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Distribution of hypocenters of mainshock and 
aftershocks for the Noto Earthquake 2007

(From the web-site of the ERI of the University of Tokyo)

Occurrence of inland earthquakes

Rock deformation under the 
brittle-plastic transition is 
important to understand the 
earthquake process.

Exploring exhumed fault zones Exploring exhumed fault zones 
for whichfor which crustal sections 
including the brittleincluding the brittle––plastic plastic 
transition are exposed at the transition are exposed at the 
surface is an important surface is an important 
strategy in understanding fault strategy in understanding fault 
behaviour.behaviour.
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Mylonite with sinistral 
sense of shear
The area where small 
shear zones are 
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Fault rocks 
(in the seismogenic zone)

Earthquake

Hypocenter of 
large earthquake 
along active faults

Cataclasite (cohesive：MTL)

Fault gouge (incohesive：MTL)



Fault rocks 
(under the temperatures above 300℃)

Mylonite Zone (Deformed plastically)

Deformed continuously

Plastically deformed rocks (Mylonite)Plastically deformed rocks (Mylonite)

Optical microphotograph of 
undeformed granite

Optical micrograph of Granitic 
mylonite

Small mylonite zone

To understand inland earthquakes Boundary depth of cataclasite 
and mylonite 



Cataclasite along the HFZCataclasite along the HFZ

50 km
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K-Ar 98.1±2.5 Ma 
(Hornblende)

The activity had 
ceased by 

98.1±2.5 Ma ．

A repeating of 
earthquakes 

along the 
cataclasite zone. 

• The assemblage of altered minerals in the cataclasite indicates 
that the cataclasite zone was formed at temperatures above 
220 °C  



Two types of Mylonite      Microstructures A and B
• Microstructure A

Fault Rocks along the HFZ (Mylonite)Fault Rocks along the HFZ (Mylonite)

Fine-Grained Matrix

Pole Figures of quartz <c>

Lower temperature, 
faster strain rate, 

or 
lower water activity. 

K-f Pl

Q

(Lineation)

(Pole to Foliation)

(Lineation)

(Pole to Foliation)

Two feldspar thermometry (Whitney & 

Stormer, 1977)

300～360 ºC



• Microstructure B

Higher temperature, 
slower strain rate, 

or 
higher water activity. 

Two feldspar thermometry

360 ～500 ºC
Pole Figures of quartz <c>

(Lineation)

(Pole to Foliation)



Outcrop extent of two types mylonite

The outcrop extent of 
microstructure A

Northern Area

Southern Area

Central Area



Association between fracturing 
and plastic deformation 

1 cm1 cm1 cm

Crush zone

subsequently plastically 
deformed fragment

Outcrop extent of 
microstructure A

Deformed under the 
condition of brittle-plastic 

transiton

Final localised zones of 
plastic flow



T=350～500℃ Brittle-plastic transition Brittle Regime

History of displacement along the HFZ



Cross-section of deformation styles 



Deformation in the outcrop extent of 
microstructure A (Dynamic recrystallization of feldspar)

11mm

0.5 0.5 mm

Localisation of deformation to the outcrop extent of microstructure A
Strain weakening

QzQz

PlPl
KfKf



Crystallographic Orientation 
of Feldspar
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Pole Figures
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Low albite (-1)
Complete data set
201 data points
Equal Area projection
Upper hemispheres

Half width:10 °

Cluster size:0 °

Densities (mud):
Min= 0.00, Max= 9.65
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Equal Area projection

Upper hemispheres

Crystallographic 
Orientations are 
random

Deformation by 
superplasticity(Lineation)

(Pole to Foliation)



• Ductile Fracture
Fracturing following the subjection 
of material to large plastic strain

Nucleation, growth and 
interlinkage of cavities

Association between fracturing 
and plastic deformation

1 cm1 cm1 cm

Crush zone

Cavitation during superplastic deformation of alumina 
(Kottada and Chokshi, 2000; Chokshi, 2005)



Plastic deformation and fracturing of 
fine-grained feldspar (Shigematsu et al., 2004)

Shear zone including a crush 
zone along a shear band

Fractures were nucleated during plastic deformation in 
the outcrop extent of microstructure A

Fine grained feldspar within the shear band 

Secondary electron image of fine-grained feldspar．Cavities 
along grain boundaries are connected to form an intergranular 

fracture (arrows).

Fracturing during plastic flow of fine-grained feldspar



Ductile fracture of fine-grained 
feldspar experimentally reproduced

Rybacki, et al., 2008 GRL35, L04304, doi:10.1029/2007GL032478



Large earthquakes along the HFZ

Outcrop extent of Microstructure A: Nucleation of fracture due 
to ductile fracture

Nuclei of fractures

Stress concentration due to 
the different displacement

Large Earthquakes

Restricted plastic displacement in the outcrop extent of 
Microstructure A:                  Stress concentration



Summary

Fault rocks formed in the B-D-T was exposed in a limited region 
along the HFZ, with a length of 6 km. Displacement by plastic 
flow occurred only in this restricted regions at the depth in the 
crust where P-T conditions were those of the brittle–plastic 
transition.
The localisation of plastic flow to the region with a length of 6 
km possibly resulted from strain weakening accompanied by 
the dynamic recrystallization of feldspar.
The extreme strain localisation led to ductile fracturing of highly 
deformed fine-grained feldspar. It is likely that numerous 
fractures were nucleated in these rocks due to ductile fracture.
Heterogeneous plastic displacement resulted in a significant 
stress concentration. Interaction between this stress 
concentration and fractures nucleated via ductile fracture 
possibly promoted the nucleation of large earthquakes.
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