A Mechanism of Radon Concentration Decline Prior to 1978 Izu-Oshima-Kinkai Earthquake

Tsunomori F. (UT) and Kuo M.C.T. (NCKU)

2003 Cheng Kung Earthquake

1978 Izu-Oshima-Kinkai Earthquake

Objectives

- Possible scenarios of radon concentration change in groundwater are presented.
- Radon concentration decline mechanisms are discussed.
- In this talk, a gas partitioning model is focused for a possible mechanism to explain the 1978 Izu-Oshima-Kinkai Earthquake.

1978 Izu-Oshima-Kinkai Earthquake

Strain Records in Izu Peninsula

Radon Concentration Decline

Radon from Rocks

• ²²²Rn is generated by α decay of ²²⁶Ra existing in rock subsurface.

- Radon emanation power governing the amount of radon gas released from a rock is regarded as constant because the half-life of ²²⁶Ra is 1600ys.
- The radon supply is proportional to surface area of a rock.

Radon in Aquifer

• Aquifer has many fractures retaining groundwater.

Effective Porosity

$$\phi_{e} = \frac{V_{p,all} - V_{p,stag}}{V_{t}} = \frac{V_{p,flow}}{V_{t}}$$

- Radon is supplied from fracture surfaces contacting with groundwater.
- The radon supply is proportional to surface area of cracks *s*.

Radon Supply into Groundwater

- In a fractured aquifer
 - Radon emanation power E is constant.
 - Radon supply is proportional to surface area *s*.
- Radon generation rate from crack surfaces into pore volume is written as,

 $R \propto ES$

Radon Concentration

Number of radon is written as,

$$\frac{d}{dt}N = R - \frac{1}{\tau}N\tag{1}$$

- R : Radon generation rate in pore space (Bq s⁻¹)
- au : Decay time of radon (s)

✓ Groundwater flow is stable.
 ✓ Rn diffusion coefficient is same as that in normal water.

Under the steady state,

$$N_0 = \tau R \tag{3}$$

$$R \rightarrow R' \text{ at } t=0,$$

 $N = (N_0 - \tau R') \exp\left(-\frac{t}{\tau}\right) + \tau R'$ (4)

Radon Decline

$$N = \tau R = \tau ES$$

$$C = \frac{N}{V_p} = \tau E \frac{S}{V_p}$$

 τ : Decay time of radon (s)

- R : Radon generation rate in pore space (Bq s⁻¹)
- E : Radon emanation power (Bq m⁻² s⁻¹)
- S : Effective surface area (m²)

 V_p : Effective pore volume (m³)

Decrease of a radon concentration can be induced by S to be decreased, V_p to be increased, or S/V_p ratio to be decreased.

Scenarios for Pore Volume Change

• Without increase of surface area

No additional fracture is generated.

• With increase of surface area

New fractures are generated.

Possible Cases

• Dilation rate of rock mass ≤ Recharge rate

All cracks are filled with water.

• Dilation rate of rock mass > Recharge rate

Gas phase is produced in new cracks.

Gas-Liquid Partitioning Model

Rn concentration in groundwater declines

Gas phase is generated by pore volume increase because of new crack generation.

Radon gas must move to gas phase according to Henry's law.

Gas Partitioning Experiment

- Henry's coefficient depends on salinity and temperature.
- In order to get Henry's coefficient of groundwater of the SKE well...
 - Groundwater was sampled at SKE in a glass vial with a Teflon-lined septum.
 - Five levels of head space volumes (0, 9, 17, 26 and 34 %) were investigated.
 - Radon concentration remaining in water was measured in scintillation counter with a mineral-oil based scintillation cocktail.

Groundwater Sampling

Scintillation Counter Perkin-Elmer Tri-Carb 2900TR

Mineral-Oil Based Scintillation Cocktail
 – 6NE9571 (Wadach, J. B, 1985)

Results of Radon Partitioning

Dilation Evaluated by Radon Anomaly

Wakita et al., 1988

The 3.5 % gas phase volume was induced in pore space by volumetric strain change before the earthquake.

Conclusions

- Three possible scenarios have been presented as radon concentration decline mechanism.
 (1)simple dilation, (2)dilation with water-filled cracks and (3)dilation with gas-rich cracks. In this talk, the last model has been discussed.
- Henry's coefficient of SKE groundwater is 2.6.
- A gas-liquid partitioning experiment has revealed that the radon concentration decline before the 1978 Izu-Oshima-Kinkai Earthquake can be explained by 3.5 % gas phase generation in pore volume.

