1.5mm で、反応縁は持たない。単斜輝石と斜 方輝石は量がやや少ないものの、共に最大長径 3mm の集斑晶をつくり、単独の斑晶としては現れない。石 基は、粗粒のインターグラニュラー組織から中粒の インターサータル組織を持つ。SiO₂ 含有量は 49.8 ~ 50.6wt %、K₂O 含 有 量 は 0.60 ~ 0.69wt%、FeO*/ MgO 比は 2.0 ~ 2.1 である(表 1).

年代 富士宮市猪之頭の芝川左岸の,本溶岩流直下の 黒色土壌(Beta-205039)から,14,000±50yBPの補 正年代値が得られた(山元ほか,2007).その暦年は Cal BC 15,000 年頃である.

5-3. 横手沢溶岩流 (F-Ykt)

地層名 津屋(1968, 1971)の横手沢溶岩流 II (SW16) に相当する.名称を統一するため,横手沢溶岩流として再定義された(山元ほか, 2007).

模式地 富士宮市横手沢の北 500m の林道沿い(小田急西富士ゴルフ場の南).

分布・構造 模式地から横手沢にかけての舌状地形を

つくる.

層序関係 地形から,芝川溶岩流を覆い,半野・狩宿 溶岩流に覆われると判断される.ただし,層序関係を 露頭では確認していない.

層厚 下限不明. 地形からは 5m 以上はあるものと見られる.

岩相 模式地には、アア溶岩の表面部分が露出している.本溶岩流の岩質は、かんらん石斜方輝石単斜輝石 玄武岩である.斜長石斑晶の最大長径は、2.8mmで 量が多い.清澄なものがほとんどで、一部のものが集 斑晶をつくる.単斜輝石斑晶は、最大長径 4.6mmで、 やや量が多い.斜方輝石斑晶は、最大長径 2.2mmで、 量は並である.かんらん石斑晶の最大長径は 0.4mm で、量は少ない.石基は、細粒のインターサータル 組織を持つ.SiO2含有量は 50.4wt%,K2O含有量は 0.53wt%,FeO*/MgO 比は 1.7 である(表 1).

5-4. 箱荒沢溶岩流 (F-Hka)

地層名 新称.

模式地 富士宮市の二合目林道と箱荒沢の交差部(標 高 1590 m)。

分布・構造 模式地の箱荒沢沿いに,僅かに露出する. 溶岩流の傾斜角は 33 ~ 34 度と,急勾配をなす.

層序関係本溶岩流の上位には,厚さ 60cm のスコ リアを含んだ褐色土壌層,厚さ 20cm の良く発泡し た赤褐色降下スコリア層,厚さ 25cm の褐色土壌層 を挟んで,大沢降下スコリア堆積物が重なっている. **層厚**下限不明で,6m 以上.

岩相 アア・クリンカーとレンズ状の塊状溶岩の互層 からなる.アア・クリンカーには逆級化が発達してい る.塊状溶岩の厚さは 50 ~ 150cm で,側方への連 続が悪い.これらは,安息角とほぼ等しい傾斜角で定 置している.

本溶岩流の岩質は、単斜輝石かんらん石玄武岩であ る.斜長石斑晶の最大長径は4.0mmで、量は普通で ある.清澄なものがほとんどで、集斑晶をつくる.か んらん石斑晶は、最大長径0.5mmで、量は普通であ る.かんらん石斑晶は融食を受けたものが多く、不透 明な反応縁を持つ.単斜輝石斑晶は、最大長径1.1mm で、やや量が少ない.石基は、細粒のインターサータ ル組織を持つ.SiO2含有量は50.5wt%、K2O含有量 は0.70wt%、FeO*/MgO比は1.9である(表1).

5-5. 半野溶岩流 (F-Han)

地層名 津屋(1968, 1971)の横手沢溶岩流Ⅲ(SW17) に相当する. 横手沢溶岩流との地層名の重複を避け るため, 半野溶岩流として再定義された(山元ほか, 2007).

模式地 富士宮市半野.

分布・構造 富士宮市横手沢から半野にかけての舌状

の地形をつくる.

層序関係 地形から,芝川・横手沢溶岩流を覆い,狩 宿溶岩流に覆われると判断される.ただし,層序関係 を露頭では確認していない.

層厚 下限不明. 地形からは 5m 程度はあるものと見 られる.

岩相 模式地周辺には、アア溶岩の表面部分が露出している.本溶岩流の岩質は、斑晶量の乏しいかんらん石玄武岩である.斜長石斑晶の最大長径は0.8mmで、量が少ない.かんらん石斑晶も、最大長径1.0mmで、量は少ない.斑晶には、反応縁が認められない.石基は中粒のインターサータル組織を持つ.SiO2含有量は49.4wt%,K2O含有量は0.68wt%,FeO*/MgO比は1.9である(表1).

5-6. 白糸溶岩流 (F-Srt)

地層名 津屋 (1968, 1971)の白糸溶岩流 I (SW12) と白糸溶岩流 II (SW13)に相当する.名称を統一す るため,白糸溶岩流として再定義された(山元ほか, 2007).

模式地 富士宮市白糸の滝.

分布・構造 模式地周辺にのみ,露出する.

層序関係 侵食された火山麓扇状地IV堆積物を覆う (図 10).

層厚 12m 前後.

岩相 白糸の滝では、2層に重なったアア溶岩が観察 される. 岩質は、大型の斜長石斑晶に富むかんらん石 玄武岩である. 斜長石斑晶の最大長径は7mmで、多 くのものが汚濁帯を持つ. かんらん石斑晶は、最大長 径 2.0mmで、量はやや多い. 斑晶に、反応縁は認め られない. 石基は細粒のインターグラニュラー組織を 持つものが多い. SiO² 含有量は 50.8wt%, K²O 含有 量は 0.87wt%, FeO*/MgO 比は 2.3 である(表 1). 年代 富士宮市上井出の芝川右岸の、本溶岩流基底部 の炭化木片(Beta-205038)から、12,050±60yBPの 補正年代値が得られた(山元ほか、2007). その暦年 は Cal BC 12,000 年頃である.

5-7. 方[°]野[°]溶岩流(F-Mnn)

地層名 津屋 (1968, 1971)の富士宮溶岩流 (SSW2) と万野溶岩流 (SSW3)に相当する.名称を統一す るため,万野溶岩流として再定義された (山元ほか, 2007).

模式地 富士宮市万野原新田の風祭川河床.

分布・構造 富士宮市山宮から浅間神社周辺の市街地 にかけての平滑な火山麓斜面をつくる.

層序関係 浅間神社湧玉池脇の露頭では,間に8cm の褐色土壌層を挟んで,厚さ7cmの村山降下スコリ ア堆積物に覆われる.

層厚下限不明で,5m以上.

岩相 良く発泡したパホイホイ溶岩の多数のシートが 重なっている.表面には縄状のしわやプレッシャー・ リッジが普遍的に認められる.万野風穴は、本溶岩流 中の溶岩トンネルである.

本溶岩流の岩質は、大型の斜長石斑晶に富むかんらん石玄武岩である。斜長石斑晶の最大長径は11mmで、多くのものが汚濁帯を持ち、集斑晶をつくる。かんらん石斑晶は、最大長径1.2mmで、量は多い。斑晶に、反応縁は認められない。石基は粗~中粒のインターグラニュラー組織を持つ。SiO2含有量は49.7wt%、K2O含有量は0.64wt%、FeO*/MgO比は1.8である(表1)。

5-8. 狩 宿 溶 岩 流 (F-Kry)

地層名 津屋(1968, 1971)の白糸(上井出)溶岩 流Ⅲ(SW14)に相当する. 白糸の名称の重複を避け るため,狩宿溶岩流として再定義された(山元ほか, 2007).

模式地 富士宮市狩宿の芝川沿い.

分布・構造 富士宮市上井出から精進川にかけての芝 川沿いに分布する。

層序関係 侵食された火山麓扇状地 III 堆積物・田貫 湖岩屑なだれ堆積物を,谷埋めして覆う.

層厚 模式地では 12m 程度.

岩相 模式地では,厚さ3m以下の薄いアア溶岩が複数枚重なり,溶岩デルタをなしている.また,溶岩は良く発泡している.岩質は,大型の斜長石斑晶に富むかんらん石玄武岩である.斜長石斑晶の最大長径は7mmで,多くのものが汚濁帯を持ち,一部が集斑晶をつくる.かんらん石斑晶は,最大長径1.5mmで,量は普通である.斑晶に,反応縁は認められない.稀に,微量の単斜輝石・斜方輝石の集斑晶を含有するものがある.石基は粗~中粒のインターグラニュラー組織を持つものが多い.SiO2含有量は50.2wt%,K2O含有量は0.62wt%,FeO*/MgO比は2.0である(表1).

5-9. 精進川溶岩流 (F-Sjg)

地層名 津屋(1968, 1971)の芝川(精進川)溶岩 流II(SW2)に相当する.名称は,これによる. **模式地** 富士宮市精進川の県道沿い.

