Integrating Seismological and Geophysical Observations for Earthquake Precursors Studies in Taiwan

Juen-Shi Jiang<sup>\*1</sup>, Chien-Hsin Chang<sup>1</sup> and Tzay-Chyn Shin<sup>2</sup>

Seismological Center, Central Weather Bureau, Taiwan.
 Central Weather Bureau, Taiwan.



# Integrating Seismological and Geophysical Observations for Earthquake Precursors Studies in Taiwan Outlines

Motivation

Pre-seismic anomalies in seismicity and crustal deformation

- Seismological and Geophysical Network
- Seismological precursors studies
   The analyses of the 1999 Mw7.6 Chi-Chi, Taiwan, earthquake
- Geophysical precursors studies
- Conclusions



# Earthquake hazard mitigation



e Earthquake hazard is one of the major natural disasters in Taiwan.

The case study of the 1999 Chi-Chi eartuquake.



# Examples of earthquake hazards in Taiwan



1906年梅山地震



1935年新竹-台中地震



1941年中埔地震





1964年白河地震



1986年花蓮地震



1999年集集地震

# Earthquake precursor The seismic quiescence before 2011 Mw 9.0 Tohoku, Japan, earthquake



Tsunami (Kyodo news)



Tsunami in Sendai Airport (Kaneda, 2011)

· 中央氣象局 Central Weather Bureau LETTER \_

Earth Planets Space, 63, 709-712, 2011

#### A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M = 9.0)

Kei Katsumata

Institute of Seismology and Volcanology, Hokkaido University, Sapporo 060-0810, Japan

(Received April 7, 2011; Revised June 15, 2011; Accepted June 22, 2011; Online published September 27, 2011)

I find that a long-term seismic quiescence started 23.4 years before the 2011 off the Pacific coast of Tohoku Earthquake (M = 9.0). An earthquake catalog compiled by the Japan Meteorological Agency (JMA) is analyzed. The catalog includes 5770 earthquake shallower than 60 km with  $M \ge 4.5$ . A detailed analysis of the earthquake catalog between 1965 and 2010 using the gridding technique ZMAP shows that the 2011 Tohoku earthquake is preceded by a seismic quiescence anomaly that began in November 1987. The quiescence-anomaly area is located around the deeper edge of the asperity ruptured by the main shock, and the Z-value is +4.9 for a time window of  $T_w = 15$  years, using a sample size of N = 150 earthquakes. It is suggested that a seismic quiescence which starts more than 20 years before the main shock is common to giant earthquakes ( $M \sim 9.0$ ) in subduction zones. Key words: Seismic quiescence, the 2011 Tohoku earthquake, JMA earthquake catalog, ZMAP, Z-value.



Fig. 3. Time slices of Z-value distribution using the JMA non-declastered catalog. A time window starts at  $T_s$  and each at  $T_s + T_w$ , here  $T_w = 15$ years. A red color (positive Z-value) represents a decrease in the seismicity rate. Circles labeled by M and B indicate Miyagi and Boso quiescence areas, respectively. At and Al' are nodes in the Miyagi quiescence area. A2 and A3 are nodes in the Boso quiescence area. A4 is a node in the Samiku-handa-oki quiescence area.

Z value

# Earthquake precursor

The seismic quiescence before 1999 Mw 7.6 Chi-Chi, Taiwan, earthquake



 $z = \frac{(R - R_b)}{\sqrt{\sigma^2 / n + \sigma_b^2 / n_b}}$ 

R : mean seismicity rate  $R_b$  : background mean seismicity rate  $\sigma$  : standard deviation of seismicity rate n : number of samples

```
M \ge 2,
grid 0.3°, interval 0.1°
```

- The Z value contour before (left) and after (right) the 1999 Chi-Chi, Taiwan, earthquake.
- The red color denotes high seismicity rate, and blue color represents low seismicity rate (seismic quiescence).



# Earthquake precursor

The seismic quiescence before 1999 Mw 7.6 Chi-Chi, Taiwan, earthquake



$$z = \frac{(R - R_b)}{\sqrt{\sigma^2 / n + \sigma_b^2 / n_b}}$$

R : mean seismicity rate  $R_b$  : background mean seismicity rate  $\sigma$  : standard deviation of seismicity rate n : number of samples

```
M \ge 2,
grid 0.3°, interval 0.1°
```

- The Z value contour before (left) and after (right) the 1999 Chi-Chi, Taiwan, earthquake.
- The red color denotes high seismicity rate, and blue color represents low seismicity rate (seismic quiescence).



