Analysis of strain anomalies by strainmeters in Taiwan

Jyr-Ching Hu¹, Chi-Ching Liu², Chih-Yen Chen³ ¹Department of Geosciences, NTU ²Institute of Earth Sciences, Academia Sinica ³Central Geological Survey, MOEA

Monitoring of active faults: Continuous GPS, Borehole strainmeters and Geochemical monitoring stations

≈ 10 mm/yr

R

30° CF 25 mm/yr

- Bridging the sensitivity and frequency c seismic and GPS measurements.
- Detecting aseismic deformation rate ch to earthquake

Gladwin TSM Strainmeters in Taiwan

Sacks-Evertson Starinmeter

	Туре	Method of observ ation	Start time (prior to mainsh ock)	Equivalent moment Magnitude of pre- earthquak e slip	Referen ces	
M9 Cascadia, USA and Canada January 29, 1700	CONVERG ENT MARGIN	Microfossils	Unknown	Unknown	Shennan et al. 1998	11 events, 1700-2002
Ms8.2 Tonankai, Japan December 7, 1944	CONVERG ENT MARGIN	Leveling	1 day	7.8	Sagiya 1998, Linde & Sacks 2002	36° 36° 35° 35° 35° 2 m pre-earthquake slip 4 m coseismic slip Tide gauge Water well Leveling route (Kakegawa) Borehole dilatometer
Mw8.3 Nankaido, Japan December 20, 1946	CONVERG ENT MARGIN	Tide gauges,water wells	3 days	7.9	Sato 1982, Linde & Sacks 2002	34° 34° 33° SHINOKU SHINOKU SHINOKU SHINOKU PENINGULA Tonankai UGM Nankaido Nankaido Nankaido Trough
Mw9.2 Chile May 22, 1960	CONVERG ENT MARGIN	Long-period seismometer	14–20 min	8.9–9.1	Cifuentes & Silver 1989	Bungo Slip TSS 1946 Suruga Narkal 0 50 100 32° 133° 134° 135° 136° 137° 138°
Mw9.2 Prince William Sound, Alaska March 28, 1964	CONVERG ENT MARGIN	Microfossils	10–12 years	(0.12 ± 0.13 m uplift)	Hamilton & Shennan 2005	
M7.0 Izu- Oshima- Kinkai, Japan January 14, 1978	TERREST RIAL	Leveling, groundwater levels, geodolite, tide gauges	2 years	(15 cm uplift)	Inouchi & Sato 1979, Wakita 1981	Roeloffs, 2006, Annu. Rev. Earth Planet. Sci.

T . I

11.00

Slow earthquake and great earthquakes along the Nankai trough

Pre-slip: slow slip on the subduction interface, downward extension of seismic rupture zonrs

Kakegawa leveling lines

Linde and Sacks, 2002, EPSL

Slow earthquake and great earthquakes along the Nankai trough

Recognition of significance of the strain changes with time

Detection Capability:

Noise level: order of 10 nanostrain

Strain amplitudes calculated: thousands of nanostrain

Network of Japan Meteorological Agency

Linde and Sacks, 2002, EPSL

	Туре	Type of data (distance)	Allowable moment of pre- earthquake slip	References
Mw6.9 Loma Prieta, California October 18, 1989	TERRESTRIAL	Borehole strainmeters (40 km), Campaign GPS (0–31 km)	< <i>M5.4</i>	Lisowski et al. 1993
Mw7.3 Landers, California June 28, 1992	TERRESTRIAL	Pinon Flat strainmeters, GPS (68 km), Dilatometer (100 km)	<m4.8 (pinon="" flat="" laser<br="">strainmeter)</m4.8>	Wyatt et al. 1994, Johnston et al. 1994
Mw7.6 ChiChi, Taiwan September 21, 1999	TERRESTRIAL	CGPS (10 km)	<i><m< i="">6</m<></i>	Yu et al. 2001
Mw7.1 Hector Mine, California October 16, 1999	TERRESTRIAL	CGPS (25 km), InSAR	<m6.4 (cgps),<br=""><m5 (insar)<="" td=""><td>Mellors et al. 2002</td></m5></m6.4>	Mellors et al. 2002
Mw8.4 Peru June 23, 2001	CONVERGENT MARGIN	CGPS (300 km)	< <i>M</i> 7.6	Melbourne &Webb 2002
Mw8.3 Tokachi-oki, Japan September 25, 2003	CONVERGENT MARGIN	CGPS (30 km from fault plane, 70 km from epicenter)	<m7< td=""><td>Irwan et al. 2004</td></m7<>	Irwan et al. 2004
Mw6.0 Parkfield, California September 28, 2004	TERRESTRIAL	Borehole strain (10km)	<m3.2< td=""><td>Langbein et al. 2005</td></m3.2<>	Langbein et al. 2005

Roeloffs, 2006, Annu. Rev. Earth Planet. Sci.

