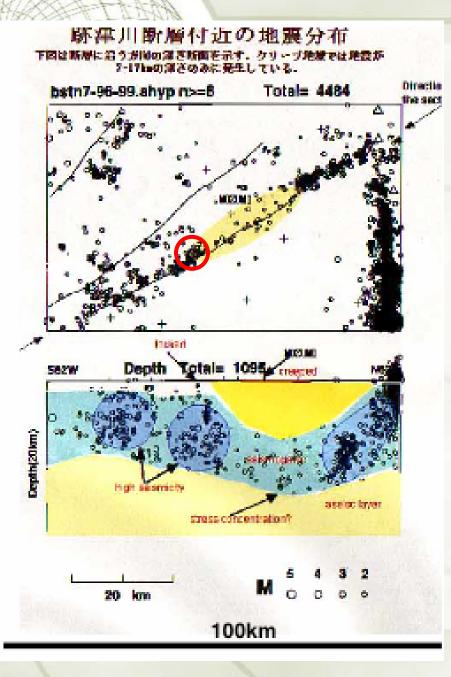

Chemical monitoring of the Atotsugawa Fault zone by using new designed QMS

Crustal Fluid Research Group (Tokyo University)

Members in Crustal Fluid Research Group

Hidemi Tanaka (TU) Operation Manager Fumiaki Tsunomori (TU) Technical Leader Masaki Murakami (KU) Technical Leader Masaaki Sugimoto (TU) Master 2nd Student Koji Shimada (JAEA) Evaluator

Seismicity in North-Western part of Japan



 \star Seismicity in one year at NW Japan.

★Dense seismic events around volcanoes.

★Linear arrangements of micro sismicity along the Atotsugawa fault.

★Evidence showing Atotsugawa fault is an active fault.

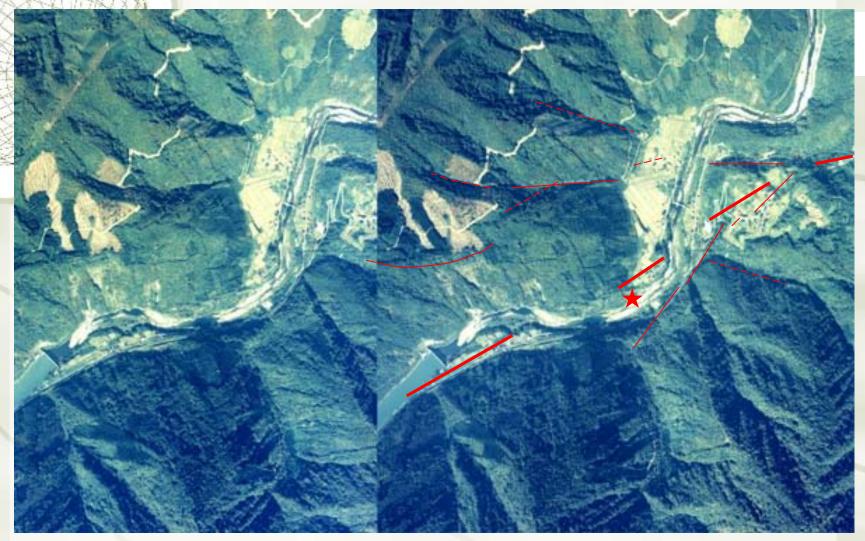
Characteristics of seismicity along the Atotsugawa Fault

(1) ENE - WSW trending right-lateral, active fault in NW Japan. Many micro-earthquakes along the fault

(2) Heterogeneous distribution along the fault.

