Hydraulic diffusivity around the Kamioka mine estimated from barometric response of pore pressure

Yasuyuki KANO and Takashi YANAGIDANI (DPRI, Kyoto Univ. Motivation of pore pressure monitoring

Pore pressure is

- Proxy of stress/strain
- Noise for crustal strain measurement rainfall
- Key to understand geophysical phenomena

e.g. Mechanics of Earthquake Mechanical coupling between rock mass and pore fluid

"Site response" of pore pressure yields

- Instrument response as strainmeter
- Estimation of poroelastic and Hydraulic property

Basic concept of poroelastisity

"Poroelastic" medium Pore pressure (-- water level)

Stress

Strain

Water content

Basic concept of poroelastisity - proxy of stress/strain

"Poroelastic" medium Pore pressure

Frequency response of pore pressure measurement

Hydroseismogram

Kamioka mine

Tidal / barometric response

Tidal: ~kPa (10⁻⁷ strain), barometric: ~70% efficiency

Estimation of poroerastic constants

Different response of 2 boreholes

	Barometric response	Tidal response	G
	$\frac{\Delta p}{\Delta b} = \frac{B}{3} \frac{\left(1 + \nu_{u}\right)}{\left(1 - \nu_{u}\right)} = \gamma$	$\frac{\Delta p}{\Delta(\varepsilon_{xx}+\varepsilon_{yy})}=-2G\gamma$	
	Pa/Pa	GPa	GPa
A borehole	0.43 ± 0.05	-10.7 ± 0.6	12.4
C borehole	0.57 ± 0.08	-18.2 ± 0.9	16.0

Shear modulus, G, can be estimated

Borehole A: fracture zone of the Mozumi-Sukenobu fault Borehole C: host rock Frequency response of pore pressure measurement

Gain (P/stress, P/strain)

Frequency dependence of barometric response

Cutoff \rightarrow c ~ 0.1m²/s

58.3 days

Hydraulic diffusivity

[Roeloffs, 1996]

Lack of response in lower frequency in K1 & K2

Lack of response in lower frequency in K1 & K2

Summary

Examination of pore pressure response yield:

Skempton's coefficient

- 0.4 ~ 0.8

Smaller shear modulus in fault zone - 12 GPa vs 16 GPa

Hydraulic diffusivity - 0.1 m²/s for Mozumi wells and K1 - Higher than 1 m²/s for K2