Radon Precursory Anomalies for Some Earthquakes in N-W Himalaya, India

Vivek Walia¹, Hardev Singh Virk², Tsanyao Frank Yang³, Monika Walia³, Bikramjit Singh Bajwa²

¹National Center for Research on Earthquake Engineering, Taipei, Taiwan ²Department of Physics, Guru Nanak Dev University, Amritsar, India ³Department of Geosciences, National Taiwan University, Taipei, Taiwan

LIST OF SOME SIGNIFICANT EARTHQUAKES IN INDIA AND ITS NEIGHBOURHOOD

DATE	EPICENTRE		LOCATION	MAGNITUDE	
	Lat(Deg N)	Long(Deg E)			
1819 JUN 16	23.6	68.6	KUTCH,GUJARAT	0.8	
1869 JAN 10	25	93	NEAR CACHAR, ASSAM	7.5	
1885 MAY 30	34.1	74.6	SOPOR, J&K	7.0	
1897 JUN 12	26	91	SHILLONGPLATEAU	8.7	
1905 APR 04	32.3	76.3	KANGRA, H.P	0.8	
1918 JUL 08	24.5	91.0	SRIMANGAL, ASSAM	7.6	
1930 JUL 02	25.8	90.2	DHUBRI, ASSAM	7.1	
1934JAN 15	26.6	86.8	BIHAR-NEPALBORDER	8.3	
1941 JUN 26	12.4	92.5	ANDAMAN ISLANDS	8.1	
1943 OCT 23	26.8	94.0	ASSAM	7.2	
1950 AUG 15	28.5	96.7	ARUNACHAL PRADESH-CHINA BORDER	8.5	
1956 JUL 21	23.3	70.0	ANJAR, GUJARAT	7.0	
1967 DEC 10	17.37	73.75	KOYNA, MAHARASHTRA	6.5	
1975 JAN 19	32.38	78.49	KINNAUR, HP	6.2	
1988 AUG 06	25.13	95.15	MANIPUR-MYANMAR BORDER	6.6	
1988 AUG 21	26.72	86.63	BIHAR-NEPAL BORDER	6.4	
1991 OCT 20	30.75	78.86	<u>UTTARKASHI, UP HILLS</u>	6.6	
1993 SEP 30	18.07	76.62	LATUR-OSMANABAD, MAHARASHTRA	6.3	
1997 MAY 22	23.08	80.06	JABALPUR,MP	6.0	
1999 MAR 29	30.41	79.42	<u>CHAMOLI DIST, UP</u>	6.8	
2001 JAN 26	23.40	70.28	BHUJ, GUJARAT	6.9	/

PLOT OF EARTHQUAKES (M >= 5.0) FROM IMD CATALOGUE FOR THE PERIOD FROM 1800 TO SEPT. 2001

Magnitudes:

M = 5

M = 6

M = 7

M = 8

Seismicity of Southern Asia (above magnitude 3.0 Ms)

TECTONIC MAP OF INDIA Faults active since the Quaternary period (See References) 80° 70° 100° 90° 30 30° 20° 20° 10° -10° 0* 0 70° 80° 90° 100° WWW.ASC-INDIA.ORG Subduction Boundary Spreading Centre Thrust Boundary Fracture Zone Fault or Fault Zone Active Volcano

Subsurface Soil Gases

Radon (²²²Rn)

• Helium (⁴He)

Carbon-di-oxide (CO₂)

Methane (CH₄)

What is Radon?

• A radioactive & inert gas • 7.5 times heavier than air 100 times heavier than hydrogen • Three isotopes : Radon (Rn²²²) 3.83 days Thoron (Rn²²⁰) 54.5 sec Actinon (Rn²¹⁹) 3.92 sec

What is Helium (He⁴)?

- Generated during the radioactive decay of isotopes of uranium and thorium in rocks and soil
 Highly diffusive and inert gas
 Shows the value 5.24 ppm in air
- Shows the value 5.24 ppm in air

Factors controlling emanation

Transmission Characteristics of Bedrock
Mineralogical Effects
Uranium/Thorium Concentration
Carrier Fluids
Weather and Soil Types

• Gases measured in soils can be strongly disturbed by environmental variables like atmospheric pressure, soil temperature, rainfall, soil moisture etc.

Emanometry Technique

Soil-Gas Emanometry

Radon Emanometer used for radon sampling

Gas Probe

Soil-gas probe used for radon sampling

Groundwater Emanometry

Groundwater radon sampling methodolgy

Correlation coefficient of radon concentration in soil-gas with different meteorological parameters at Palampur

Parameter	Average (Avg)	Standard Deviation (Std)	% Variation Coefficient (Std/Avg)	Correlation Coefficient
Radon (Bq/L)	22	12.7	58	
Temperature (^O C)	23.9	5.4	23	0.18
Relative Humidity (%)	64.3	18.1	28	0.31
Rainfall (mm)	5.5	14.8	267	0.19
Wind Velocity (km/hr)	4.5	1.4	32	-0.27

Radon Anomaly

•Radon anomaly is defined as any sudden change in radon concentration crossing the average of that season by $\pm 2\sigma$.

 Radon anomalies followed by seismic event is Preseismic

 Anomaly occur simultaneously (same day) with seismic event is called Co-seismic

Anomaly after the seismic event is Post-seismic

•The total number of microseismic events correlated are 63.

Station		Total no. of radon anomalies (a)	No. of anomalies correlated with events (b)	No. of anomalies not correlated with events (c)	Signal (%) (b/a)	Noise (%) (c/a)	Confidence level (signal/noise)
Palampur	I. Soil-gas	36	21/ <mark>27</mark>	15	58	42	1.38
	II. Water	26	18/ <mark>23</mark>	8	69	31	2.23
Dalhousie	I. Soil-gas	29	19/ <mark>24</mark>	10	66	34	1.94
	II. Water	25	14/15	11	56	44	1.28

 Palampur station is found to be relatively more sensitive than the Dalhousie station as a total number of 40 seismic events correlated with radon anomalies are observed at Palampur as compared to 36 events at Dalhousie in both the media.

A total of 116 radon anomalies were observed in the whole grid during the given time window and out of it 74 are correlated with seismic events.

Most of the anomalies are pre-seismic 76% whereas only 14% are co-seismic and 10% are post-seismic.

Variation of Radon Conc. with Microseismicity in the region

•About 142 cases of radon anomalies in soil-gas and groundwater correlated with earthquakes of magnitude range between 2.1 to 4.8 and having epicentral distances less than 200 kms during time period 1992-1999.

•Whereas single earthquake of magnitude 4.7, 4.8, 5.1 and 6.8 were correlated with radon anomalies during the period.

•The radon behaviour observed in soil-gas and groundwater indicate that the transport phenomenon entirely different.

•The behaviour of Palampur and Dalhousie stations across the MBF is almost reciprocal. This may be due to relative motion of crustal blocks producing compressional strain on one side and dilatational strain on the other.

•Radon measurements carried out for earthquake precursory study seem to be one of the promising technique.

Thank You !!!

