062803-0518

Introduction

- Past Examples of Groundwater Level Changes Related to Earthquakes:
 - In Japan
 - In Taiwan
- Motivation for Present Research :
 - Scientific Considerations
 - Personal Considerations
- Seismicity of the Research Area
- Water Level Recording System
- Recorded Data from Two Different Wells
- Preliminary Results

Examples of Earthquake Related Groundwater Research in Japan (Wakita, 1982)

		Earthquakes	luakes		Acc	comp	anyi	ng p	henc	men	a		
No.	Date	operation (Toknobi officiers	МН		Groundwater						g	0	
				Flow	e Temp.		819	10	IS TO	out	her	period affecting chemical	
		Epicentral location(s) (names)		Increase	Decrease	Rise	Fall	ality	ouding	ouding	ingsand, water	8	Remarks
109	Sep. 9, 1969	Central Gifu Pref.	6.6	0					0	-	0		Wara Village (Gifu): Immediately after the earth- quake, the well water became muddy, then 2 to 3 hours later it became cloudy. Groundwater increased and became brown and sandy.
110	Jun. 17, 1973	Nemuro Peninsula offshore	7.4										
111	May. 9, 1974	Izu Peninsula, Shizuoka Pref. (Izu Peninsula offshore earthquake)	6.9	0		0		0					Coseismic water level changes were recorded at water level observation wells in the Kanto and Tokai districts. A correlation was found be- tween the distribution of the wells that showed a water level change and the earthquake source mechanism. At hot springs south of Kamo Village and Kawazu (Izu Peninsula), an increase in the amount and temperature of spring water were generally noted. The spring water became cloudy during a two week period at Daisenzan, Hatage Hot Springs (Izu Peninsula).

Fig. 8.1 Coseismic water level change at the time of the Izu Peninsula offshore earthquake on May 9, 1974 [Wakita, 1975].

1, 2, and 3 indicate crustal movement observatories at Fujigawa, Aburatsubo and Nokogiriyama, respectively.

Example of Groundwater Level Changes due to Earthquakes in Taiwan (Chia et al., 2001)

Figure 1. Location of Choshui River alluvial fan and distribution of 157 monitoring wells clustered at 64 stations where coseismic changes of groundwater level were observed at the time of Chi-Chi earthquake. Open circles indicate stations where the groundwater level fell, solid circles indicate stations

Figure 6. Variation of hourly water level and daily rainfall at the JS1 well. (a) Records from 10 September to 10 October 1999. (b) Records from 1 January to 31 December 1999. The JS1 well, screened at the depth from 66 to 96 m, was installed to monitor the water level of a partially confined gravel aquifer. The water level rose during the rain season from May to September and declined during the dry season from October to April. Local pumping was active from January to June and in September.

Seismicity in the Research Area

The Structure of Taiwan

The Location of Water Well and Fault Distribution

🖊 Fault

The Location of Water Well and Fault Distribution

_🎮 water well

Recording System for Water Level

General:				
	Internal Power Model	External Power Model		
Dimensions	18.3 mm (0.72 in) OD, 295.9 mm (11.65 in) long	18.3 mm (0.72 in) OD, 197.4 mm (7.77 in) long		
Veight (includes backshell)	0.31 kg (0.68 lb) with batteries	0.22 kg (0.48 lb)		
Vetted materials	316 stainless steel, Viton [®] , FEP* or polyurethane (c	able), both models		
Resolution	16-bit A-D converter	16-bit A-D converter		
Sensors:				
	Pressure Sensor	Temperature Sensor		
Dperating principle	integrated silicon strain-gauge pressure sensor	silicon temperature sensor		
ange / Accuracios	11 m 25 # /102 4 kPa 15 pc) / +0.2% of ES	5°C to 50°C (22°E to 122°E) / ±0.25°C		

Operating principle	integrated silicon strain-gauge pressure sensor	silicon temperature sensor
Ranges / Accuracies	11 m, 35 ft (103.4 kPa, 15 psi) / ±0.2% of FS 21 m, 69 ft (206.8 kPa, 30 psi) / ±0.1% of FS 70 m, 231 ft (689.5 kPa, 100 psi) / ±0.05% of FS 211 m, 692 ft (2068 kPa, 300 psi) / (call for info.)	-5°C to 50°C (23°F to 122°F) / ±0.25°C
Pressure rating	2x range/3x burst (11 m = 3x range/5x burst)	NA
Operating temperature	-5 °C to 50 °C (23 °F to 122 °F)	-5°C to 50°C (23°F to 122°F)
Measurement schedules	linear (0.5 sec. minimum), logarithmic or event	linear (0.5 sec. minimum), logarithmic or event

Sample Records of Water Level Change from Two Wells in Hualien

Sample Records of Water Level Change from Two Wells in Hualien

HLC-03

HLC-05

Daily Changes at Two Wells HLC-03

HLC-05

Earthquake Distribution

Epicenter Related to Wells Map

Observed Water Level Changes Related to Earthquake Magnitude and Distance

Long-Term Water Level Changes at HLC-03

Long-Term Water Level Changes at HLC-03

HLC-03_200306_hr

Raw Data

091602-0744

Meters H2O

Raw Data

Meters H2O

091602-0815

HLC-05

39

3.8

3.7

3.6

3.5

3.4

3.3

HLC-03

Preliminary Conclusions

- Coseismic groundwater level changes (GLC) are observed from many, but not all, earthquakes in Hualien and surrounding areas.
- Both static and vibratory GLC are observed from the recods. They are due to rupture-induced crustal strain changes and passing seismic waves, respectively.
- Comparison of GLC records with seismic records is in progress.

Thank you for your attention