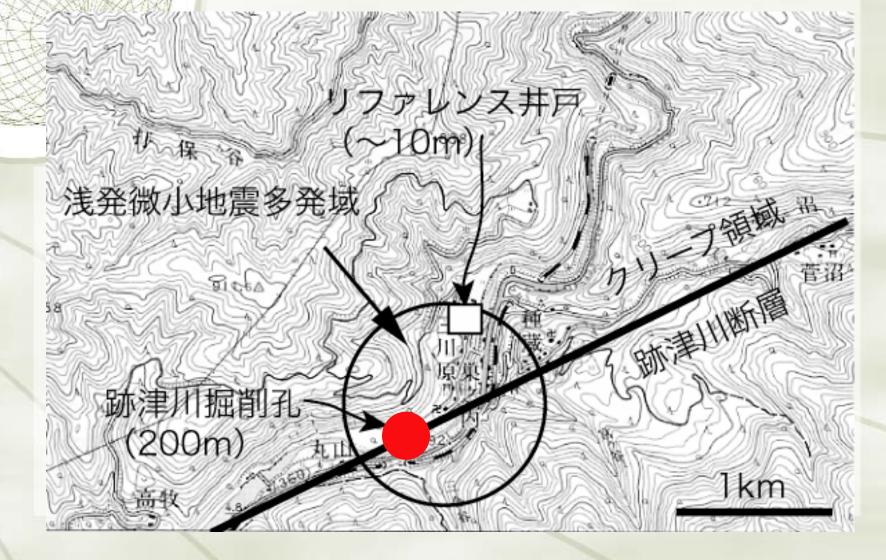
(3) Dense micro seismicity at both ends of less micro seismicity region, which are characterized by sallower (< 5 km) focal depth.

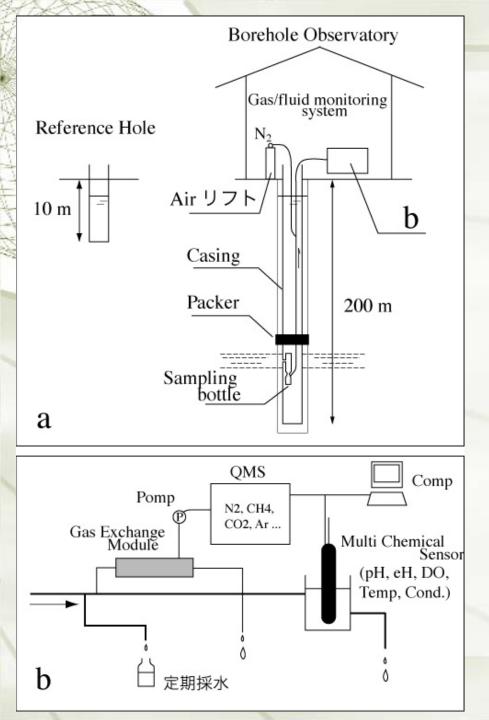
Characteristics of trace of the Atotsugawa Fault at the dense micro seismicity region

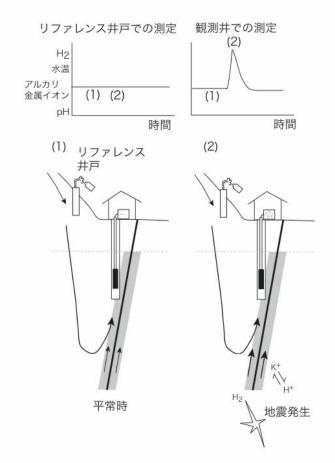

Dense micro seismicity region

Complicated branching of the fault in this region

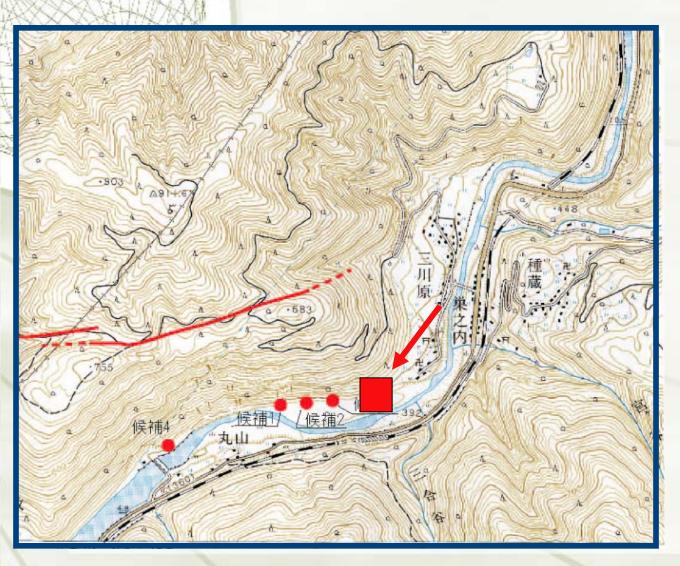
→ Barrier


5 km


Stereo projection of complicated fault trace


Distribution of lineaments (Red bold line; Atotsugawa faults)