分布・構造 富士宮市上精進川から北原に伸びる丘陵 に分布する。

層序関係 精進川周辺の丘陵では,間に土壌を挟むことなく,最大層厚12cmの村山降下スコリア堆積物に覆われる.下位層との関係は,露頭で確認できなかった.ただし,地形から芝川溶岩流を覆うものと判断される.次の猫沢溶岩流と,ほぼ同じ層準にあると考えられるが,両者の上下関係は露頭で確認できなかった. **層厚**下限不明で,4m以上.

岩相 丘陵上には、発泡したシート状のパホイホイ溶

岩が分布する.これに対し,模式地のある丘陵西縁の 県道沿いではアア溶岩が分布する.

本溶岩流の岩質は、大型の斜長石斑晶に富むかん らん石玄武岩である。斜長石斑晶の最大長径は 6mm で、多くのものが汚濁帯を持ち、一部が集斑晶をつく る。かんらん石斑晶は、最大長径 1.6mm で、量は多い。 斑晶に、反応縁は認められない。石基は粗粒のインター グラニュラーからインターサータル組織を持つ。SiO2 含有量は 50.1wt%、K2O 含有量は 0.61wt%、FeO*/ MgO 比は 2.0 である (表 1)。

5-10. 猫 沢 溶 岩 流 (F-Nkz)

地層名 津屋(1968, 1971)の芝川(猫沢)溶岩流 Ⅲ(SW3)に相当する. 名称は, これによる.

模式地 芝川町西山から大鹿窪に至る県道沿い.

分布・構造 芝川町猫沢から西山にかけての丘陵に分 布する.

層序関係 大鹿窪では,間に土壌を挟むことなく,最 大層厚 8cm の村山降下スコリア堆積物に覆われる. 下位層との関係は,露頭で確認できなかった.ただし, 地形から芝川溶岩流を覆うものと判断される.前の精 進川溶岩流と,ほぼ同じ層準にあると考えられるが, 両者の上下関係は露頭で確認できなかった.

層厚 下限不明. 地形から, 10m 程度はあるものと 判断される.

岩相 全体にアア溶岩からなる.内部の塊状溶岩が露 出する場合は,柱状節理の発達がよい.

本溶岩流の岩質は、大型の斜長石斑晶に富むかん らん石玄武岩である。斜長石斑晶の最大長径は 6mm で、多くのものが汚濁帯を持ち、一部が集斑晶をつく る。かんらん石斑晶は、最大長径 1.4mm で、量はや や少ない。一部の斑晶に、反応縁が認められる。石基 は中粒のインターグラニュラーからインターサータル 組織を持つ。SiO2 含有量は 50.4wt%、K2O 含有量は 0.63wt%、FeO*/MgO 比は 2.0 である(表 1)。

5-11. 村山降下スコリア堆積物 (F-Mry)

地層名町田(1964)の村山ラピリ層による. **模式地** 富士宮市元村山.

層序関係 猫沢溶岩流以下の溶岩流を覆う(図12). 分布・層厚 模式地周辺で最大60cmの層厚を持つ. 模式地から西方に向かって薄くなり,芝川沿いでは5 ~7cm まで層厚が減少する(図14).反対に模式地 よりも東では,曾比奈・元村山溶岩流に覆われ,本降 下堆積物の給源は地表に現れない.その分布から山腹 噴火の産物であることは確実である.

岩相 本降下堆積物は良く発泡した赤褐〜暗褐色のス コリア火山礫からなる。淘汰が非常に良く、模式地で の最大粒径は2.2cmである。芝川沿いでは粒径5mm 前後の細粒火山礫からなる。岩質はかんらん石玄武岩

図14 村山降下スコリア堆積物の層厚分布.

である.

年代上下の溶岩流の年代値から、その噴火年代は Cal BC 10,000 年前後とみられる(図 12).

5-12. 青見溶岩流 (F-Aom)

地層名山元ほか(2007).津屋(1968,1971)では, 富士宮溶岩流(SSW2)の一部とされていた.しかし, これ(本報告の万野溶岩流)とは岩質がやや異なるの で,区別された.

模式地 富士宮市青見.

分布・構造 富士宮市青見周辺の安居山断層東側の狭い東傾斜斜面に分布する.この断層による西上がりの 変位を受けたため、本溶岩流は富士山に向かって傾い ている.

層序関係 東傾斜の構造から,外神溶岩流に覆われる と判断される.分布が離れているため,万野溶岩流と の関係は,確認できていない.

層厚 下限不明で、3m 以上.

岩相 良く発泡したパホイホイ溶岩の多数のシートが 重なっている.表面には縄状のしわやプレッシャー・ リッジが普遍的に認められる.

本溶岩流の岩質は、大型の斜長石斑晶に富むかんら ん石玄武岩である。斜長石斑晶の最大長径は 6mm で、 多くのものが汚濁帯を持つ。かんらん石斑晶は、最大 長径 1.0mm で,量は普通である.斑晶に,反応縁は 認められない.石基は中粒のインターサータル組織を 持つ.SiO2 含有量は 50.5wt%, K2O 含有量は 1.0wt%, FeO*/MgO 比は 2.8 である (表 1).

5-13. 外 神 溶 岩 流 (F-Tog)

地層名 津屋(1968, 1971)の北山(外神)溶岩流 II(SW5)に相当する.

模式地 富士宮市外神上本村の国道 139 線脇の露頭.

分布・構造 富士宮市外神周辺の火山麓斜面をつくる. 本溶岩流の先端部は,潤井川を挟んで,安居山断層東 側の低地帯を通じて羽鮒・星山丘陵を横切り,富士川 にまで流れ下っている.

層序関係 模式地では、間に 30cm の褐色土壌層を 挟んで、層厚 28cm の大沢降下スコリア堆積物に覆 われる.地形から、万野溶岩流を覆い、鞍骨沢溶岩流 に覆われると判断される.ただし、これらの溶岩流と の上下関係は、露頭で確認していない.GSJ-FJM2 コ アでは、馬見塚溶岩流の相当層が、本溶岩流相当層を 覆っている.また、富士宮市沼久保の富士川左岸の露 頭では、本溶岩流が崖錐や土石流堆積物を挟んで、水 神・芝川溶岩流を覆っている.

層厚 富士宮市安居山では,30m 前後の層厚を持つ. GSJ-FJM2 コアで,本溶岩流相当層は2.5m の層厚を 持つ.

岩相 厚いアア溶岩からなる.表層部は,厚さ数mのアア・クリンカーで覆われている.沼久保の富士川沿いでは,塊状溶岩が露出し,柱状節理の発達がよい.

本溶岩流の岩質は、大型の斜長石斑晶に富むかん らん石玄武岩である。斜長石斑晶の最大長径は 9mm で、多くのものが汚濁帯を持ち、一部が集斑晶をつく る。かんらん石斑晶は、最大長径 1.0mm で、量は少 ない。かんらん石斑晶に、反応縁は認められない。稀 に、微量の単斜輝石斑晶を含有するものがある。石基 は粗粒~中粒のインターサータルまたはインターグ ラニュラー組織を持ち、多様である。SiO2 含有量は 50.0wt%、K2O 含有量は 0.64wt%、FeO*/MgO 比は 1.8 である (表 1).

年代 富士宮市沼久保の,本溶岩流基底部のアア・クリンカーに含まれる炭化木 (FJM406)から,9,260±60yBPの補正年代値が得られた(山元ほか,2005). その暦年は Cal BC 8,500 年頃である.

5-14. 馬見塚溶岩流 (F-Umm)

地層名 津屋 (1968, 1971) の北山 (馬見塚) 溶岩 流Ⅲ (SW6) と北山 (御園) 溶岩流Ⅵ (SW9) に相 当する.名称を統一するため,馬見塚溶岩流として再 定義された (山元ほか, 2007).

模式地 富士宮市下条の大石寺付近の潤井川沿い.

分布・構造 富士宮市上井出から外神にかけての潤井 川左岸の丘陵に分布する.

層序関係 層厚 30 ~ 40cm の褐色(一部は黒色) 土 壌層を挟んで大沢降下スコリア堆積物に覆われる.地 形から,鞍骨沢溶岩流に覆われると判断される.ただ し,この溶岩流との上下関係は,露頭で確認していな い.GSJ-FJM2コアでは,鞍骨沢溶岩流が,本溶岩流 相当層を覆っている.

層厚 下限不明. 地形からは最大で 20m 以上はある ものと見られる. GSJ-FJM2 コアで,本溶岩流相当層 は 8.4m の層厚を持つ.

岩相 厚いアア溶岩からなる.表層部のアア・クリン カーも厚く,層厚 5m 以上の場合もある.

本溶岩流の岩質は、大型の斜長石斑晶に富むかんら ん石玄武岩である。斜長石斑晶の最大長径は 6mm で、 多くのものが汚濁帯を持ち、一部が集斑晶をつくる。 かんらん石斑晶は、最大長径 2.1mm で、量はやや多 い。斑晶に、反応縁は認められない。石基は中粒のイ ンターサータル組織を持つ。SiO² 含有量は 50.5wt%、 K²O 含有量は 0.84wt%, FeO*/MgO 比は 2.7 である (表 1).

