

Evaluation of coseismic groundwater changes caused by the 2003 Tokachi-oki earthquake

#Naoji Koizumi(1), N. Matsumoto(1),
F. Akita(2), T. Sato(1), and Y. Kitagawa(1)
(1)Geological Survey of Japan, AIST
(2) Geological Survey of Hokkaido

RELATIONSHIP AMONG 3 PRESETATIONS OF Drs.KATO, MATSUMOTO AND ME

COOPERATION BETWEEN TAIWAN AND JAPAN

1. OUTLINE OF THE HYDROLOGICAL CHNAGES RELATED TO THE 2003 TOKACHI-OKI EARTHQUAKE

- 2. EVALUATION OF THE PRESEISMIC GROUNDWATER CHANGE
- 3. EVALUATION OF THE COSEISIMIC GROUNDWATER CHANGE PURPOSE
 - 1. EVALUATION OF THE PORO-ELASTIC MODEL USED IN OUT HYDROLOGICAL METHOD FOR EARTHQUAKE PREDICTION
 - 2. EVALUATION FOR LONG-TERM GROUNDWATER MOVEMENT FOR GEOLOGICAL DISPOSAL OF NUCLEAR WASTE

1) OUTLINE OF THE 2003 TOKACHI-OKI EARTHQUAKE

The Tokachi-oki earthquake in 2003 (M 8.0, 26 September, 2003)

Missing peoples: 2 Injured peoples: 847 Damage: 27 billion yen

1) OUTLINE OF THE 2003 TOKACHI-OKI EARTHQUAKE

GPS OBSERVATION and THE ESTIMATED FAULT MODEL

1) OUTLINE OF THE 2003 TOKACHI-OKI EARTHQUAKE

2) PRESEISMIC CHANGE

NO PRESEISMIC CHNAGE CLEAR COSEISIC CHANGE

EXAMPLES OF THE LONG-TERM GROUNDWATER LEVEL CHANGES

29 of the 32 coseismic changes can be explained by poro-elastic responses to the coseismic static volumetric strain changes.

WHY IS THE COSEISMIC CHANGES IN HOKKAIDO EXPLAINEE WELL BY STATIC VOLUMETRIC STRAIN CHANGES?

TWO MAIN FACTORS OF HYDROLOGICAL COSEISMIC CHANGES

2-1) COSEISMIC CHANGE (SIGN)

Comparison of coseismic response to the 1952 Tokachioki earthquake with that to the 2003 Tokachi-oki earthquake.

Coseismic strain steps vs groundwater level changes in the 5 wells after the 5 large earthquakes

Coseismic strain steps vs groundwater level changes in the 5 wells after the 5 large earthquakes

well name	Screened Depth (m)	Strain (10-8)	
SP1	288-310 354-376	-6	53.2
SP2	539-594	-16	53.2

COMPARISON OF WELL STRUCTURES IN OB1 AND OB4

1. EVALUATION OF THE PRESEISMIC GROUNDWATER CHANGE

NEITHER GROUNDWATER CHANGE NOR CRUSTAL DEFORMATION RELATED TO THE PRESLIP (PRESEISMIC SLIDING)

THERE WAS NO PRESLIP ($Mw \ge 6$) IN THE FOCAL REGION OF THE 2003 TOKACHI-OKI EARTHQUAKE.

2. EVALUATION OF THE COSEISIMIC GROUNDWATER CHANGE

2-1 SIGNS OF THE COSEISMIC CHANGES

THER ARE WELL EXPLAINED BY VOLUMETRIC STRAIN CHNAGES AND PORO-ELASTIC THEORY.

IT IS PROBABLY BECAUSE THEY ARE NEAR-FIELD DEEP CONFINED GROUNDWATER RESPONSES TO THE EARTHQUAKE.

2-2 AMPLITUDES OF THE COSEIMIC CHNAGES

SOME WELL-WATERS SHOW SIMPLE PORO-ELASTIC RESPONSES. BUT THE REASON OR CONDITION FOR IT IS NOT CLEAR.

THANK YOU FOR YOUR INTEREST!!

The detailed information Akita and Matsumoto (2004) and Sato et al. (2004) The reprints are placed over there.

All observation wells in OB

well name	Screened Depth (m)	gwl change(cm)	strain (10-8)	
OB6	165-193	-65	190.3	
OB5	560-670	-170	189.8	
OB1	950-1060	-130	191.4	
OB4	1235-1400	430	170.3	SOME POSSIBILITY OF MIXING
OB3	1258-1478	-100	169.6	SHALLOW GROUNDWATERS
OB2	1286-1506	-130	172.4	