Borehole penetrating Atotsugawa Fault at dense micro-seismicity region (2002 - 2005)



Purpose of penetration of the Active fault

Monitoring of fluid path Chemical Reaction by seismic slip

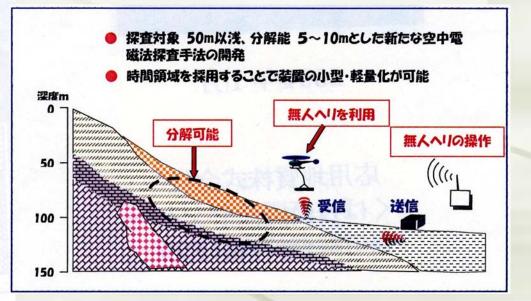
Candidates of borehole sites

Several candidates for borehole sites

More precise data for fault trace were required.

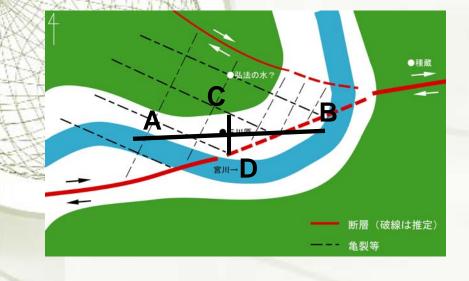
But How?

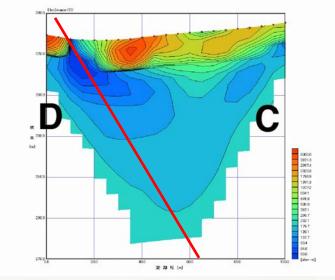
OYO mini-Borne System

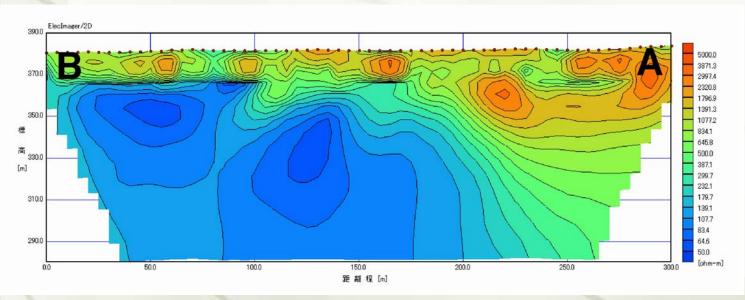

2004年1月

応用地質株式会社 つくば技術開発センター 空中探査技術研究所

Air-borne Electromagnetic exploration


Determination of the best point for penetration to the fault zone


Abundant fluid in fault zone ↓ Lower resistivity in fault zone Higher resistivity in host rock

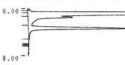


Results of Electromagnetic

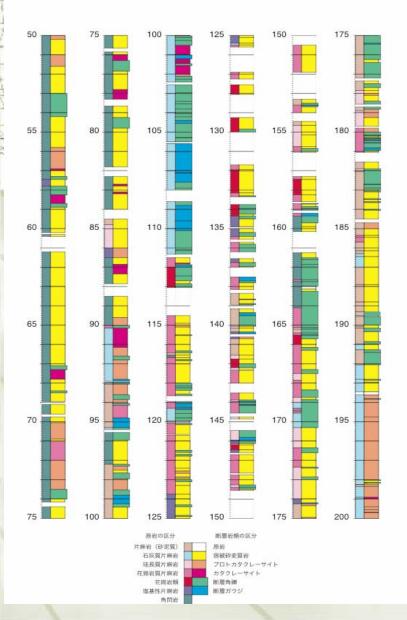
exploration

Exact fault trace was confirmed!!

