

Basin analysis and Prediction of the development of anomalous fluid pressure at depths in the Western Foothills of Taiwan

Wataru Tanikawa, Toshihiko Shimamoto (Kyoto University in Japan) Wheng-Kung Wey, Wei-Yu Wu (Chinese Petroleum Corporation) Ching-Weei Lin, Wen-Chi Lai (Cheng-Kong University in Taiwan) Wei-Min Donald Chen, Jih-Hao Hung (National Central University in Taiwan)

PURPOSE

Estimation to hydraulic properties

→permeability structure / porosity distribution / specific storage at the depth of the Western Foothills in Taiwan →sedimentary basin / focal area / accretionary prism by the way of surface samples and laboratory result!
INPORTANCE

① Application for

- ⇒fluid / oil transport system of the basin / fault zone at depth
- ⇒fault mechanism (ex. Thermal pressurization)

2 Help borehole test (in-situ test)

- ⇒In-situ test has a limit to cost and observation of internal structure
- ⇒laboratory tests and surface samples are CHEAPER!!

How to apply laboratory result to the real depth of nature? (in the case of sedimentary rock)

①Reproduce the depth condition ⇒ Generation of Temperature and Pressure
 ②Evaluate the overconsolidation affected by previous loading
 ③Evaluate of time dependent – compaction ⇒ Comparison different ages of samples
 ④Estimate the abnormal fluid pressure

⇒ analysis to the development of the sedimentary basins

Permeability (m²)

surface samples are over compacted and shows larger permeability than ideal consolidation curve.

older rocks showed lower permeability because of the time depending compaction effect

What's ABNORMAL FLUID PRESSURE?

Why **ABNORMAL** PRESSURE generated in the depth?

①Fluid in a basin undrained by increasing loading pressure and decreasing permeability a. sedimentation

b. tectonic loading

It depend on the sediment environment and permeability structure

(2) Volume change in aquathermal expansion a. temperature gradient b. heat origin (3) Fluid movement from subduction boundary (Rice 1992) (4) Dehydration (diagenesis) effect

- a. smectite \rightarrow illite + water b. gypsum \rightarrow anhydrite + water
- c. hydrocarbon generation

effective if SEALING LAYER developed

we need to know **PERMEABILITY STRUCTURE** at a depth of the Western Foothills

Study area and Sampling point

Orilling site of ICDP

The Western Foothills

 Sandstone rich sedimentary rock
 Pleistocene to Miocene
 take different ages of sample (tectonic collision)
 1999 Chi-Chi earthquake
 oilfield ··· a lot of drill data

condition

- temperature room temperature ($\doteq 20^{\circ}$ C)
- confining medium/pore fluid N2 gas
- confining pressure 0~200MPa
- sample size

 ϕ 20mm × L 10~50mm

Sample picture

permeability

(1) steady flow method $Pp = 0.2 \sim 2.0 \text{ MPa}$ $K = 10^{-14} \sim 10^{-18} \text{ m}^2$ (higher permeability) (1darcy = $10^{-12} \text{ m}^2 \doteqdot 10^{-3} \text{ cm/sec}$) (2) pore pressure oscillation method (Kranz1990) Pp = 20 MPa (constant) $K = 10^{-15} \sim 10^{-21} \text{ m}^2$ (lower permeability)

porosity

Spacemen assembly

Pressure vessel and Piston

Comparison of two methods

RESULTS of PERMEABILITY(1)

sandstone (10⁻¹⁴~10⁻¹⁸m²)

Effective pressure (MPa)

conglomerate (10⁻¹³~10⁻¹⁷m²)

Effective pressure (MPa)

- 1. fault rock ≒ siltstone
- 2. sandstone can be classified into 2 groups
- 3. siltstone < sandstone < conglomerate \rightarrow grain size

TIME-DEPENDENT COMPACTION

time-dependent compaction (pressure solution/grain rearrangement/chemical cementation)

POROSITY and SPECIFIC STORAGE

sandstone

effective pressure (MPa)

1 fluid undrained by decreasing permeability and increasing loading pressure

a. sedimentation

b. tectonic loading

2 volume change in aquathermal expansion

- a. temperature gradient
- b. heat origin
- ③ fluid movement from subduction boundary (Rice 1992)
- (4) dehydration (diagenesis) effect
 - a. smectite \rightarrow illite + water
 - b. gypsum \rightarrow anhydrite + water
 - c. hydrocarbon generation

IMAGE of MECHANISM ① - a

First of all we should evaluate Mechanism ① in the sedimentary basin

FLUID PRESSURE DISTRIBUTION

permeability • specific storage change with pressure (our study)

Predicted fluid pressure distribution showed similar result to the borehole data !!

Pressure sensitivity for permeability is important !!

200

PERMEABILITY STRUCTURE at The Western Foothills

We measured permeability and porosity of sedimentary rocks in the Western Foothills at high pressure condition and estimated the hydraulic properties - effective pressure relationship in this area.

♦We estimated the fluid pressure distribution from onedimensional compressional flow model and the result agreed with real borehole data.

♦We estimated the hydraulic properties (permeability / specific storage / porosity) at a depth of the Western Foothills.