3-D Seismic Tomographic imaging in eastern Taiwan-southwestern Ryukyu regions

Mamoru Nakamura (*University of the Ryukyus*) Cheng-Horng Lin (*Academia Sinica*) Masataka Ando (*Nagoya University*)

Tectonic background in the southwestern Ryukyu arc

Tectonic framework (1) Subduction of Philippine Sea Plate

Tectonic framework (2) Seismicity in the Ryukyu forearc

Tectonic framework (3) Deformation of Ryukyu arc

Tectonic framework (4) South Okinawa Trough

Seismic Stations

Hypocentral distributions for JMA and CWB catalogues

Ryukyu arc - Taiwan junction

• forearc seismicity clusters

- bending of the Ryukyu arc
- cross-backarc volcanic chain

Related to the subduction of thick oceanic crust ?

Relocated hypocenters distribution and seismic tomography would reveal the crustal and upper mantle heterogeneity between Taiwan and Ryukyu arc.

3-D seismic tomography and relocation of hypocenters using JMA and CWB data.

3-D seismic tomography

- Period Jan. 1, 1996 Mar. 31, 2002
- Used events: 2736 earthquakes (2489 common events recorded by both JMA and CWB) ,M>2.5
- Stations: JMA (9 stations) and CWB networks
- Program code: simulps12
- Compute Vp and Vs

Previous 3-D tomography study in this region (*Hsu et al., 2001*) Period: 1983-1994 Used events:162 common events recorded by both JMA (5 stations) and CWB

Station distribution and intitial velocity model

Grid Distribution

node interval horizontal:25km Vertical: 10km

Ray-paths and used events

Hypocenters Distribution (JMA)

Depths of the JMA hypocenters are deeper than the relocated.

Epicenters of the JMA catalogue are distributed at the north of the relocated.

Hypocenters Distribution (CWB)

Vp at the depth of 20 km

Distribution of low-Vp along the Ryukyu forearc: *basement of the Ryukyu forearc is imaged as low velocity area.*

Vp at the depth of 50 km

checkerboard resolution test

Low-Vp along the Wadati-Benioff zone

• Low-Vp and high-Vp/Vs along the Wadati-Benioff zone beneath the Okinawa Trough *dehydration from the subducted oceanic crust ?*

High-Vp along the Wadati-Benioff zone

High-Vp along the Wadati-Benioff zone

Vp at the depth of 50 km and backarc volcanism

Schematic model

Schematic illustration along 122.5E. (Simplified seismic refraction model: from *McIntosh and Nakamura 1999*)

Shallow seismicity between E. Taiwan and S. Ryukyu arc

Conclusions

Okinawa Trough:

- Low velocity anomaly in the upper plate interface. *Related to the dehydration from subducted thick oceanic crust ? Related to the cross backarc volcanic chain?*
- Low seismicity at cross backarc volcanic chain. *It would be caused by the thinning of seismogenic layer.*

Ryukyu forearc:

• Seismicity clusters at the low velocity area along the forearc. *basement of the Ryukyu forearc would be imaged*.