5-15. 鞍骨沉溶岩流 (F-Krh)

地層名 津屋(1968, 1971)の北山(鞍骨沢)溶岩 流 I (SW4),北山溶岩流IV(SW7)に相当する.名 称を統一するため, 鞍骨沢溶岩流として再定義された (山元ほか, 2007).

模式地 富士宮市東鞍骨の鞍骨沢沿い.

分布・構造 富士宮市東鞍骨から外神にかけての凹凸 に富んだ火山麓斜面をつくる.

層序関係模式地では、間に 30cm の褐色土壌層を 挟んで、大沢降下スコリア堆積物に覆われる.地形か ら、馬見塚・外神溶岩流を覆い、北山溶岩流に覆われ ると判断される.ただし、これらの溶岩流との上下 関係は、露頭で確認していない.GSJ-FJM2 コアでは、 本溶岩流が、馬見塚溶岩流相当層を覆っている.

層厚 下限不明. 地形からは,最大で 30m 前後はあ るものと見られる. GSJ-FJM2 コアでは,13m の層 厚を持つ.

岩相 露頭では、アア溶岩の表面部分のみが観察され る.本溶岩流の岩質は、大型の斜長石斑晶に富むかん らん石玄武岩である.斜長石斑晶の最大長径は7.5mm で、多くのものが汚濁帯を持ち、一部が集斑晶をつ くる.かんらん石斑晶は、最大長径 0.8mm で、量は 少ない.一部かんらん石斑晶に、反応縁が認められ る.稀に、微量の単斜輝石斑晶を含有するものがあ る.石基は中粒〜細粒のインターサータルまたはイン ターグラニュラー組織を持つ.SiO₂含有量は 50.6 ~ 51.3wt %, K₂O 含 有 量 は 0.84 ~ 0.94wt%, FeO*/ MgO 比は 2.5 ~ 2.8 である (表 1).

5-16. 北山溶岩流 (F-Kty)

地層名 津屋(1968, 1971)の北山溶岩流V(SW8), 北山(アカイ沢)溶岩流VI(SW10),北山(大久保沢) 溶岩流VII(SW11)に相当する.名称を統一するため, 北山溶岩流として再定義された(山元ほか,2007). **模式地** 富士宮市角木沢の東1.5kmの大久保沢沿い. 分布・構造 富士山西南西山腹の標高1,300m付近 から450m付近の富士宮市赤焼にかけて分布する. **層序関係** 模式地周辺では,間に30~40cmの褐色

土壌層を挟んで、大沢降下スコリア堆積物に覆われる. 地形から、外神溶岩流を覆うと判断される.ただし、 この溶岩流との上下関係は、露頭で確認していない.

層厚 下限不明. 地形からは 30m 前後はあるものと 見られる.

岩相 露頭では、アア溶岩の表面部分のみが観察され る. 岩質は、大型の斜長石斑晶に富むかんらん石玄 武岩である. 斜長石斑晶の最大長径は 6mm で、多く のものが汚濁帯を持ち、一部が集斑晶をつくる. か んらん石斑晶は、最大長径 1.2mm で、量は普通であ る. 斑晶に、反応縁は認められない. 石基は中粒のイ ンターサータル組織を持つものが多い. SiO² 含有量 は 50.5 ~ 51.3wt%、K²O 含有量は 0.83 ~ 0.86wt%, FeO*/MgO 比は 2.2 ~ 2.6 である (表 1).

5-17. 元村山溶岩流 (F-Mtm)

地層名 津屋 (1968, 1971) の元村山溶岩流 I (SSW12),元村山溶岩流 II (SSW13),元村山溶岩 流IV (SSW15),市兵衛沢溶岩流 (SSW17)に相当 する.名称を統一するため,元村山溶岩流として再定 義された (山元ほか, 2007).

模式地 富士宮市粟倉から元村山に至る車道沿い.

分布・構造 富士山南西山腹の標高 1,500m 付近から 200m 付近の富士宮市大岩にかけて分布する.

層序関係 模式地では、間に厚さ10cmの褐色土壌 層を挟んで、村山降下スコリア堆積物を覆う(図15). さらに、間に厚さ80cmの褐色土壌層を挟んで、大 沢降下スコリア堆積物に覆われる.

層厚 15m 以上. GSJ-FJM1 コアで 24m.

岩相 厚いアア溶岩からなる(図16).表層部のアア・ クリンカーも厚く,層厚が6mを越える場所もある. 岩質は,大型の斜長石斑晶に富むかんらん石玄武岩で ある.斜長石斑晶の最大長径は9mmで,多くのもの が汚濁帯を持ち,集斑晶をつくる.かんらん石斑晶 は,最大長径1.6mmで,量は多い.斑晶に,反応縁 は認められない.稀に,微量の単斜輝石斑晶を含有す

図15 村山降下スコリア堆積物(F-Mry)を覆う元村山溶 岩流(F-Mtm). 富士宮市元村山(35.26327°N, 138.658°E). F-Mtm = 元村山溶岩流, F-Mry = 村山降下スコリ ア堆積物, H-Tnk = 田貫湖岩屑なだれ堆積物.

図 16 アア溶岩からなる元村山溶岩流. 富士市元村山(35.25646°N,138.66750°E). スケー ルは 2m.

るものがある.石基は中〜細粒のインターグラニュ ラー組織を持つものが多い.SiO2含有量は50.9~ 51.1wt %, K2O含有量は0.72~0.93wt%, FeO*/ MgO比は2.2~2.4である(表1).

年代 模式地の本溶岩流基底部のアア・クリンカーに 含まれる炭化木 (FJM206) から 8,670±40yBP の補 正年代値が得られた (山元ほか, 2005). その暦年は Cal BC 7,600 年頃である.

6. 須走-b期火山噴出物

津屋(1968, 1970)は、彼の新富士火山噴出物の うち現火山錐の山腹をつくる玄武岩質溶岩流を中期噴 出物としていたが、その大部分はこの期に噴出してい る.南西山腹の風祭川・大久保沢・アカイ沢・赤焼溶 岩流は、標高1,500m以上のこの火山錐から流れ下っ た溶岩流である.これに対し、天母山・白塚溶岩流は、 標高1,500m以下の山腹から流れ出た溶岩流である. 山元ほか(2005)の放射性炭素年代編年では、須走 -b期は Cal BC 3,600 ~ Cal BC 1,700 年頃で、この 期に S-5 から S-9 の玄武岩質降下スコリア堆積物群が 噴出している(図6).南西山腹の溶岩流との層序関 係では Sb-F2 降下スコリア堆積物が対比の鍵となる が(図17)、その噴火年代は上下の放射性炭素年代か ら Cal BC 2,000 ~ Cal BC 1,800 年頃と若干,推定 に幅がある(図6;山元ほか、2005).

南西山腹の標高 800m ~ 950m の風祭川沿いでは, 大久保沢溶岩流と火山麓扇状地II 堆積物の間に,須走 -b 期 Cal BC 2,800 年頃(4,130±50yBP)の玄武岩 質火砕流堆積物が存在する(北垣ほか,2007).ただ し,その層厚は 2m 以下で,かつ扇状地に埋没してい るので地質図には表現されていない.ほぼ同じ年代値 (4,150±40yBP)を示す火砕流堆積物は,南山腹の標 高 17,00m 付近にも分布する(山元ほか(2005),高 田・小林(2007)の GS-FJ-4'1C).また,西山腹の 大沢沿い標高 1,500m 付近にも田島ほか(2006)が 岩樋火砕流と呼ぶ玄武岩質火砕流が分布する.田島ほ かは同堆積物中の炭化木片から 3,990±60yBP, 産総 研も同一露頭から 4,180±40yBP(未公表)の補正年 代値を得ている.

6-1. 風 祭 川 溶 岩 流 (Sb-Kzm) 地層名 新称.

模式地 富士宮市,風祭川の標高 590m 地点.高圧 電線作業道沿い.

分布・構造 富士宮市二合目林道の市兵衛沢沿いから, 表口登山道の標高 800 ~ 600m 付近に分布する.

層序関係 模式地で,土壌層を挟まず,大久保沢溶岩 流に覆われる (図 17).また,二合目林道の市兵衛沢 沿いで,元村山溶岩流を覆う.

層厚 二合目林道の市兵衛沢沿いで,6m以上.

図17 南山腹の須走-b期噴出物の層序対比.

F-Hnk = 桧塚スコリア丘堆積物, F-Niu = 西臼塚溶岩流, KwP = カワゴ平軽石, Sb-Aky = 赤焼溶岩流, Sb-Anm = 天母山溶岩流, Sb-F2 = Sb-F2 降下スコリア堆積物, Sb-F3 = Sb-F3 降下スコリア堆積物, Sb-Kzm = 風祭川溶岩流, Sb-Okb = 大久保沢溶岩流, Sb-Srk = 白塚溶岩流・スコリア丘堆積物, Sc-Os = 大沢降下スコリア堆積物, Sd-Aos = 青沢溶岩流, Sd-Obs = 大淵降下スコリア堆積物, S-13 = S-13 降下スコリア堆積物, S-22 = S-22 降下スコリ ア堆積物, vf2 = 火山麓扇状地 II 堆積物, 白塚, 桧塚, 天照教の柱状図は高田・小林(2007) による.

