

Heterogeneous localisation of plastic flow in the deepest part of a seismogenic fault: insight from the Hatagawa Fault Zone, NE Japan

Norio Shigematsu (GSJ, AIST)

Occurrence of inland earthquakes

Hatagawa Fault Zone

Cataclasite (cohesive:MTL)

To understand inland earthquakes Geological Survey of Japan, AIST Boundary depth of cataclasite and mylonite

Cataclasite along the HFZ

 The assemblage of altered minerals in the cataclasite indicates that the cataclasite zone was formed at temperatures above 220 °C

Fault Rocks along the HFZ (Mylonite)

Two types of Mylonite Microstructures A and B Microstructure A

Quartz

K-Feldspar Porphyroclast

Fine-Grained Matrix

Lower temperature, faster strain rate, or lower water activity. Two feldspar thermometry (Whitney & Stormer, 1977) 300~360 °C

Microstructure B

Quartz

K-Feldspar Porphyroclast

Fine-Grained Matrix

Higher temperature, slower strain rate, or higher water activity. Two feldspar thermometry 360 ~500 °C

Outcrop extent of two types mylonite

The outcrop extent of microstructure A

Geological Surv₽¥350≈500°C

Brittle-plastic transition

Brittle Regime

Cross-section of deformation styles

P-T conditions typically associated with the brittle-plastic transition

Strain weakening

Localisation of deformation to the outcrop extent of microstructure A Geological Survey of Japan, AIST

Crystallographic Orientation of Feldspar

Pole Figures	
[noy 900. cpr]	
Low albite (-1)	
Complete data set	
201 data points	
Equal Area projection	
Upper hemispheres	
Half width:10 °	
Cluster size:0 °	
Densities (mud):	
Min= 0.00, Max= 9.65	

Crystallographic **Orientations** are random

Deformation by superplasticity

Association between fracturing and plastic deformation

• Ductile Fracture

Fracturing following the subjection of material to large plastic strain

Nucleation, growth and interlinkage of cavities

Cavitation during superplastic deformation of alumina Geological Survey of Japan, ALS (Kottada and Chokshi, 2000; Chokshi, 2005)

Plastic deformation and fracturing of fine-grained feldspar (Shigematsu et al., 2004)

Fine grained feldspar within the shear band

Shear zone including a crush zone along a shear band

Secondary electron image of fine-grained feldspar. Cavities along grain boundaries are connected to form an intergranular fracture (arrows).

Fracturing during plastic flow of fine-grained feldspar

Fractures were nucleated during plastic deformation in the outcrop extent of microstructure A

Ductile fracture of fine-grained feldspar experimentally reproduced

Rybacki, et al., 2008 GRL35, L04304, doi:10.1029/2007GL032478

Large earthquakes along the HFZ

P-T conditions typically associated with the brittle-plastic transition

Summary

- Fault rocks formed in the B-D-T was exposed in a limited region along the HFZ, with a length of 6 km. Displacement by plastic flow occurred only in this restricted regions at the depth in the crust where P-T conditions were those of the brittle-plastic transition.
- The localisation of plastic flow to the region with a length of 6 km possibly resulted from strain weakening accompanied by the dynamic recrystallization of feldspar.
- The extreme strain localisation led to ductile fracturing of highly deformed fine-grained feldspar. It is likely that numerous fractures were nucleated in these rocks due to ductile fracture.
- Heterogeneous plastic displacement resulted in a significant stress concentration. Interaction between this stress concentration and fractures nucleated via ductile fracture possibly promoted the nucleation of large earthquakes.