

A Numerical Study of Effective Stress and Groundwater Level Changes in Poroelastic Aquifer under Dynamic Excitations

C. Y. Chiu*, C. L. Wang*, K. C. Hsu*, K. C. Chang**

*Department of Resources Engineering, National Cheng Kung University, Taiwan **Water Resources Agency, Ministry of Economic Affairs, Taiwan

Introduction

Mechanism

Objectives

- Modified dynamic poroelastic theory
- Numerical study
 - Sensitivity study
 - Effect of boundary condition
 - Stratum layer analysis
 - Case Study
 - Choshui River fan

The equations...

➡ Poroelasticity: ■ Biot(1941) ■ Rice & Cleary(1976) ■ Roeloffs(1996) ➡ Equations: Law of Geometry Law of Material Constitution Law of Deformation and Flow ⇒ Problem: ■ 2D plane strain

Biot's Classical Poroelasticity

Basic Assumptions

Isotropy
Reversible process
Linear stress & strain constitution
Infinitesimal deformation
Incompressible fluid
Darcy's flow law

Biot's original equations

$$G\nabla^{2}u_{x} + \frac{G}{1-2\upsilon}\frac{\partial\varepsilon}{\partial x} - \alpha\frac{\partial p}{\partial x} = \rho\frac{\partial^{2}u_{x}}{\partial t^{2}}$$
$$G\nabla^{2}u_{y} + \frac{G}{1-2\upsilon}\frac{\partial\varepsilon}{\partial y} - \alpha\frac{\partial p}{\partial y} = \rho\frac{\partial^{2}u_{y}}{\partial t^{2}}$$
$$G\nabla^{2}u_{z} + \frac{G}{1-2\upsilon}\frac{\partial\varepsilon}{\partial z} - \alpha\frac{\partial p}{\partial z} = \rho\frac{\partial^{2}u_{z}}{\partial t^{2}}$$
$$\frac{k}{\gamma_{w}}\nabla^{2}p = \alpha\frac{\partial\varepsilon}{\partial t} + \frac{1}{Q}\frac{\partial p}{\partial t}$$

Law of infinitesimal deformation

The total strain - displacement relations in plane strain :

$$\begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} = 0 \\ \gamma_{xy} \end{cases} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \end{bmatrix} \begin{cases} u_x \\ u_y \\ u_z = \text{constant} \end{cases}$$

HILE porous materials

For homogeneous isotropic linear elastic porous materials : The total stress - strain relations in plane strain :

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{xy} \end{cases} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 \\ \nu & 1-\nu & \nu & 0 \\ \nu & \nu & 1-\nu & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} = 0 \\ \gamma_{xy} \end{bmatrix}$$

The effective stress concept :

$$\begin{cases} \sigma_{xx}^{e} \\ \sigma_{yy}^{e} \\ \sigma_{zz}^{e} \\ \tau_{xy} \end{cases} = \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{xy} \end{cases} + \alpha \begin{cases} p \\ p \\ p \\ 0 \end{cases}$$

where + stands for tension.

$$\alpha = \frac{3(\nu_u - \nu)}{B(1 + \nu_u)}$$

Governing law of deformation

The dynamic stress equations:

 $\frac{\partial \sigma^{e}_{xx}}{\partial x} + \frac{\partial \tau^{e}_{xy}}{\partial y} = \rho \frac{\partial^{2} u_{x}}{\partial t^{2}} + \zeta \frac{\partial u_{x}}{\partial t}$ $\frac{\partial \tau^{e}_{yx}}{\partial x} + \frac{\partial \sigma^{e}_{yy}}{\partial y} = \rho \frac{\partial^{2} u_{y}}{\partial t^{2}} + \zeta \frac{\partial u_{y}}{\partial t}$ Damping where Inertia $\sigma^{e}_{xx}, \sigma^{e}_{yy}, \tau^{e}_{xy} = \text{effective stress components (Pa = N/m^2)},$ (u_x, u_y) = displacement vector (m), $\rho = \text{mass density}(\text{kg/m}^3),$ $\zeta = \text{damping coefficient}(\text{kg/m}^3\text{s}),$