岩相 厚いアア溶岩からなる.内部の溶岩は緻密で, ほとんど発泡していない.また,上・下位の溶岩流 と比べると斑晶量が著しく少ない.津屋(1968)で は,本溶岩流に対応して表口登山道沿いに曾比奈溶岩 流(SSW4)の分布が示されている.しかし,曾比奈 溶岩流本体は元村山溶岩流よりも下位にあるので,本 溶岩流はこれとは別物である.

本溶岩流の岩質は、かんらん石玄武岩である。斜長 石斑晶の最大長径は3.0mmで、量は普通ないしやや 少ない。かんらん石斑晶は、最大長径1.4mmで、量 はやや少ない。また、一部に反応縁を持つものがある。 石基は中粒のインターサータルからインターグラニュ ラー組織を持つ。SiO2 含有量は51.3wt%、K2O 含有 量は0.73wt%、FeO*/MgO 比は2.0 である(表 1)。

年代 天母山溶岩流の下位にあることから,その噴火 年代は Cal BC 3,600 年頃から Cal BC 3,400 年頃の 間である.

6-2. 大久保沢溶岩流 (Sb-Okb)

地層名 津屋(1968, 1971)の大久保沢溶岩流

(NW11) による.

模式地 富士宮市,北山林道の大久保沢沿い.

分布・構造 富士宮市東鞍骨よりも山側の富士山南西 山腹に広く分布している.

層序関係 風祭川溶岩流を覆い,かつ白塚・天母山溶 岩流に,間に土壌層を挟むことなく覆われる(図17). また,南西山腹の北山・白塚林道沿いでは,間に20 ~10cmの褐色土壌を挟んで,Sb-F2降下スコリア堆 積物に覆われる.

層厚 5m 前後の場合が多い. GSJ-FJM1 コアでは, 1 枚のアア溶岩 (99L02 溶岩流)からなり, 6.5m の 層厚を持つ (山元ほか, 2007).また, GSJ-FJM2 コ アでは,本溶岩と岩質のほとんど区別できない3枚 のアア溶岩 (00L02 ~ 00L04 溶岩流)が,間にクリ ンカーのみを挟んで,17m の層厚を持つ (山元ほか, 2007).

岩相 アア溶岩からなる.塊状溶岩部は,緻密な部分 が多いが,まれに気泡が濃集する場合もある.岩質は, 斜長石斑晶に富むかんらん石玄武岩である.斜長石斑 晶の最大長径は4.0mm で,汚濁帯を持つものが多く, 集斑晶をつくる.かんらん石斑晶は,最大長径 2.2mm で,量は多い.また,かんらん石斑晶には反応縁を持 つものがあり,一部は斜長石と集斑晶をつくる.石基 は粗〜細粒のインターサータルからインターグラニュ ラー組織を持ち,多様である.SiO2 含有量は 50.2 ~ 51.1wt %, K2O 含有量は 0.83 ~ 0.88wt%, FeO*/ MgO 比は 2.0 ~ 2.2 である (表 1).

年代 天母山溶岩流の下位にあることから,その噴火 年代は Cal BC 3,600 年頃から Cal BC 3,400 年頃の 間である.

地層名 津屋(1968, 1971)の天母山(二子山)溶 岩流(Anm)による.

模式地 富士宮市,風祭川の標高 590m 地点.高圧 電線作業道沿い.

分布・構造 南西山腹の二子山火砕丘の下部斜面か ら天母山の周辺に分布する.その分布から標高 805m の二子山から南西に標高 610n 付近まで延びる約 2km の割れ目噴火の産物とみられる.なお、山本ほ か(2002)の地質図では二子山火砕丘の南西に広が る本溶岩流は、津屋(1968,1971)の白塚溶岩とし て示されているが、その分布は間違いで、津屋(1968) の地質図が正しい.

層序関係 大久保沢溶岩流を,間に土壌層を挟むこ となく覆う(図17). 模式地周辺では,間に50~ 60cmの褐色土壌を挟んで,大沢降下スコリア堆積物 (Sc-Os) に覆われる.

層厚 模式地での層厚は 2.2m. GSJ-FJM2 コア(山 元ほか,2007)では、5層のアア・パホイホイ溶岩 からなり、全体の層厚は 20m である(00L01 溶岩流). **岩相** パホイホイ溶岩を主体とし(図18),アア溶岩 を伴う、1枚の塊状溶岩の厚さは 2m 以下で、間に土 壌層を挟むことなく、複数のユニットが重なっている. パホイホイ溶岩・アア溶岩とも良く発泡している.

本溶岩流の岩質は、斜長石斑晶に富むかんらん石玄

図18 パホイホイ・トウからなる天母山溶岩流 (Sb-Anm). 富士宮市天母台 (35.27525°N, 138.62786°E). 大沢降下スコリア堆積物 (Sc-Os) に覆われる.

武岩が主体で、単斜輝石かんらん石玄武岩を伴ってい る.斜長石斑晶の最大長径は3.0mmで、清澄なもの が多く、集斑晶をつくる.かんらん石斑晶は、最大長 径2.0mmで、量は多い.また、かんらん石斑晶は斜 長石と伴に集斑晶をつくる.石基は粗粒のインター サータルからインターグラニュラー組織を持つ.SiO2 含有量は50.7 ~ 50.8wt%、K2O含有量は0.90 ~ 0.91wt%、FeO*/MgO比は2.0である(表1). 年代 天母山の南南西500mの地点で、本溶岩流パ ホイホイ・トウに挟まれた炭化木(FJM102)から、 4,660±80yBPの放射年代値を得ている(山元ほか、 2005).その暦年はCal BC 3,400年頃である.

6-4. アカイ沢溶岩流 (Sb-Aks)

地層名 新称. 津屋(1968, 1971)は本報の富士宮 期の溶岩(本報告の北山溶岩流の一部)に,北山(ア カイ沢)溶岩流VII(SW10)の名称を用いているが, これとは別のものである.

模式地 富士宮市, 白塚林道のアカイ沢沿い.

分布・構造 南西山腹を,標高 1,250m まで流れ下る. **層序関係** 明瞭な溶岩末端崖を持つ地形から,大久保 沢溶岩流を覆うと判断される.ただし,この溶岩流と の上下関係は,露頭で確認していない.

層厚 下限不明.

岩相 露頭では,アア溶岩の表面部分のみが観察される. 岩質は,単斜輝石含有かんらん石安山岩である. 斜長石斑晶の最大長径は2.5mmで,量は普通である. 多くのものが汚濁帯を持つ.かんらん石斑晶は,最大 長径1.6mmで,量は少ない.単斜輝石斑晶の最大長 径は1.7mmであるが,量はごく僅かである.石基は 中粒のインターサータル組織を持つ.SiO2含有量は 52.8wt%, K2O含有量は0.68wt%, FeO*/MgO比は 2.0である(表1).

6-5. 首 塚 溶 岩 流 (Sb-Srk)

地層名 津屋(1968, 1971)の白塚溶岩流(Shr) による.ただし,津屋の示した白塚溶岩流の大部分は 本報告の大久保沢溶岩流に相当する.津屋は白塚の下 部斜面に位置する大久保沢溶岩流を全て白塚火砕丘起 源として図示している.しかし,白塚火砕丘から流出 したとみられる溶岩流は,大久保沢溶岩流を覆い,か つ岩質も異なっている.

模式地 富士宮市,大宮林道の深沢沿い(標高 1220m 地点).

分布・構造 白塚の下部斜面にのみ分布する.

層序関係大久保沢溶岩流を,間に土壌層を挟むことなく覆う(図17).白塚火砕丘頂部のトレンチ掘削調査では,火山弾からなる火砕丘堆積物を被覆する火山灰土中に S-10 降下スコリアが確認できる一方,Sb-F2 降下スコリア堆積物は認められないので,

Sb-F2 よりも上位と考えられている(図 17;高田・ 小林, 2007).

層厚 最大約 3m.

岩相 厚さ 30cm 以上の薄いアア溶岩の累積からな る。溶岩は、良く発泡している。岩質は、斜長石斑 晶に富むかんらん石玄武岩である. 斜長石斑晶の最 大長径は3.0mmで、汚濁帯を持つものが多く、集斑 晶をつくる。かんらん石斑晶は、最大長径 1.2mm で、 量は多い。石基は中粒のインターサータル組織を持 つ. SiO₂ 含有量は 50.9wt%, K₂O 含有量は 0.86wt%, FeO*/MgO 比は 2.1 である(表 1).

年代 Sb-F2 降下スコリア堆積物の上位にあることか ら, その噴火年代は Cal BC 2,000 年頃から Cal BC 1,700年頃の間である.

6-6. 赤 焼 溶 岩 流 (Sb-Aky)

地層名 津屋 (1968, 1971) の赤焼溶岩流 (SW6) による.

模式地 富士宮市北山の富士宮道路脇.

分布・構造 南西山腹を, 鞍骨沢沿いに流れ下り, 富 士宮市北山に至る.

