Temporal Change of Gas Composition in Groundwater at Omaezaki

Fumiaki TSUNOMORI and Kenji NOTSU

Laboratory for Earthquake Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, JAPAN

E-mail : fumi@eqchem.s.u-tokyo.ac.jp

Acknowledgements

Professor George IGARASHI

Research Center for Prediction of Earthquakes and Volcanic Eruptions, Tohoku University

• Dr. Takamori ITO

OYO Seismic Instrumentation Corporation

Mr. Kenji KAWAI

Department of Earth and Planetary Science, The University of Tokyo

• Ms. Tazuko MORIMOTO

Laboratory for Earthquake Chemistry, The University of Tokyo

Overview

- Gas extraction module is an useful equipment for gas sampling from only both non-bubbling and clean water.
- Circulating water pumping hardly disturbs the groundwater level and the groundwater temperature.
- Gas composition in groundwater is stable in normal time.
- Gas ratio sensitively shows composition change of dissolved gas.

Location of Omaezaki Station

Quadrupole Mass Spectrometer for Monitoring

Concurrently Measurement

- Atmospheric Pressure
- Groundwater Level (only at 500m well)
- Groundwater Temperature at Strainer Depth
- Pumping Rate
- Room Temperature

Improvement of Gas Sampling Method

Effect of Circulating Pumping on Groundwater Temperature at 100m Well

Groundwater temperature at 100m well is not affected by both the circulating pumping and pumping rate change.

Effect of Extraction Module on $CH_4/^{40}Ar$ in Groundwater at 100m Well

 $CH_4/^{40}Ar$ ratio decreased with time, even if a old module was replaced with a new one.

Comparison of $CH_4/^{40}Ar$ between Bubble Gas and Extracted Gas at 100m Well

Clogging of Membrane in Module

Concentration of O_2 increased after the module replacement. On the other hand, concentration of CH_4 decreased with time. This means that air flowed into an extraction tube.

Time

Summary for 100m Well

- There is no effect of circulating pumping on groundwater temperature.
- Gas composition is stable in normal time.
- A gas extraction module is only useful for both clean and non-bubbling water.

Final Modification of Sampling Equipment

Effect of Circulating Pumping on Groundwater Level at 500m Well

Effect of Circulating Pumping on Groundwater Temperature at 500m Well

Mass Spectrum of Bubble Gas at 500m Well

Amount of Analyzed Gas at 500m Well

Time Series of Partial Pressure (1)

Time Series of Partial Pressure (2)

Time Series of Partial Pressure (3)

Time Series of Partial Pressure (4)

Time Series of Partial Pressure (5)

Comparison of Change in August 25 at 500m Well

⁴ He	CH ₄	N ₂	O ₂	³⁶ Ar
+1x10 ⁻⁷	+8x10 ⁻⁹	0	-2x10 ⁻⁹	+3x10 ⁻¹³
(+15%)	(+200%)		(-15%)	(+10%)
⁴⁰ Ar	CO ₂	#51	#65	⁸⁴ Kr
+1x10 ⁻¹⁰	-4x10 ⁻¹¹	-2x10 ⁻¹³	-2x10 ⁻¹³	+8x10 ⁻¹⁵
(+10%)	(-40%)	(-60%)	(-60%)	(+10%)

Gas Ratios (1)

Gas Ratios (2)

Summary for 500m Well

- The circulating pumping does not disturb the water level measurement. If the pumping rate is constant, the groundwater temperature is stable.
- Increase of deep crustal gas in groundwater is sensitively detected by use of abundance ratio.

 Abundance ratios of methane become available as an indicator of deep-crustal component after a few weeks past from the beginning of pumping.

Conclusions

- Continuous gas monitoring system has been established.
 - Circulating pumping is able to realize the simultaneous measurement of meteorological measurement with gas measurement.
 - Abundance ratios such as ⁴He/⁴⁰Ar and CH₄/⁴⁰Ar will be sensitive indicators of acute release of deep crustal gas from crust into groundwater.
- Appropriate method to analyze the abundance ratio should be studied.

Thank you for your attention.

Future Works

 Capillary tube is stopped up frequently. Reason is not clear yet.

 Percentage of deep crustal gas should be calculated automatically.

Periodic Variation in Abundance Ratio in August 2000 at Omaezaki

Breakage Test of Gas Extraction Module

Gas Concentration as Indicator

(Igarashi, 1995)

(Ito, 1999)

⁴⁰Ar as Reference Gas

Noble gas concentration in air-saturated water (cm³ STP gas/cm³ water)

4.60x10 ⁻⁵ 1.95x10 ⁻⁷ 3.50x10⁻⁴ 7.60x10 ⁻⁸
1.05x10 ⁻⁸

(Mazor, 1972)

Characteristics of Gas Extraction Module

Frequency of Tokai Earthquake and Expected Focal Region

