Creeping distribution on the Longitudinal valley fault at Yuli area estimated by precise leveling survey, Southeast Taiwan 2

Masayuki Murase (Nihon Univ.), Nobuhisa Matta (Nagoya Univ.), Kazuhiro Ozawa (Nagoya Univ.), Jui-Jen Lin (Academia Sinica), Matsumura Yoshihiro (Nagoya Univ.), Hsien-Hsing Hsieh (NCU), Hui-Yuan Fang (Academia Sinica), Wei-Fang Sun (Academia Sinica), Wen-shan Chen (NTU), Cheng-Horng Lin (Academia Sinica), Naoji Koizumi (AIST)

安通温泉飯店 (2010.8.12)
1. Introduction of Longitudinal valley fault
2. Precise leveling survey in Yuli area
3. preliminary result of modeling
Longitudinal valley fault (台東縱谷斷層)

collision boundary between the Eurasian plate and Philippine sea plate.

high deformation rate

Shyu et al., 2007
Deformation of Longitudinal valley fault (North)

GPS 1992–1999

Horizontal deformation projected perpendicular to the fault:

Smooth curve

Fault at north part is rocked and accumulate strain.
Deformation of Longitudinal valley fault (South)

Horizontal deformation projected perpendicular to the fault:

Drastic change near the fault

Fault at south part is creeping and don’t accumulate strain.
Purpose of our research

Difference of deformation patterns between north and south.

<table>
<thead>
<tr>
<th>South (Creep)</th>
<th>Central (transition zone)</th>
<th>North (Rock)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No significant asperity</td>
<td>?</td>
<td>Asperity</td>
</tr>
</tbody>
</table>

Next step, the deformation of central part should become clear.

Leveling survey and modeling of creep distribution in the central part.

The understanding of transition zone may give important information to understand what the cause of the fault creep in south part is.
Leveling survey in Yuli area

- **Yuli line (since 2008)**
- **Chike-shan line (since 2010)**
- **Dongli line (since 2010)**
- **Fuli line (since 2010)**
Leveling survey at Yuli line

- about 30km leveling route
- dense leveling network (The installation interval of benchmarks near the fault area is about 100 m.)
Closing error

Leveling route was measured two times for checking the observation error.

Closing error referred to BM90

Maximum of about 2.2mm

We detected vertical deformation with high accuracy.
Projection on fault perpendicular

Deformation (2008-2009)

Deformation is projected to fault perpendicular direction

↑ the linear distance along the fault perpendicular direction from west end of the leveling line.
Vertical deformation

About 3.0 cm uplift just close the fault.

Two peaks of the deformation patterns of 2008-2009 and 2009-2010 are almost same.
Yu et al. (2001) made leveling in 11 years and show the steady creep with constant rate. Our result is consistent with the result of Yu et al. (2001).
Leveling survey at Dongli line (東里線)

We extend to fault perpendicular direction by 5km in 2010.

Next year, we will show you a result!
We note the spatial distribution of the tectonic melange.

Tectonic melange: mixture of rock materials fractured by tectonic movement.

Tectonic melange is exposed on the surface of the southern half of the fault.

Yuli is northern margin of the tectonic melange.

Creeping area corresponds with the spatial distribution of the melange.

Tectonic melange is candidate of the cause of the creeping.
Leveling survey at Chike-shan line

Tectinic melange is candidate of the cause of the creeping.

In order to ensure our hypothesis, we established new leveling routes near Chike-shan (赤科山), north part of Yuli, and surveyed it in August 2010.
Leveling survey at Chike-shan line (赤科山線)

5 km leveling route.

About 5km north from northern margin of the Tectonic melange

Next year, we will show you a result!
Dr. Matta checked the deformation in this area using the photogrammetric method.

Next year, He will compare it with leveling result.
We will have good spatial image of deformation in central part.
We adopted a two-dimensional reverse fault model.

Fault parameters over 200 m depth were estimated using Genetic Algorithm.
Two faults were supposed.

Fault parameters over 200 m depth were estimated.
We assumed four types of fault model.

We determined best model based on Akaike’s information criteria (AIC).

AIC values

<table>
<thead>
<tr>
<th>Faults</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>478</td>
</tr>
<tr>
<td>4</td>
<td>470</td>
</tr>
<tr>
<td>5</td>
<td>397</td>
</tr>
<tr>
<td>6</td>
<td>605</td>
</tr>
</tbody>
</table>

Best model

5 faults model is selected as optimal model by AIC
Optimal model

Creep distribution shows complex pattern to explain the two peaks of the deformation.

Depth of the fault was estimated to be 7.5 km.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Width (m)</th>
<th>Dip angle (degree)</th>
<th>Dip slip (mm/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fault1</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>fault2</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>fault3</td>
<td>500</td>
<td>-55</td>
<td>42</td>
</tr>
<tr>
<td>fault4</td>
<td>2500</td>
<td>-85</td>
<td>9</td>
</tr>
<tr>
<td>fault5</td>
<td>4500</td>
<td>-75</td>
<td>71</td>
</tr>
</tbody>
</table>
Geometry of fault and micro-earthquakes

Creep fault was estimated inactive part of seismisity. Central weather bureau
Comparison with P-wave tomography

- Low P velocity zone shallower than 10km (Wu et al., 2007)
- Creeping area estimated the leveling is shallower than 7.5km.

Creep area may be composed of water rich and soft objects. One possibility of the object is the tectonic melange.
Interpretation of complex creep distribution

South(Creep)

- No significant asperity

Central

- Some small asperities may exist in the central part.

North(Rock)

- Asperity

The parts with small amount of the creep may mean small asperities.
Summary

- Four leveling routes are established in Yuli area.
- The vertical deformation of about 3cm/year were detected by the precise leveling survey in the period from 2008 to 2010.
- The two-dimensional model with five reverse faults were estimated as a optimal model.
- Creeping area is estimated to be shallower than 7.5 km.
- Some small asperities may exist in the central part.