Drilling Rig



Gas Sampling from drill-core and gas composition analysis



Nume:CO2ETC-842 17:16 DEC. 20,2004 Sample:001 ATTN:8 POSI:0

Conc.	Level:0	Calc.Me	thod:0(Ares)	x ?	PA:1.00000	PB:1.00000
NO.	NAME	RT	AREA	MARK	CONC	HEIGHT
1		0.144	7030	M	0.0052	608
2		0.581	47688100	M	42.3931	7059037
3		0.773	63815500	H H	55.7298	7001019
4		1.498	345378	H	0.3070	11955
5		3.912	631346	М	0.5612	27025
123456789		4.229	115	T	1.03547E-04	35
7		4.784	59	T	5.29113E-05	24
8		4.869	40	т	3.555852-05	22
9		5.029	377	T	3.35389E-04	53
10		5.158	285		2.54500E-04	55
11		5.925	275	M	2.45212E-04	29
12		6.010	177	м	1.58165E-04	36
13		6.128	319	M	2.83900E-04	52
14		6.213	371	M	3.29984E-04	45
15		6.416	244		2.17334E-04	38
16		6.810	149		1.32552E-04	2.4
17		7.077	116		1.03262E-04	17.
18		7.535	180		1.50725E-04	22
19		7.802	102		9.07457E-05	18
т	OTAL		112490171		100.0000	14100121

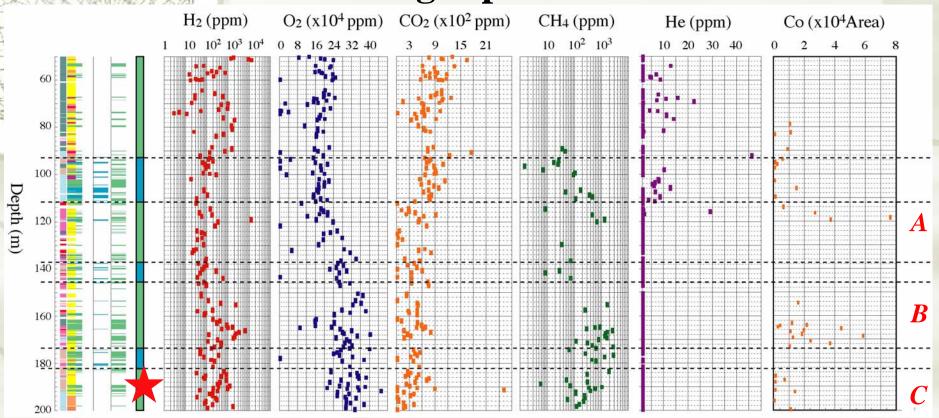
Precise but complicated

Profile analysis of the Atotsugawa Fault zone

Classification of fault rocks from 50 m to 200 m depth

consolidated / un-consolidated
contents of fragment
< 30 % or > 30%

	Consolidated	Un-consolidated			
Fragment > 30%	Cataclasite	Fault breccia			
Fragment < 30%	Proto cataclasite	Fault gouge			


Simplification of fault zone architecture

				8				
	8	8	8			8	d	
	75	70	70	70	3	70	damage zone	
	8	8	8	5	8	5	ō	
	8	8	8	8	8	8		
		100	100	8	18	tap	fault	
				110	di.1		fault core	
	110	110	110			110	۵.	
	12	120	120	120	120	120	damage zone	
	130	8	8	180		130	ne	
	¥	10	140	ž	ŝ	10	fault core	
	15	15	150	150	150	155	ē	
	ē	160	160	15	18	160	damage zone	
				170	12		e zone	
	170	170	570			170	fault	
	8	18	18	160	1HO	180	core di	
	8	18	18	190	198 1	Ť	fault core damage zone	
	200	250	250	200	200	20	ā	
	\langle	N	J		T			
2m 以内の さらに 4m 2m 以内の ものを結合 以内のもの ものを結合 を結合								
ものを結合を結合								

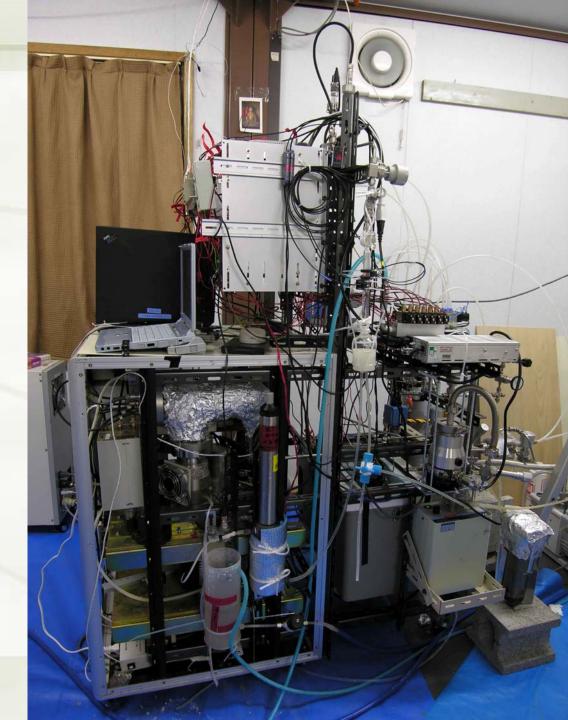
Determination of fault core

- (1) Dense development of fault gouge zone (> 1 layer / 2m) is regarded as minor fault core.
- (2) Neighboring minor fault cores are within 4 m, they are regarded as single major fault core.
- (3) The zones between the major fault cores are damage zone.