層序関係 模式地では、鞍骨沢溶岩流を覆う。鞍骨沢 の標高 1510m 付近では,間に下から 10cm 厚の褐色 砂質土壌層,厚さ 32cm の Sb-F2 降下スコリア堆積物, 厚さ 5cm の褐色砂質土壌層を挟んで、大久保沢溶岩 流を覆う (図17).

層厚 4.5 ~ 2m.

岩相 アア溶岩からなる.塊状溶岩は、余り発泡せず、 緻密である. 岩質は、斜方輝石単斜輝石含有かんらん 石玄武岩である。斜長石斑晶の最大長径は 3.8mm で, 量はやや多い。汚濁帯を持つものが多く、集斑晶をつ くる. かんらん石斑晶は, 最大長径 0.9mm で, 量は やや少ない。単斜輝石・斜方輝石斑晶の最大長径は 0.4mmで、微量である. 石基は粗~中粒のインター サータルからインターグラニュラー組織を持つ. SiO2 含有量は 51.0 wt%, K2O 含有量は 0.60wt%, FeO*/ MgO 比は 2.0 である(表 1).

年代 Sb-F2 降下スコリア堆積物の上位にあることか ら, その噴火年代は Cal BC 2,000 年頃から Cal BC 1,700 年頃の間である.

6-7. 未区分須走 -b 期噴出物 (Sb-ud)

富士山火山錐上部の表層を構成する須走 -b 期の溶 岩流(上流部はアグルチネート)を未区分須走-b期 噴出物と総称する. 数多くの薄い(ほとんどが厚さ 1m以下から2m) 玄武岩溶岩流からなり、一つの噴 火ユニットとして個々の噴出物の分布が識別できてい ないので、このような岩体区分を設定した。南西山腹 では山頂付近から標高 1,250m の範囲に分布してい る。本噴出物の層序学的な位置は、南西山腹の二合目

林道沿いの沢沿いで観察した限りでは、いずれも風祭 川溶岩流や大久保沢溶岩流の上位に位置している 方,アカイ沢溶岩流と赤焼溶岩流は本噴出物よりも地 形的に上位にあるように分布している。

本噴出物の大半はアア溶岩で,間に大きな時間間隙 を示すような地層を挟むことなく、複数の薄い溶岩流 が重なっている。その岩質はかんらん石玄武岩である ものの、かんらん石や斜長石斑晶の含有量や粒径に 多様性があり、溶岩流毎にその特徴が異なっている. SiO₂含有量は51 wt%前後である(表1).

7. 須走 - c 期火山噴出物

Cal BC 1,500 ~ Cal BC 300 年頃の山頂及び山腹 での爆発的噴火が卓越した時期の噴出物である。この 期には S-10 から S-22 の玄武岩質降下スコリア堆積 物群が噴出した(図7).西山腹の角木沢・主杖流・ 桜沢溶岩流は、山頂での爆発的噴火で形成されたアグ ルチネートが根無し溶岩流として流れ下ったもので, それぞれ山頂部の銀明水・三島岳・剣ヶ峰アグルチネー トに連続する.また、三島岳・剣ヶ峰アグルチネート は東山麓のS-18・S-22 降下スコリア堆積物に対比さ れている、これに対し、六番林道溶岩流は、南山腹で の割れ目火口から流出したものである.

7-1. 大沢降下スコリア堆積物 (Sc-Os)

地層名町田(1964)の大沢ラピリ層による. 模式地 富士宮市大沢林道沿い (図 19).

層序関係 本堆積物直下の風成層には,富士火山の 南南東 60km の東伊豆単成火山群から飛来した径 0.5 ~1.0mmのカワゴ平軽石(3.1~3.2ka)が含まれ ている (図 20).

分布・層厚 模式地周辺で最大 140cm の層厚を持つ. 模式地から南西方に向かって薄くなり、芝川沿いでは 15~20cmまで層厚が減少する(図21). その分布 から山頂噴火の産物と考えられる.

岩相 本降下堆積物は発泡の悪い黒色~赤褐色のスコ リア火山礫からなる. 堆積物は色調の異なる成層構造 を持ち、模式地周辺では7ユニットに細分できる(図 19). すなわち本堆積物は黒色緻密なスコリアに暗灰 色の石質玄武岩岩片を含む層と、褐色~赤褐色のスコ リアに黒色緻密スコリアと黄色の変質岩片の混じった 層の互層から構成される。堆積物の淘汰が良く、模式 地での最大粒径は3.2cmである。芝川沿いでは最大 粒径 5~8mmの細粒火山礫からなる。岩質は斑晶量 の乏しい斜方輝石単斜輝石かんらん石玄武岩である. 年代 大沢降下スコリア堆積物中の炭化木 (FJM324) から 3,110±50vBP の補正放射性炭素年代が得られ、 その暦年代は Cal BC 1,400 年頃である(山元ほか, 2005).

図19 大沢降下スコリア堆積物. 富士宮市大沢林道の白塚北(35.32874°N, 138.68724°E).

図 20 大沢降下スコリア堆積物 (Sc-Os) 直下のカワゴ平 軽石 (KwP). 富 士 宮 市 大 沢 林 道 の 白 塚 北 (35.32874°N, 138.68724°E).

図 21 大沢降下スコリア堆積物の層厚分布.

7-2. 六番林道溶岩流 (Sc-Rbr)

地層名新称.津屋(1968,1971)の親シラズ溶岩 流(SW7)の一部に相当する.

模式地 富士宮市,西臼塚の西北西約 2km の大宮林 道沿い.

分布・構造 南西山腹の標高 1,400 ~ 1,100m の大宮・ 六番林道周辺に分布する.

層序関係間に7~5cm厚の褐色土壌層を挟んで, S-22降下スコリア堆積物に覆われる.一方で,大沢 降下スコリア堆積物に覆われない.

層厚 4m 以上.

岩相 アア溶岩からなる. 岩質は,かんらん石安山岩 である. 斜長石斑晶の最大長径は 3.0mm で,量はや や多い. 汚濁帯を持つものが多く,集斑晶をつくる. かんらん石斑晶は,最大長径 1.3mm で,量は普通で ある. 石基は中〜細粒のインターサータル組織を持 つ. SiO² 含有量は 52.6wt%, K²O 含有量は 0.72wt%, FeO*/MgO 比は 2.1 である (表 1).

年代 大沢降下スコリア堆積物とS-22 降下スコリア 堆積物の間にあることから,その噴火年代は Cal BC 1,400 年頃と Cal BC 300 年頃の間にある.

7-3. 角[″]木 沢[″]溶岩流 (Sc-Gnm)

地層名 津屋 (1968, 1971) の角木沢溶岩流 (NW12) による.

模式地 富士山南西斜面,北山林道沿いの角木沢.

分布・構造 山頂部から西南西山腹を,標高 1,220m まで流れ下る.

層序関係上井出林道沿いで、大沢降下スコリア堆 積物を覆い、間に約25cm厚の褐色土壌層を挟んで、 S-22 降下スコリア堆積物に覆われる。山頂部周辺の 銀明水ユニットのアグルチネートに連続し、これが根 無し溶岩流として斜面を流れ下ったものである。

層厚約4m.

岩相 アア溶岩からなる. 岩質は,かんらん石玄武岩 である. 斜長石斑晶の最大長径は3.0mm で,量は多 い. 汚濁帯を持つものが多く,集斑晶をつくる.か んらん石斑晶は,最大長径0.7mm で,量は多い. 石 基は細粒のインターサータル組織を持つ. SiO₂ 含有 量は51.2wt%, K₂O 含有量は0.72wt%, FeO*/MgO 比は1.9 である(表1).

7-4. 主 杖 流 溶 岩 流 (Sc-Msd)

地層名新称.津屋(1968,1971)の主杖溶岩流に相当. **模式地** 富士山南西斜面,御中道沿いの主杖流れ~箱 荒沢第2間.

分布・構造 山頂部から西南西山腹を,標高1160m まで流れ下る。

層序関係 北山林道沿いで,間に約25cm厚の褐色 土壌層を挟んで,S-22降下スコリア堆積物に覆われ る.山頂部周辺の三島岳ユニットのアグルチネートに 連続し,これが根無し溶岩流として斜面を流れ下った ものである.

層厚 1.5m 以上.

岩相 アア溶岩からなる. 岩質は, 斜方輝石単斜輝石 かんらん石玄武岩である. 斜長石斑晶の最大長径は 3.5mm で, 量はやや多い. 汚濁帯を持つものが多く, 集斑晶をつくる. かんらん石斑晶は,最大長径0.7mm で,量は普通である. 単斜輝石・斜方輝石斑晶は,最 大長径0.6mm で,量は少ない. 石基は細粒のインター サータル組織を持つ. SiO² 含有量は51.5wt%, K²O 含有量は0.58wt%, FeO*/MgO比は1.8 である(表1). 年代 三島岳ユニットは山麓のS-18 降下スコリア堆 積物に対比される. S-18 降下スコリア堆積物中の炭 化木 (FJM324) からは2,440±40yBPの補正放射性 炭素年代が得られ,その暦年代はCal BC 520 年頃で ある (山元ほか, 2005).

7-5. 桜 沢 溶 岩 流 (Sc-Kng)

地層名 津屋 (1968, 1971)の桜沢溶岩流 (NW13) による.