1995 Kobe Earthquake

1995 Kobe Earthquake

NW-101 Radon Counter

- ZnS(Ag) Scintillator
- Background noise is 20 Bq/m³

Geology around SKE

Koyama, 1982

Uranium Decay Series

	Element	Decay	Half Life	Energy /MeV
1	²³⁸ U	α	4.468x10 ⁹ y	
2	²³⁴ Th	β-	24.10 d	
3	^{234m} Pa	β-	1.17 m	
4	²³⁴ U	α	2.455x10⁵ y	
5	²³⁰ Th	α	7.538x10⁴ y	
6	²²⁶ Ra	α	1.600x10 ³ y	
7	²²² Rn	α	3.824 d	
8	²¹⁸ Po (RaA)	α	3.10 m	
9	²¹⁴ Pb (RaB)	β-	26.8 m	
10	²¹⁴ Bi (RaC)	β-	19.9 m	
11	²¹⁴ Po (RaC')	α	1.643x10 ⁻⁴ s	
12	²¹⁰ Pb (RaD)	β-	22.3 у	
13	²¹⁰ Bi (RaE)	β-	5.013 d	
14	²¹⁰ Po (RaF)	α	138.4 d	
15	²⁰⁶ Pb (RaG)		8	

Radon Conc. and Generation Rate

Without pore volume change

au : 4.77 x 10⁵ (s) R : 2.10 x 10⁻² (Bq s⁻¹) N_0 : 10000 (Bq)

Radon Conc. and Volumetric Strain

1978 Izu-Oshima-Kinkai Earthquake

10

Affine Transform

r

$$V_t = a^3 \qquad V_p = \frac{4}{3}\pi r^3 \qquad S_p = 4\pi r^2$$
$$C = \frac{ES_p}{V_p} = 3E\frac{1}{r}$$

$$s_v = \frac{V_t - V_t'}{V_t} \Longrightarrow s_v = 1 - f^3$$

$$V_t' = f^3 a^3$$
 $V_p' = f^3 \frac{4}{3} \pi r^3$ $S_p' = f^2 4 \pi r^2$

$$C' = \frac{ES_{p'}}{V_{p'}} = 3E\frac{1}{r}\frac{1}{f} = C\frac{1}{f}$$

Groundwater Flow

	Retention Time
Ocean	10 ³ y
Glacier	10 ¹ ~ 10 ² y
Snow	2 ~ 6 m
Soil	1 ~ 2 m
Shallow Aquifer	10 ² y
Deep Aquifer	10 ⁴ y
Lake, Pond	10 ¹ ~ 10 ² y
River	10 ⁰ m
Air	10 ¹ d

	Size	Permeability [m/s]
Cray	< 1/256 mm	10 ⁻¹³ ~ 10 ⁻¹¹
Silt	< 1/16 mm	10 ⁻¹¹ ~ 10 ⁻⁷
Sand	< 2mm	10 ⁻⁷ ~ 10 ⁻⁴
Gravel	> 2mm	10 ⁻⁴ ~ 10 ⁻²

Volumetric Strain at Ajiro

Maximum volumetric strain change recorded at Ajiro was about 3 ppm.

Parameters for Radon

Production Rate of ²²² Rn in Pore Space	1.14 x 10⁻⁵ kBqm⁻³s⁻¹	
Henry's Constant	4.4	Wilhelm et al. (1977)
Solid–Water Partitioning Coefficient	1.4 x 10 ⁻⁵ m ³ kg ⁻¹	Nazaroff (1992)
Diffusion Coefficient	~ 10 ⁹ m ² s ⁻¹	
Half-life	3.3 x 10⁵ s	
Boiling Temperature	211.3 K	
Melting Temperature	202 K	
Solubility	22 cm ³ /100gH ₂ O	20ºC, 1atm
Recoil Length	20 ~ 70 nm	

Radon Distribution Coefficient

1978 Izu-Oshima-Kinkai Earthquake

Wakita, 1996

Upheaval Pattern

Fig. 1. Locality map. The upheaval pattern after the Geographical Survey Institute. Black circles denote locations of observation wells.
TOK: Tokunaga-minami, HIM: Himenoyu, TSU: Tsukigase.

Takahashi, 1977

Emanation Power and Grain Size