How well can aseismic deformation be measured?

- For ten earthquakes: credible published accounts of pre-earthquake deformation-rate changes lasting hundreds of seconds to more than a decade.
 - Although most M > 7.5 earthquakes without detectable pre-earthquake deformation:

detection threshold for aseismic deformation remains high, in that aseismic slip with moment equivalent to an M5 earthquake would in most (although not all) cases have been missed.

Motivation and Scientific Goals

- Slow earthquake triggered by typhoon
- Strain seismography (e.g., 2005 Wenchuan earthquake)
- Perturbation and permutation of principal strain in southern Taiwan
- Aseismic deformation rate changes prior to earthquake?

Coupling with environment: slow earthquake triggered by 2004 Nanmadol Typhoon

Strain anomaly at 2007/10/06: Slow EQ triggered by Typhoon Krosa?

Areal strain and shear strain changes at DARB (達邦) and TSUN (中興國小)

Strain seismography

Seismogram and strain of Wenchuan Earthquake at DARB

Areal strain change induced by Wenchuan Earthquake in TSUN 6e-07 4e-07 Areal strain 2e-07 Areal strain change induced by Wenchuan Earthquake in SANS -2e-07 1e-05 -4e-07 5e-06 06:30 06:35 06:40 06:45 06:50 06:55 Time (2008/05/12) Areal strain change induced by Wenchuan Earthquake in DARB -5e-06 1e-06 -1e-05 8e-07 -1.5e-05 6e-07 -2e-05 06:35 06:40 06:45 06:50 06:55 Time (2008/05/12) Areal strain 4e-07 Areal Strain change induced by Wenchuan Earthquake in TAIS 2e-07 4e-07 3e-07 -2e-07 2e-07 -4e-07 06:30 06:35 06:40 ^{06:45} Time (2008/05/12) 06:50 06:55 1e-07 Areal strain induced by Wenchuan Earthquake in JING 1e-06 -1e-07 8e-07 6e-07 -2e-07 4e-07 Areal strain -3e-07

2e-07

-2e-07 -4e-07 06:30

06:35

06:40

06:45

Time (2008/05/12)

06:50

06:55

06:50

06:55

06:45

06:40

Areal strain

Areal strain

-4e-07 06:30

06:35

Time (2008/05/12)

Areal strain and water head changes

Environmental parameters: Coupling of Groundwater Level

Environmental parameters: Coupling of Strain and Groundwater Level

TAIS CH3 Strain Response of Waterlevel

Environmental parameters: Coupling of Strain and Groundwater Level

1m of groundwater level induces about 5 micorstrain change

Summary

Site	installed depth (m)	head before(m)	head after (m)	induced head (m)	induced strain (μ strain)
JING	59.6	59.299	59.277	-0.022	+0.05
SANS	68.3	68.054	68.051	-0.003	-4
BMMT	155	145.65	145.63	-0.02	-0.2
LMMT	135	129.52	129.51	-0.01	-
CINT	75	62.153	62.245	0.092	+0.2
TAIS	180	41.721	41.765	0.044	+0.01
TSUN	159.3	78.219	78.199	-0.02	+0.1
DARB	150	58.580	58.586	0.06	+0.05

How could seismic train induce permanent (step-like) deformation ?

- Instrumental problem?
- Remote-triggering and reactivation of local fault?
- Poroelastic effects?

Permutation of principal strain

Jiasian earthquake: M_L 6.4, March 4, 2010

Possible precursory pre-slip event observed from borehole

Modeling of pre-slip and coseismic events

Coseismic-induced areal strain (exx+eyy) change

Pre-slip areal strain change

Prospect: Cooperation with GSJ, AIST Active faults and Earthquake Research Center

Coupling with environmental parameters and calibration

Fault activity

monitoring

Strain seismography

Can aseismic deformation rate changes prior to earthquake be detected in Taiwan? earthquake

Permutation of principal strain