模式地 富士山南西斜面,北山林道沿いの角木沢の北 斜面.

分布・構造 山頂部剣ヶ峰周辺からから西南西山腹表 層を構成しながら, 複数の支流に分かれ, 標高 1,070m まで流れ下る.

層序関係 土壌層を挟むことなく, S-22 降下スコリ ア堆積物に直接覆われ,一連の噴火堆積物を構成する. 山頂部周辺の剣ヶ峰ユニットのアグルチネートに連続 し,これが根無し溶岩流として斜面を流れ下ったもの である.

層厚 北山林道沿いでは約10m.

岩相 アア溶岩からなる. 岩質は,かんらん石玄武 岩である. 斜長石斑晶の最大長径は1.8mm で,量は やや多い. 汚濁帯を持つものが多く,集斑晶をつく る.かんらん石斑晶は,最大長径1.3mm で,量は普 通である. 石基は細粒のインターサータル組織を持 つ. SiO₂ 含有量は52.1wt%, K₂O 含有量は0.65wt%, FeO*/MgO 比は1.9 である(表1).

年代 東山麓の S-22 降下スコリア堆積物中の炭化木 (FJM420) から 2,200±40yBP の放射性炭素補正年代 値が得られ,その暦年代は Cal BC 300 年頃である (山 元ほか, 2005).

7-6. 火山麓扇状地 II 堆積物 (vf2)

須走-b期後半から須走-c期の火砕物を母材とする
ラハール(土石流・高密度洪水流)堆積物からなる。
岩松・町田(1962)の上井出扇状地砂礫層,田島ほか(2006)の上井出扇状地堆積物に相当する。
分布・構造 富士火山西~南西山腹の沢沿い(大沢・

鞍骨沢・風祭川など)から、山麓の潤井川に主に分布 する(図 22).

層序関係 南西山腹では,富士宮期の溶岩流・須走-b 期の風祭川・大久保沢・天母山・白塚溶岩流を覆い, S-22 降下スコリア堆積物に覆われる.西山腹の上流 部では須走-c期 Cal BC 1,500 ~ Cal BC 800 年頃の 玄武岩質火砕流堆積物を挟んでいる(Yamamoto *et al.*, 2005).また,南西山腹の標高 800m ~ 950m の 風祭川沿いでは本扇状地堆積物の直下に,須走-b期 Cal BC 2,800 年頃の玄武岩質火砕流堆積物が位置し ている(北垣ほか, 2007).

層厚 南西山麓の富士宮の潤井川沿いで最も厚く, 30m 前後の層厚を持つ(図3).

岩相 中粒〜細粒砂の基質を持つ岩片支持の塊状塊状 の巨礫〜大礫(図23)や連続性の悪い平行層理を持 つ中礫混じりの粗粒〜中粒砂を主体とし、中粒〜細粒 砂の基質を持つ基質支持の塊状巨礫〜大礫を稀に伴う. 砕屑物は未固結からやや固結している.塊状礫の単層

図 23 火山麓扇状地 II 堆積物.
 富 士 宮 市 大 沢 林 道 沿 い (35.33366'N, 138.66348'E). 岩片支持で中粒砂サイズの基質を持つ塊状礫層.石質~スコリア質の玄武岩岩片に富み,基質には炭化木片を多く含む(白矢印).玄武岩岩片の磁化方位はランダムで,高温での定置を示さない.木片からは Cal BC 1,000 年頃を示す放射性炭素年代値(FJM202;山元ほか,2005)が得られた.

図22 火山麓扇状地 || 堆積物堆積物の分布.

本火山麓扇状地堆積物の大半は Cal BC 2,800 ~ Cal BC 300 年頃のラハール堆積物からなり,須走-c 期火砕流堆積物(Cal BC 1,500 ~ Cal BC 800 年頃;Yamamoto *et al.*, 2005)を伴っている.須走-b期火砕流堆積物(Cal BC 2,800 年頃)の露頭位置は、山元ほか(2005)、田島ほか(2006)、北垣ほか(2007)による.

厚は最大 2m 前後で,礫の最大粒径は 1m 前後である. 上流部では,火砕流堆積物から由来した玄武岩火山弾 やスコリアを多く含み,洗い出された炭化木片も含ま れている.しかし,下流部では溶岩流由来の多様な玄 武岩石質岩片が主体となり,火砕物由来ラハールの特 徴が不明瞭である.

年代 富士宮市の青木 D-1 コア (図3) では本堆積 物基底から Cal BC 2,800 年頃,最上部から Cal BC 300 年頃の放射性炭素年代値が得られている(下川) ほか、1996).本堆積物中の他の地点から得られた放 射年代値も全てこの年代値間におさまっている(山元 ほか、2005;田島ほか、2006).従って南西山麓の 本堆積物の形成は、須走-b期の火砕流噴火直後から 始まり、S-22の最後の爆発的山頂噴火まで続いたこ とになる、本堆積物がつくる扇状地面の離水時期は複 数有り、須走-b期のF2降下スコリア堆積物の直前、 須走 -c 期の大沢降下スコリア堆積物の直前, S-22 降 下スコリア堆積物の直前, S-22 降下スコリア堆積物 の直後であるが、離水時期の異なる堆積物は互いに重 なり合い,これらを地形的に区別することは難しい. 南西山麓では S-22 降下スコリア堆積物の直前に離水 した面が大半を占めている。一方,東山麓ではS-22 降下スコリア堆積物の直後に離水した面が広い.

8. 須走-d期火山噴出物

Cal BC 300 頃以降の,山腹割れ目噴火が卓越した 時期の噴出物である(図8).この期に S-23 以降の玄 武岩質テフラ群が噴出した。南西山腹でのこの期に起 きた割れ目噴火は,青沢溶岩流の流出が唯一である.

8-1. 青沢溶岩流 (Sd-Aos)

地層名 津屋 (1968, 1971)の青沢溶岩流に相当. **模式地** 富士宮市山宮の山宮神社裏,風祭川沿い. **分布・構造** 富士宮市,青沢の右岸,標高 1,950 ~ 1,800m 付近から流出し,山宮神社(標高 380m)ま で下っている.山宮神社では,本溶岩流の末端崖が御 神体となっている.

層序関係本溶岩流の直下には,黒色土壌層が堆積している。一方,本溶岩流上には,堆積物はほとんど形成されていない。

層厚 GSJ-FJM1 コアでは,1 層のアア溶岩からなり, 層厚は 9.2m である(山元ほか,2007)。末端部の模 式地では,約5m である。

岩相 アア溶岩からなる.塊状溶岩は緻密で,あまり 発泡していない.給源付近の青沢右岸には,本溶岩流 で埋められた凹地形が沢と平行に並んでいる.凹地形 周辺の地表には,最大径約 30cm で,表面が赤褐色 の火山弾が散らばっている.

本溶岩流の岩質は,斑晶量の少ないかんらん石玄武 岩である.斜長石斑晶の最大長径は 2.6mm で,量は 少ない. 汚濁帯を持つものが多い. かんらん石斑晶 は,最大長径 0.6mm で,微量である. 石基は細粒の インターサータルからインターグラニュラー組織を持 つ. SiO² 含有量は 50.6wt%, K²O 含有量は 0.78wt%, FeO*/MgO 比は 2.2 である (表 1).

年代 模式地の本溶岩流直下の黒色土壌 (FJM105, FJM104) からは1,750±80yBPと1,570±70yBP, 二合目林道沿いの本溶岩流基底部の炭化木 (FJM301) からは1,570±40yBPの補正年代値が得られた(山 元ほか,2005). 青沢溶岩流 (Aos)からは2,040± 150yBPの年代値が報告されていたが (津屋,1971), 新測定結果は Cal AD 500 年頃に良くまとまり大幅に 若くなっている.

8-2. 火山麓扇状地 I 堆積物 (vf1)

大沢崩れの下流に形成された現在活動中の扇状地の 堆積物である。岩塚・町田 (1962)の大沢扇状地砂礫層, 田島ほか (2006)の大沢ラハール堆積物に相当する。 分布・構造 大沢沿いから,山麓の潤井川に主に分布 する.

層序関係火山麓扇状地Ⅱ堆積物を明瞭な侵食面を 持って覆う.

層厚田島ほか(2006)の柱状図では15m前後.

岩相 巨礫混じりの塊状礫で,粗粒~中粒砂の基質を 持つ.大沢扇状地の表層部は砂防工事による地形改変 が進んでおり,初成的な堆積物の露頭はほとんど観察 することが出来なかった.

年代 岩塚・町田 (1962) は本堆積物基底部の木片 から 950±60yBP の放射性炭素年代値を,田島ほか (2006) は本層最下部の土壌から 850±60yBP の放射 性補正年代値 (Cal AD 1,200 年)を得ている.従って, 上流の大沢崩れは約 1,000 年前から土砂生産を開始 したと考えられている(岩塚・町田, 1962;田島ほか, 2006).

表1 富士火山噴出物の全岩化学組成.