# Pre-seismic anomalies in seismicity and crustal deformation before 1999 Mw 7.6 Chi-Chi, Taiwan, earthquake





# Pre-seismic anomalies in seismicity and crustal deformation before 1999 Mw 7.6 Chi-Chi, Taiwan, earthquake





# The primary missions of the Seismological Center of Central Weather Bureau (**CWB**) are as follows:

- Monitoring seismic activities in and around Taiwan.
- Releasing reports of felt earthquakes and issuing tsunami warnings.
- Implementing Taiwan Strong-motion Instrumentation
   Program.
- Studying various phenomena that are possible earthquake precursors.
- Providing seismic information and educating the public on earthquake precautionary measures.



# Seismological and Geophysical Network Seismological Center, Central Weather Bureau (**CWB**), Taiwan.



Taiwan Strong Motion Instrumentation Program Network

> **TSMIP** 臺灣強地動觀測網

Central Weather Bureau Seismographic Network CWBSN 中央氣象局地震觀測網 Taiwan Geophysical Network for Seismology TGNS 臺灣地球物理觀測網



# The 2012-02-26 ML6.4 Pingtung, Taiwan, earthquake



- The horizontal PGA (Peak Ground Acceleration, gal) contour and intensity at the each moment (left) and cumulative (right).
- Blue circle denotes P-wave and red circle represents S-wave propagation.



# Integrating Seismological and Geophysical Observations for Earthquake Precursors Studies in Taiwan Outlines

Motivation

Pre-seismic anomalies in seismicity and crustal deformation

- Seismological and Geophysical Network
- Seismological precursors studies
   The analyses of the 1999 Mw7.6 Chi-Chi, Taiwan, earthquake
- Geophysical precursors studies
- Conclusions

The following slides will show you how we study possible earthquake precursors.



#### Pre-seismic anomalies in seismicity and focal mechanisms The analyses of the 1999 Mw7.6 Chi-Chi, Taiwan, earthquake



The seismicity before (left, 102581 events) and after (right, 158506 events) the 1999 ML7.3 (Mw7.6) Chi-Chi earthquake from 1991 to 2004. The main shock was followed by a large number of strong aftershocks. Pre- and post-main shock focal mechanisms of this earthquake are analyzed to characterize spatial and temporal variations of stress patterns around the Chelungpu fault, which ruptured during the main shock.



### Seismicity Analysis Earthquake Clustering based on Similar time and space



Clustering method 群集法 Seismicity Clustering(Reasenberg,1985) Correlation time interval:

$$\tau = \frac{-\ln(1-P)t}{10^{2(\Delta M - 1)/3}} = \frac{3t}{10^{2(\Delta M - 1)/3}}$$

Correlation distance: Kanamori and Anderson(1975) log r = 0.4\*M - (log(stress drop))/3 - 1.45 r: radius of a circular crack (km) stress drop=30 bars.

In the study of seismicity, we first define the aftershocks of the Chi-Chi earthquake by the earthquake clustering method.



# Seismicity Analysis Earthquake Clustering based on Similar time and space



In the study of seismicity, we first define the aftershocks of the Chi-Chi earthquake by the earthquake clustering method.



### Seismicity Analysis Earthquake Collapsing



Collapsing Seismicity Patterns ( Jones and Stewart, 1997; Asanuma et al., 2001 )



- degree of freedom plane: one degree of freedom line: two degrees of freedom point: three degrees of freedom
- The locations of aftershocks are then adjusted by the hypocenter collapsing method.



### Seismicity Analysis Earthquake Collapsing





#### Seismicity Analysis Earthquake Collapsing







Seismicity patterns before and after the 1999 Chi-Chi earthquake

- The patterns of clustered earthquakes before (left) and after (right) the 1999 Chi-Chi earthquake.
- The results show 6 distinct groups of aftershocks.



# Earthquake Focal Mechanisms



- Pre (left)- and post (right)- main shock of the 1999 Chi-Chi earthquake.
- Clearly, each type of aftershock focal mechanism occurred in clusters and formed dominant trends.