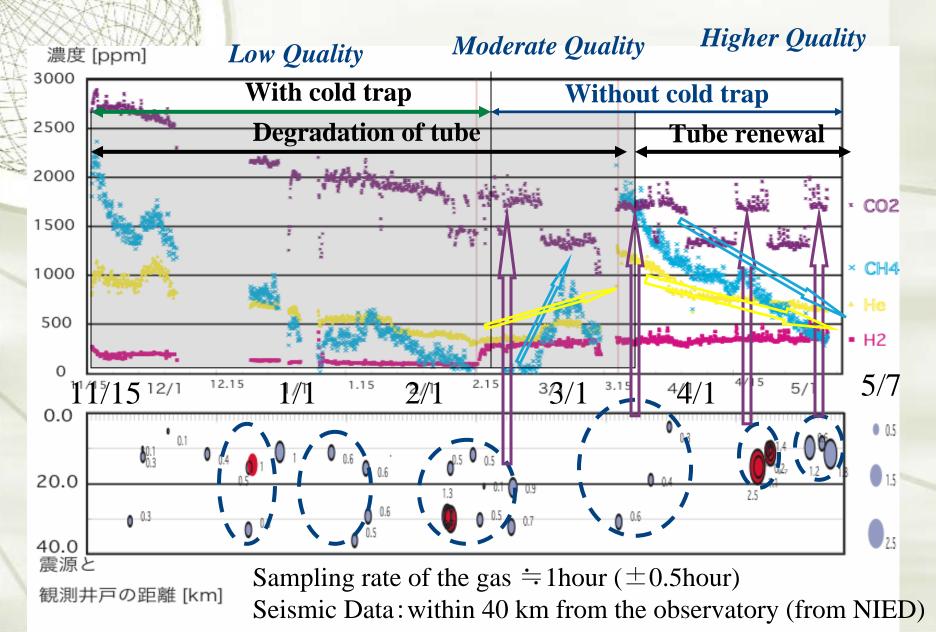
Comparison between Fault zone architecture and gas profile

	Na	NH4	к	Mg	Ca	CI	NO3	SO4	HCO3	δD
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%0
弘法清水	2.1	0.0	1.0	1.4	42.1	2.1	3.1	4.7	129.9	-73
宮川	3.3	0.0	1.5	1.0	15.2	2.3	0.3	3.9	53.2	-69
観測井戸	333.1	0.0	4.5	4.2	14.9	199.2	0.0	3.5	610.8	-79

Development of Fluid Monitoring System (2004 - 2006 1st and 2nd generation)

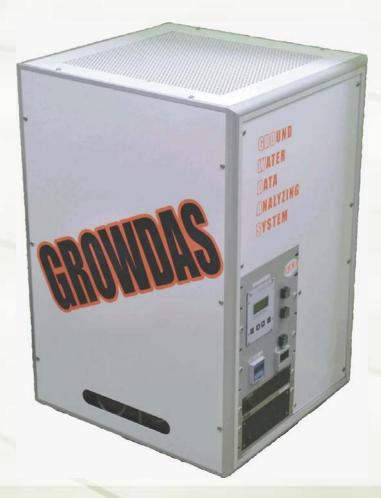

Development of Fluid Monitoring System (2007 - 2009 3rd generation)

★Smaller the system than 2nd generation machine (but ugly...)


★More stable and precise measurement

★Reduction of noise and error

Pat.No. 2006-001295


An example of unstable data acquisition from 1st to 3rd generations of our QMS

4_{th} generation Fluid monitoring system

Ground Water Data Analyzing System

GROWDAS

Full-automatic gas purification procedure is implemented!!

48 steps sequence for gas purification

