

Disaster Prevention Research Center, National Cheng Kung University, Taiwan Tectono-Hydrology Research Group AIST The National Institute of Advanced Industrial Science and Technology

Precursory and Coseismic Groundwater Level Changes with Earthquakes of Taiwan, 2003~2004

Wen-Chi Lai¹, Chjeng-Lun Shieh¹, Kuo-Chyng Chang², Kai-Wen Kuo³,

DPRC, NCKU, Taiwan
Water Resource Agency, MOEA, Taiwan
Central Weather Bureau, MOEA, Taiwan

I. Introduction

- Tectonic Setting of Taiwan.
- Highly Seismic hazard risk.
- Advantage of the research
 - High density monitoring network for water resources
 Groundwater Monitoring
 Networks of Taiwan
 - High density <u>seismic</u> <u>monitoring network</u>.
 - High seismic activity
- Good quality observation

Taiwan Groundwater Monitoring Network (1992~2003)

• Design for water resources management

• Monitoring different aquifer in same site

Sub-Province	Site	Well
Taipei Basin	12	30
Taoyuan Tableland	5	10
Hsinchu-Miaoli Area	16	35
Choshui River Alluvial Fan	70	19 ³ , ***
Chiayi-Tainan Area	40	105
Pingtung Plain	55	132
Ilan Plain	30	45
Total	228	560

Taiwan Groundwater Monitoring Network: Detail Hydrogeological Database DPIRC

濁水溪沖積扇之地質剖面圖

Geological Cross for Choshui River Alluvial Fan

River Alluvial Fan

)地質柱狀圖 The Geological Column

Observation Network

II. Observation

DP RC

• Observation and Instruments setting

Description of observation wells

RC

Site	Location		Elevation	Depth	Screened	Geology	Wells
	Longituda	Latituda	(m)	(m)	Depth (m)		
	Longnude	Latitude					
SIP	121.071	24.831	78.86	150	132-144	Qg, Qs	3
DHR	120.561	23.688	75.41	258	222-252	Qg	3
LUJ	120.342	23.227	26.87	228	204-222	Qs, Qm	3
NBA	120.340	23.071	42.77	153	135-147	Qs	3
TWN	121.782	24.746	3.79	130	130-150	Qs, Qm	3
TLO	120.784	24.491	156.54	99	80-99	Qs	2
HUL	121.605	23.977	16.09	205	140-160	Qc	1
HRD	120.429	23.347	43.77	300	220-250	Qm, Qs	1

Qc: Quaternary conglomerate, Qg: Quaternary gravel, Qs: Quaternary sandstone, Qm: Quaternary shale and mudstone

Observation hydrograph- Central

Observation hydrograph- Southern

III. Results and Discussions

Observed coseismic events (03'~04')

Total 68 Observation, step changes (S) 21events, oscillation (O) 27 events, O+S 20 events

Catalog	Events	HUL	TWN	LUJ	NAB	HRD	DHR	TLO	SIP
2003/4/3 Tainan, M=4.9	2			S	S				
2003/6/10 Taitung, M=6.5	4			S	0		O+S		0
2003/6/17 Taitung , M=5.9	2				0				0
2003/12/10 Taitung , M=6.6	7	O+S	O+S	S		S	O+S	O+S	0
2003/12/11 Taitung, M=5.7	1				S				
2003/12/18 Taitung, M=5.8	1	0							

RC

DP

The coseismic groundwater level changes records, eastern Taiwan, Dec. 10, 2003

Estimation of the theoretic responses

- Using **Baytap-G** Program to estimate the Tidal component of observed groundwater level
- Calculate the theoretic tidal potential from GOTIC II Program
- Derived the static strain sensitivity by
 - static strain sensitivity = (tidal responses ÷ tidal potential)
- Calculate the coseismic static volumetric strain using MICAP-G program
- Derived the predicted amplitude estimated from tidal response by <u>Amp. Of Chg.= (calculated volumetric strain × strain sensitivity)</u>

Static Volumetric Strain Sensitivity

RC

	SIP	TLO	DHR	HRD	LUJ	NBA	TWN	HUL	
	Amplitude (10 ⁻⁸) [Phase Shift (degree)]								
Vol. starin by M_2 earth tide, t_e	1.35 [0]	1.35 [0]	1.37 [0]	1.38 [0]	1.38 [0]	1.38 [0]	1.35 [0]	1.37 [0]	
Vol. starin by M_2 oceanic tidal loading, \mathbf{t}_0	1.11 [-314]	2.08 [-321]	0.18 [-276]	0.14 [-283]	0.11 [-290]	0.11 [-301]	0.60 [-227]	6.10 [-184]	
Vol. starin by earth + oceanic tide, $t_t = t_e + t_o$	2.27 [-340]	3.25 [-336]	1.40 [-352]	1.42 [-355]	1.42 [-356]	1.45 [-356]	1.04 [-335]	4.73 [-185]	
M_2 amplitude of water level, t_w	5.19±0.45 [-323±24]	3.72±0.67 [-282±49]	6.17±0.60 [-339±23]	2.61±1.05 [-252±18]	2.54±0.59 [-350±34]	4.24±0.29 [-349±15]	3.93±0.27 [-272±21]	23.77±0.50 [-21±6]	
Strain sens. by M_2 tide, $Ws = \frac{t_w}{t_t} (mm/10^{-8})$	2.28	1.14	4.39	1.84	1.78	2.92	3.78	5.02	
*Negative phase s	shifts denc	ote lags.							

Comparison of the theoretic and observed responses

Feb. 9 15:14, 2004, Hulien Earthquake, (M=4.3 Depth 27.6 Km)

Discussion: Possible Mechanism of Observation in Hulien Observation Well

RC

- Effected by ocean tide
- Located on complex fault zone

Location of Hulien observation well and tidal gauge station

Comparison of Sea Level and Groundwater Level Observation

DP

Red: <u>sea level observation in Huilen Harbor (6 min)</u> Green: <u>Groundwater level observation in Huilen Observation(2 min)</u>

Summary

- Valuable information of earthquake induced Groundwater level changes derived from dense "Groundwater Monitoring <u>Networks of Taiwan</u>"
- Observed coseismic patterns can fit to poroelastic behavior, but the amplitudes are **amplify** compare to the static strain sensitivity estimated from tidal response.
- Curiously pre-seismic groundwater level changes in the pattern of tidal deviation occurred repeatedly in several local seismic events nearby the HUL.
- The wave propagation model were issued from HUL observation results.