Governing law of flow

Formulation

$$V_{x} = \frac{d(u_{x})}{dt}$$

$$V_{z} = \frac{d(u_{z})}{dt}$$

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xz}}{\partial z} = \rho \frac{\partial^{2} u_{x}}{\partial t^{2}} + \zeta V_{x}$$

$$\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z} = \rho \frac{\partial^{2} u_{z}}{\partial t^{2}} + \zeta V_{z}$$

$$k \nabla^{2} h = \frac{n \beta_{f}}{\gamma_{w}} \frac{\partial h}{\partial t} + \chi \frac{\partial \varepsilon}{\partial t}$$

$$\frac{V_x}{gT_0} = \frac{\partial \left(\frac{u_x}{gT_0^2}\right)}{\partial \overline{t}}$$
$$\frac{V_z}{gT_0} = \frac{\partial \left(\frac{u_z}{gT_0^2}\right)}{\partial \overline{t}}$$
$$\frac{\partial \left(\frac{\sigma^e_{xx}}{\rho gX_0}\right)}{\partial \overline{x}} + \frac{\partial \left(\frac{\sigma_{zx}}{\rho gZ_0}\right)}{\partial \overline{z}} = \frac{\partial \left(\frac{V_x}{gT_0}\right)}{\partial \overline{t}} + \zeta \frac{V_x}{\rho g}$$
$$\frac{\partial \left(\frac{\sigma_{xz}}{\rho gX_0}\right)}{\partial \overline{x}} + \frac{\partial \left(\frac{\sigma^e_{zz}}{\rho gZ_0}\right)}{\partial \overline{z}} = \frac{\partial \left(\frac{V_z}{gT_0}\right)}{\partial \overline{t}} + \zeta \frac{V_z}{\rho g}$$
$$\frac{\partial \left(\frac{\sigma_{xz}}{\rho gX_0}\right)}{\partial \overline{x}} + \frac{\partial \left(\frac{\sigma^e_{zz}}{\rho gZ_0}\right)}{\partial \overline{z}} = \frac{\partial \left(\frac{V_z}{gT_0}\right)}{\partial \overline{t}} + \zeta \frac{V_z}{\rho g}$$
$$\frac{\partial (\overline{h})}{\partial \overline{x}^2} + A \frac{\partial (\overline{h})}{\partial \overline{z}^2} = B \frac{\partial (\overline{h})}{\partial \overline{t}} + C \frac{\partial (\varepsilon)}{\partial \overline{t}}$$

- ζ : Damping coefficient
- χ : Volumetric strain amplifying coefficient

$$A = \frac{X_0^2}{k_{xx}} \frac{k_{zz}}{Z_0^2}, \quad B = \frac{X_0^2}{k_{xx}} \frac{\gamma_w}{QT_0}, \quad C = \frac{X_0^2}{k_{xx}} \frac{\chi}{T_0H_0}$$

Excitations

A "stamp like" function is used to simulate the jiggle driving force.

The interval, Δt , is chosen to be a small quantity to simulate the impulse-type force.

The Numerical Model

Basic Input Parameters

Symbol	Sand	Clay	Unit
v: Poisson ratio	0.25	0.3	—
E: Young's coefficient	1E+8	1E+7	N/m ² (Pa)
ρ : Density	2100	1870	kg/m ³
n: Porosity	0.375	0.55	_
γ_{w} : Unit weight of water	9810	9810	N/m ³
<i>K</i> : Hydraulic conductivity	1E-4	1E-6	m/sec
β_f : Fluid compressibility	4.4E-10	4.4E-10	m ² /N (Pa ⁻¹)
ζ : Damping coefficient	1E+	kg/m ³ .s	
χ : Volumetric strain amplifying coefficient	1	_	

Sensitivity Study

- Hydraulic conductivity
 Young's modulus
 Strain amplification coefficient
 Damping coefficient
- **Complitude of Excitations**