# Classification of Earthquake Focal Mechanisms



The Frohlich's triangle diagram of pre (left)- and post (right)- main shock focal mechanisms of the 1999 Chi-Chi earthquake.





It is worth noting that the relative ratios of the numbers of the three types of focal mechanism are almost constant throughout the threeyear period after the Chi-Chi.



#### **Characteristics of Spatial Patterns**





In the study of focal mechanisms, we found the larger and deeper earthquakes often exhibit thrust faulting whereas smaller and shallower earthquakes exhibit strike-slip type.



# **Dominant Stress Patterns**



- The fact that larger earthquakes are dominantly thrust faulting is a reflection of the regional crustal stress regimes in the Chi-Chi source.
- With respect to the Chelungpu fault, thrust faulting dominates the hanging wall areas to the east, strike-slip faulting near its southern and northern ends, and southeastern side, whereas normal faulting in its central part and to the eastern side of the Central Mountain Range.



# Earthquake precursors studies





Figure 2.8 Expected changes in physical variables before an earthquake (Scholz et al. 1973: 806). Copyright 1976 by the AAAS.



# The Geophysical Observations for Earthquake Precursors Studies in Taiwan



Taiwan Geophysical Network for Seismology (TGNS)

- ► GPS (150 stations)
- ➢ GPS-TEC
- Groundwater Level (7 stations)
- Magnetism (11 stations)
- Borehole Strain (9 stations)
- In the following slides, I am going to introduce the geophysical study of earthquake precursors by the CWB.



# The CWB TGNS (Taiwan Geophysical Network for Seismology) consisits of:

- 150 stations of the Global Positioning System (GPS) network.
- The variation of ionospheric total electron content (TEC) monitoring, by utilizing the GPS data.
- 7 stations of the groundwater seismic observation network.
- Il stations of the geomagnetic network.
- 9 stations of the borehole strainmeter network (real-time data transmission in association with the Acdemia Sinica.)



# Continuous CWB GPS array in Taiwan



150 stations of the Global Positioning System (GPS) network.



# The GPS horizontal velocity field and crustal strain rate



- The GPS horizontal velocity field (left) and crustal strain rate (right).
- The principal strain rates are shown by arrows and color scale. Red color denotes contraction and blue color represents extension.



#### The 2009 GPS velocity field in Taiwan



Vertical-component

East-component

North-component



# The GPS crustal strain rate



- The GPS crustal strain rate based on grid (right) and Delaunay triangulation (left).
- Red color denotes contraction and blue color represents extension.



# The GPS and Seismic Strain Rate in 2004-2010



- The results of composite analyses of seismic and GPS data can be summed up to the application of earthquake potential analyses.
- It indicates that the pattern of GPS strain and seismic strain are very consistent.



#### The Geophysical (groundwater level) Observations for Earthquake Precursors Studies in Taiwan



- The 7 stations of the groundwater seismic observation network. This figure shows the layout of the groundwater station.
- Monitoring changes of the groundwater level may help us learn of about earthquake precursors.



# Monitoring of groundwater level in Taiwan



The real-time data (1 sample per second) are transmitted to Taipei headquarters through ADSL or leased line.



# The FFT and HHT of groundwater level data





### The correlation of groundwater level and GPS displacement





# The co-seismic changes of groundwater level of the 2011-03-11 Mw9.0 Japan earthquake



When the devastating earthquake occurred on March 11, 2011 in Japan, the CWB groundwater stations had observed variations of the groundwater level, the co-seismic changes brought by the seismic wave.



# The signal decomposition of groundwater level data



#### The observations of groundwater level





Earthquake sequence - foreshock





#### Earthquake sequence - mainshock





Earthquake sequence - aftershock





It is useful that if we can identify the foreshock, mainshock and aftershock of an earthquake sequence based on groundwater level variation and focal mechanism.



# Conclusions

- Up to the present time, it is very hard to predict the time of occurrence, location and magnitude of a strong earthquake. However, studies of seismic precursor are actively underway in Taiwan. We also have been working with seismologists in the world for such studies.
- A long time seismic quiescence is needed for the strain energy to be stored again up to a critical level to generate the next potential strong earthquake over the same seismic zone.
- As a significant precursor to large earthquake, pre-seismic geophysical anomalies can play an important role in earthquake prediction, possibly providing useful information on its location, time and size.



# Thank you very much.