サンプル	山宮-89.9m	山宮-162.2m	Y000830-8	Y000830-7b	Y011206-1	Y011204-3	Y010110-6	Y011206-5	Y000826-12	Y011204-4
岩体	星山期溶岩流	星山期溶岩流	水神溶岩流	芝川溶岩流	芝川溶岩流	芝川溶岩流	芝川溶岩流	横手沢溶岩流	箱荒沢溶岩流	半野溶岩流
記号	H-ud	H-ud	F-Sij	F-Sbk	F-Sbk	F-Sbk	F-Sbk	F-Ykt	F-Hka	F-Han
地点	27	27	36	35	8	19	31	9	5	16
SiO2 wt.%	50.88	53.63	49.42	50.45	49.49	49.73	49.92	50.24	50.30	49.40
TiO ₂	1.36	0.90	1.35	1.45	1.37	1.36	1.48	1.33	1.51	1.49
Al_2O_3	17.13	18.32	16.77	17.31	17.90	17.89	17.30	16.59	16.31	16.54
$Fe_2O_3^*$	12.35	10.11	12.51	12.12	12.00	11.91	12.33	12.57	12.86	13.26
MnO	0.18	0.17	0.17	0.17	0.16	0.16	0.17	0.17	0.18	0.19
MgO	5.41	4.52	6.43	5.29	5.30	5.29	5.48	6.60	6.10	6.29
CaO	10.12	9.04	10.65	10.34	10.71	10.75	10.24	10.26	9.91	10.67
Na ₂ O	2.74	3.14	2.66	2.83	2.72	2.71	2.75	2.53	2.66	2.60
K_2O	0.65	0.51	0.64	0.69	0.60	0.66	0.65	0.53	0.69	0.68
P_2O_5	0.25	0.15	0.26	0.29	0.28	0.26	0.30	0.20	0.30	0.28
Total	101.07	100.48	100.86	100.95	100.52	100.71	100.61	101.01	100.83	101.39
LOI	-0.30	-0.23	-0.11	-0.32	0.03	-0.40	0.27	0.25	-0.48	-0.15
FeO*/MgO	2.05	2.01	1.75	2.06	2.04	2.03	2.03	1.71	1.90	1.90

サンプル	Y990927-2	Y000216-1	Y011204-5	Y990927-4	Y010109-2	Y000830-5	Y010110-1	Y990923-2	Y010112-2	Y010112-4
岩体	白糸溶岩流	万野溶岩流	狩宿溶岩流	精進川溶岩流	猫沢溶岩流	青見溶岩流	外神溶岩流	馬見塚溶岩流	鞍骨沢溶岩流	鞍骨沢溶岩流
記号	F-Srt	F-Mnn	F-Kry	F-Sjg	F-Nkz	F-Aom	F-Tog	F-Umm	F-Krh	F-Krh
地点	13	28	22	29	32	33	34	25	17	20
SiO2 wt.%	50.47	49.42	50.13	49.87	50.26	50.00	49.79	50.25	51.16	50.37
TiO ₂	1.49	1.38	1.31	1.27	1.28	1.86	1.29	1.65	1.69	1.49
Al_2O_3	17.95	17.02	17.93	18.23	18.10	16.87	18.04	18.08	16.88	18.99
$Fe_2O_3^*$	11.51	12.23	11.91	11.54	11.48	13.27	11.43	12.23	12.34	11.11
MnO	0.16	0.17	0.17	0.16	0.16	0.18	0.16	0.17	0.17	0.15
MgO	4.58	6.28	5.44	5.26	5.19	4.26	5.77	4.11	4.52	3.79
CaO	10.25	10.52	10.54	10.70	10.76	9.57	10.57	10.01	9.81	10.62
Na ₂ O	2.95	2.78	2.68	2.75	2.81	3.02	2.78	3.00	3.05	3.02
K_2O	0.87	0.64	0.62	0.61	0.63	0.99	0.64	0.84	0.94	0.84
P ₂ O ₅	0.36	0.27	0.25	0.24	0.24	0.41	0.25	0.37	0.37	0.33
Total	100.58	100.70	100.97	100.62	100.90	100.42	100.71	100.70	100.92	100.70
LOI	-0.22	0.06	-0.08	-0.10	-0.18	-0.33	-0.07	0.21	-0.03	-0.42
FeO [*] /MgO	2.26	1.75	1.97	1.98	1.99	2.80	1.78	2.68	2.46	2.64

サンプル	Y010111-10	Y010111-5	Y000215-4	Y991023-5	Y000826-1B	Y010111-7	Y991022-6-1	Y991022-4	Y990926-4	Y990927-1
岩体	北山溶岩流	北山溶岩流	元村山溶岩流	元村山溶岩流	風祭川溶岩流	大久保沢溶岩流	大久保沢溶岩流	アカイ沢溶岩流	天母山溶岩流	天母山溶岩流
記号	F-Kty	F-Kty	F-Mtm	F-Mtm	Sb-Kzm	Sb-Okb	Sb-Okb	Sb-Aks	Sb-Anm	Sb-Anm
地点	18	11	30	14	10	12	7	3	24	23
SiO2 wt.%	51.02	50.23	50.60	50.76	51.07	50.71	50.64	52.70	50.50	50.37
TiO ₂	1.44	1.46	1.29	1.64	1.34	1.58	1.56	1.01	1.64	1.62
Al_2O_3	18.06	19.20	19.16	17.16	17.22	16.81	17.06	17.94	16.14	16.00
$Fe_2O_3^*$	11.22	11.05	10.31	12.17	11.85	12.32	12.37	10.67	12.91	13.01
MnO	0.16	0.15	0.14	0.16	0.17	0.17	0.17	0.16	0.18	0.18
MgO	4.58	3.86	4.18	4.64	5.45	5.13	5.35	4.92	5.85	5.97
CaO	9.95	10.64	10.85	9.88	9.97	9.80	9.94	9.65	9.61	9.47
Na ₂ O	2.89	2.85	2.95	2.92	2.70	2.72	2.73	2.95	2.76	2.64
K ₂ O	0.86	0.82	0.71	0.93	0.73	0.85	0.83	0.68	0.90	0.89
P ₂ O ₅	0.34	0.33	0.27	0.39	0.29	0.37	0.37	0.20	0.38	0.38
Total	100.51	100.59	100.47	100.65	100.79	100.46	101.03	100.88	100.88	100.52
LOI	0.05	0.00	-0.18	0.00	-0.69	n.d.	-0.33	-0.15	-0.23	-0.09
FeO*/MgO	2.21	2.57	2.22	2.36	1.96	2.16	2.08	1.95	1.99	1.96

サンプル	Y991022-6-2	Y991022-5	Y010112-3B	Y000826-14	Y000826-1C	Y000827-7	Y991023-4	Y991025-8	Y990923-6
岩体	白塚溶岩流	赤焼溶岩流	赤焼溶岩流	未区分Sb溶岩流	未区分Sb溶岩流	未区分Sb溶岩流	六番林道溶岩流	主杖流溶岩流	青沢溶岩
記号	Sb-Srt	Sb-Aky	Sb-Aky	Sb-ud	Sb-ud	Sb-ud	Sc-Rbr	Sc-Shj	Sd-Aos
地点	7	6	21	4	10	1	15	2	26
SiO2 wt.%	50.64	50.84	50.69	51.15	51.34	51.09	52.28	51.34	50.26
TiO ₂	1.58	1.23	1.23	1.24	1.11	1.10	1.14	1.07	1.51
Al_2O_3	17.03	18.09	18.08	17.40	17.59	17.68	18.05	18.03	17.36
$Fe_2O_3^*$	12.28	11.07	10.99	11.64	11.28	11.31	10.49	10.54	12.34
MnO	0.17	0.16	0.16	0.17	0.17	0.17	0.16	0.15	0.17
MgO	5.18	5.04	5.06	5.81	5.52	5.54	4.42	5.36	5.10
CaO	9.97	10.71	10.70	9.97	10.37	10.35	9.92	10.75	9.94
Na ₂ O	2.67	2.73	2.76	2.66	2.53	2.61	2.97	2.71	2.74
K ₂ O	0.86	0.61	0.60	0.68	0.58	0.58	0.72	0.58	0.78
P_2O_5	0.37	0.24	0.24	0.27	0.23	0.22	0.25	0.20	0.32
Total	100.75	100.70	100.49	100.99	100.70	100.66	100.39	100.72	100.53
LOI	-0.15	-0.10	-0.35	-0.32	-0.33	-0.17	-0.20	-0.14	-0.38
FeO*/MgO	2.13	1.97	1.95	1.80	1.84	1.84	2.13	1.77	2.18

LOI = 灼熱減量.*鉄は全て Fe₂O₃. 試料採取地点は表 2 を参照のこと.

表 2 試料採取地点一覧.