Hydraulic Conductivity

and the second se

Young's modulus

Strain amplification coefficient

Damping coefficient

and the second se

Amplitude of Excitations

施加應力Force 大小對總應力之影響

作用力Force 大小對有效應力變化之影響

Summary of Parametric Study

Parameters	Total Stress	Effective stress	Coseismic water level	Degree of influence		
Hydraulic conductivity 1		\downarrow	1	\checkmark	***	
Poisson's ratio	1		\uparrow	\downarrow		
Young's Modulus	1		\uparrow	\downarrow	***	
Strain Amplification constant	1	1	\checkmark	1	***	
Damping coefficient	1	\downarrow	\downarrow	\downarrow	***	
Excitations	1	\uparrow	\uparrow	1	***	
Fluid compressibility	1			_	×	
Porosity	\uparrow				×	
Total density	\uparrow		_		×	

The effect of boundary condition

Permeability of boundary Drained boundary Undrained boundary Constraint of boundary Rigid boundary Movable boundary Excitations on the boundary Types of excitations

0.5

坡道式 (ramp)

邊界模式-A5 右側施加應力 0 0.5 1 脈衝式 (stamp) ►t /T0
Imp)
A 按 急 墜 式
(ramp then drop)

Stratum Analysis

Statements of the local division of the loca

•: 各水位觀測站之觀測點

Parameter	Name	Aquifer	Aquitard
Hydrology	Hydraulic conductivity (m/sec)	$k_{xx} = k_{zz} = 1e-4$	$k_{xx} = k_{zz} = 1e-7$
	Fluid compressibility(Pa ⁻¹)	$\beta_{f} = 4.4e-10$	$\beta_{f} = 4.4e-10$
	Unit weight of fluid(N/m ³)	$\gamma_{w} = 9810$	$\gamma_{w} = 9810$
Material	Porosity (-)	n =0.375	n =0.55
	Young's modulus (Pa)	E=1e8	E=1e7
	Total Density (kg/m^3)	ρ =2100	ρ =1870
	Poisson's ratio (-)	ν =0.25	ν =0.3
Dynamics	Damping constant (Pa.s/m ²) Strain amplification (-)	$\zeta = 1e+9$ $\chi = 5$	

Mode A: jiggle1 (0.05<t<0.1), $\zeta = 1e+9$ Mode B: jiggle1 (0.09<t<0.1), $\zeta = 1e+9$ Mode C: jiggle1 (0.09<t<0.1), $\zeta = 1e+8$

Calibration

-

and the second se

分析點	模式A			模式B			模式C		
(水位 觀測站)	觀測值	分析值	修正 係數	觀測值	分析值	修正 係數	觀測值	分析值	修正 係數
海園一	-0.058	0.239	-0.243	-0.058	0.090	-0.648	-0.058	0.317	-0.183
田洋一	0.413	-0.147	-2.814	0.413	-0.138	-3.002	0.413	-0.151	-2.744
芳草一	-0.043	0.438	-0.099	-0.043	0.122	-0.355	-0.043	0.692	-0.063
虎溪一	0.379	1.770	0.214	0.379	-0.046	-8.238	0.379	1.912	0.198
東河一	0.532	-0.715	-0.743	0.532	-0.716	-0.742	0.532	-0.741	-0.717
安南一	-0.229	-0.250	0.917	-0.229	-0.174	1.320	-0.229	-0.257	0.894
田洋二	-0.270	1.164	-0.232	-0.270	0.270	-1.000	-0.270	1.442	-0.187
虎尾二	-0.322	1.697	-0.190	-0.322	0.406	-0.793	-0.322	2.074	-0.155
東河二	-4.773	-1.968	2.425	-4.773	-1.970	2.424	-4.773	-2.010	2.375
虎溪三	0.848	-0.244	-3.468	0.848	-0.244	-3.468	0.848	-0.257	-3.296
田洋三	-0.363	0.521	-0.697	-0.363	0.278	-1.307	-0.363	0.493	-0.737

Conclusions

- Modified dynamic poroelastic theory
- Numerical study

Sensitivity study

Effect of boundary condition

Stratum layer analysis

■ Case Study

When my students see this picture, happy summer is about over!