, T				
Loc	1/2.5万	地名	北緯	東経
1	富士山	富士宮市表大沢2630m地点	35.34272	138.72782
2	富士山	富士宮市大沢林道	35.34248	138.67566
3	天母山	富士宮市アカイ沢1340m地点	35.33422	138.67823
4	天母山	富士宮市箱荒沢第一1600m地点	35.33278	138.69729
5	天母山	富士宮市箱荒沢第二1590m地点	35.33024	138.69854
6	天母山	富士宮市鞍骨沢1280m地点	35.32918	138.67882
7	天母山	富士宮市深沢1220m地点	35.32126	138.68079
8	上井出	富士宮市内野	35.32824	138.57523
9	上井出	富士宮市内野	35.32673	138.5836
10	天母山	富士宮市市兵衛沢1500m地点	35.32050	138.70461
11	天母山	富士宮市北山	35.32053	138.64259
12	天母山	富士宮市北山	35.31365	138.65517
13	上井出	富士宮白糸	35.31366	138.58902
14	天母山	富士宮市六番林道	35.30914	138.69280
15	天母山	富士宮市六番林道	35.30751	138.69380
16	上井出	富士宮市半野	35.31027	138.57613
17	天母山	富士宮市北山	35.30652	138.63502
18	上井出	富士宮市北山	35.30377	138.61816
19	上井出	富士宮市半野	35.30289	138.57051
20	天母山	富士宮市北山	35.29244	138.62460
21	上井出	富士宮市北山	35.29041	138.60838
22	上井出	富士宮市上條	35.28900	138.57456
23	天母山	富士宮市丙鞍骨	35.28809	138.62308
24	天母山	富士宮市天母台	35.27504	138.62799
25	上井出	富士宮市馬見塚	35.27674	138.59490
26	天母山	富士宮市山宮	35.27198	138.63740
27	天母山	富士宮市山宮	35.27125	138.64727
28	天母山	富士宮市山宮	35.27027	138.64980
29	上井出	富士宮市下條	35.26804	138.56580
30	天母山	富士宮市元村山	138.56579	138.66750
31	上井出	芝川町大鹿窪	35.25616	138.55615
32	富士宮	芝川町大鹿窪	35.23957	138.56706
33	富士宮	富士宮市大中里	35.22653	138.59021
34	富士宮	富士宮市安居山	35.21110	138.58863
35	富士宮	富士宮市沼久保	35.19572	138.58850
36	吉原	富士市水神	35.15152	138.62641

引用文献

- Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J. and Lancelot, Y. (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett., 126, 91-108.
- 福原達雄・和田秀樹(1997)静岡大学¹⁴C年代デー タ集1.静岡大学地球科学研究報告,24,15-26.
- 平林 武(1899)富士及愛鷹火山地質調查報文.震 災予防調査会報告, no.24, p.3-74.
- 石原初太郎(1925)富士山地質図(5万分ノ1)。山 梨県山林会。
- 岩塚守公・町田 洋(1962) 富士山大沢の発達一火 山の谷の発達と侵蝕機構についての基礎的研究--地学雑誌, 71, 4, 3-18.
- 泉 浩二・木越邦彦・上杉 陽・遠藤邦彦・原田昌一・ 小島泰江・菊原和子(1977)富士山東山麓の沖 積世ローム層.第四紀研究, 16, 87-90.
- 貝塚爽平(1977)日本の地形. 岩波書店, 234p.
- 町田 洋 (1964) Tephrochronology による富士火 山とその周辺地域の発達史. 地学雑, 73, 293-308, 337-350.
- 町田 洋(1977)火山灰は語る. 蒼樹書房, 東京, 324p.
- 宮地直道 (1988) 新富士火山の活動史. 地質雑, 94, 433-452.
- 宮地直道・遠藤邦彦・富樫茂子・田島靖久・小森次郎・ 橘川貴史・千葉達朗・鵜川元雄(2001)富士山 広見観測井のボーリングコアの層序と岩石化学的 特徴.防災科学技術研究所研究報告, no.61, 31-47.
- 中村俊夫・岡 重文・坂本 亨(1992)東京軽石流 堆積物中の炭化木片の加速器質量分析計による放 射性炭素年代.地質雑,98,905-908.
- 中野 俊・石塚吉浩編 (2002) 富士火山地質図 (5 万分の1) CD - ROM 版. 数値地質図 DGM G-9, 産総研地質調査総合センター.
- 下川浩一・山崎晴雄・水野清秀・井村隆介(1996) 平成7年度活断層研究調査報告,27,富士川断 層系のトレンチ掘削等による活動履歴調査.地質 調査所研究資料集,no.251,1-49.
- 高田 亮・小林 淳(2007) 富士火山南山腹のスコ リア丘トレンチ調査による山腹噴火履歴.地質調 査研究報告, 57, 329-356.
- 高田 亮・山元孝広・石塚吉浩・中野 俊 (2014) 富 土火山地質図 第2版 (Ver.1),地質調査総合セ ンター研究資料集, no. 592, 産総研地質調査総 合センター.
- 田島靖久・宮地直道・井上公夫(2006)新富士火山

の噴火活動に伴う上井出扇状地の発達史.第四紀, 45,287-301.

- 高橋正樹・長谷川有希絵・津久井雅志・根本靖彦(1991) 富士火山におけるマグマ供給系の進化:全岩化学 組成の視点から、火山、36,281-296.
- 富樫茂子・高橋正樹(2007)富士火山のマグマの化
 学組成と岩石学的特徴:マグマの実態への制約条
 件.荒牧重雄・藤井敏嗣・中田節也・宮地直道編, 富士火山.山梨県環境科学研究所,219-231.
- 富樫茂子・宮地直道・山崎晴雄(1991)新富士火山 初期の大きなソレアイトマグマだまりにおける結 晶分化作用.火山,36,269-280.
- 富樫茂子・宮地直道・安井真也・角田明郷・朝倉伸行・ 遠藤邦彦・鵜川元雄(1997)古富士火山末期か ら新富士火山にわたるマグマの組成変化-富士吉 原火山観測施設のボーリングコアの岩石化学的性 質.火山,42,409-421.
- Tsuya, H. (1935) On Some Lavas of Volcano Huzi (Fuji). Bull. Earthq. Res. Inst. Tokyo Imp. Univ., 13, 645-659.
- Tsuya, H. (1937) On the Volcanism of the Huzi Volcanic Zone, with Special Reference to the Geology and Petrology of Idu and the Southern Islands. Bull. Earthq. Res. Inst. Tokyo Imp. Univ., 15, 215-357.
- 津屋弘達(1938a) 富士火山の地質学的並びに岩石学 的研究(I),1. 小御岳の構造. 地震研究所彙報, 16,452-469.
- 津屋弘達(1938b)同上(II), 2. 青木ヶ原熔岩の分 布と噴出中心. 地震研究所彙報, 16, 638-657.
- 津屋弘逵 (1940) 同上 (Ⅲ), 3. 富士山の南西麓, 大宮町周域の地質. 地震研究所彙報, 18, 419-445.
- 津屋弘逵(1944)同上(IV), 4. 寄生火山の構造及 び分布. 地震研究所彙報, 21, 376-393.
- Tsuya, H. (1955) Geological and Petrological Studies of Volcano Fuji, V. 5. On the 1707 eruption of Volcano Fuji. Bull. Earthq. Res. Inst. Tokyo Univ., 33, 341-383.
- Tsuya, H. (1962) Geological and Petrological Studies of Volcano Fuji (VI). 6. Geology of the Volcano as Observed in Some Borings on its Flanks. Bull. Earthq. Res. Inst. Tokyo Univ., 40, 767-804.
- 津屋弘逵(1968) 富士山地質図(5万分の1), 富士 山の地質(英文概略), 地質調査所, 24p.
- 津屋弘逵(1971)富士山の地形・地質. 富士山:富 士山総合学術調査報告書. 富士急行, 127p.
- 上杉 陽・遠藤邦彦・原田昌一・小島泰江・泉 浩二 (1979) 富士山,北・東麓の完新世テフラ累層中

の斜交関係. 第四紀研究, 17, 207-214.

- 上杉 陽・堀内 真・宮地直道・古屋隆夫 (1987) 新富士火山最新期のテフラ:その細分と年代. 第 四紀研究, 26, 59-68.
- 山本玄珠・篠ヶ瀬卓二・輿水達司・北垣俊明(2002) 富士山南西麓の古富士火山の溶岩について.地球 科学,56,191-196.
- 山本玄珠・北垣俊明・興水達司・篠ヶ瀬卓二・松田 泰治(2003)富士山南麓・西麓の新富士火山の 溶岩の分布と記載岩石学的研究.地球科学,57, 221-242.
- 山元孝広・高田 亮・石塚吉浩・中野 俊(2005) 放射性炭素年代測定による富士火山噴出物の再編 年.火山,50,2,53-70.
- 山元孝広・石塚吉浩・高田 亮(2007)富士火山南 西山麓の地表及び地下地質:噴出物の新層序と 化学組成変化.荒牧重雄・藤井敏嗣・中田節也・ 宮地直道編,富士火山.山梨県環境科学研究所, 97-118.
- Yamamoto, T., Takada, A., Ishizuka, Y., Miyaji, N. and Tajima, Y. (2005) Basaltic pyroclastic flows of Fuji volcano, Japan: characteristics of the deposits and their origin. Bull. Volcanol, 67, 622-633.
- Yamazaki, H. (1992) Tectonics of a plate collision along the northern margin of Izu Peninsula, central Japan. Bull. Geol. Surv. Japan, 43, 603-657.