2nd Taiwan-Japan Joint Workshop on Hydrological Research for Earthquake Prediction

Intervention Pattern and Detection Analysis for Anomaly Groundwater Level Time Series

T.-Y. Lee, S.-C. Lin, W.-C. Chen, F.-S. Chiu and Y.-P. Lee Sep. 22-23, 2003

Acknowledgement

This work was supported in part by the Water Resources Agency (WRA).

We would like to thank the Disaster Protection Research Center (DPRC) for kindly permitting us to participate the team of project.

ABSTRACT

- Introduction (Motive/Purpose)
 Theory of Intervention Analysis (IA) Model
- Statistical Methods for Anomaly Detection
- Case Studies
- Concluding Remarks

Introduction (Motive/Purpose)

- To explore the anomaly pattern of seismic groundwater level by the quantitative method and the specific function may be used to explain the transfer mechanism.
- A series of statistical methods are used to detect and test the anomaly of groundwater level. It may be served as an information for pre-cursor.

Intervention Analysis (IA)

The Intervention analysis is to study a time series structural change due to external events. It is a special case of the transfer function model.

The opportunity to use the IA:

- The starting-point of intervention event is clear •
- Specify the possible pattern of intervention impact.

Intervention Analysis (IA)

A single external event is considered:

$$Z_t = V_t + N_t = \frac{\omega(B)}{\delta(B)} B^b I_t + \frac{\theta(B)}{\phi(B)} a_t$$

 V_t =dynamic component or transfer from the N_t N_t =static component

 I_t =intervention time series assembled by 0 and 1

 $\omega; \delta; \theta; \varphi =$ unknown parameters

B=backward shift operator

a_t=noise

Anomaly Detection

- A rapid (sharp; sudden; abrupt) variation of statistical property from one to the other.
- The main procedure is to compute the mean and standard deviation of series, then the anomaly is checked by the abrupt change or not °

Methods for Anomaly Detection

Parametric Testing Method: (1) Moving *t* Testing (2) Cramer's Method (3) Yamamoto Method Non-Parametric Testing Method: (4) Moving Tmax Testing (5) Mann-Kendall Method (6) Pettitt Method

For Example: Moving *t* Testing

Case Studies for Dynamic Groundwater Level

Statistics for Anomaly Variability - Part (I)
 Intervention Analysis for Real-Case - Part (II)

Simulation and Real-Case for Anomaly Detection - Part (III)

Part (I) - Statistics for Anomaly Variability [1/8]

Research Scope

- Location
 - Alluvial Fan of Cho-Shui Stream Watershed
 - 188 Observation Wells in 70 Stations
- Data
 - Sep. 1 ~ Oct. 31, 1999 (921 Chi-Chi Earthquake)
 - Mar. 1 ~ Apr. 30, 2002 (331 Cha-I Earthquake)
 - Data (Groundwater Level) Recording by Hourly Time Interval

Part (I) - Statistics for Anomaly Variability [2/8]

Data and Map Source: WRA/CWB

Part (I) - Statistics for Anomaly Variability [4/8] **Classification of Anomaly Pattern for Groundwater Level** © Dynamic Pattern

- 🔮 Leap
- Rise
- Decline
- Pulse
- Vibration
- (Solid Tide)Distortion

Part (I) - Statistics for Anomaly Variability [5/8]

Anomaly Pattern Statistics for 921 and 331 Earthquakes

Item	921 Earthquake	331 Earthquake
Wells in Total	190	199
Interrupt and Damage	22	3
Net Number for Analysis	168	196
Anomalies in Total	112	24
Counting for Leap	99	19
Counting for Pulse	13	-
Counting for Rise	-	5

Part (I) - Statistics for Anomaly Variability [6/8]

Anomaly Comparison Between 921 and 331 Earthquakes

Anomal	y Well		
921	331	Counting	Percent(%)
YES	YES	10	6
NO	NO	42	25
YES	NO	102	61
NO	YES	14	8

Part (I) - Statistics for Anomaly Variability [7/8]

Part (I) - Statistics for Anomaly Variability [8/8]

Well Map for Water-Level Anomaly Pattern

921 Earthquake

331 Earthquake

2003/09/22

Part (II) – Intervention Analysis for Real-Case [1/3]

Four wells are selected to build the IA model.

2003/09/22

Part (II) – Intervention Analysis for Real-Case [2/3]

Pulse Anomaly for Chu-Shan Well (72m)

Time(hour) **Pulse Anomaly for His-Chou Well (133m)**

Time(hour)

Part (II) – Intervention Analysis for Real-Case [3/3]

IA Model for Several Cases

#	Well	IA Model
1	Ho-Hsing(3)	$X_{t} - X_{t-1} = \frac{(W)}{(1 - \delta * B)} P_{t} + \frac{(1 - \theta_{1}B)}{(1 - \phi_{1}B - \phi_{2}B^{2})} a_{t}$
2	An-Nan(2)	$X_{t} - X_{t-1} = \frac{(W)}{(1 - \delta * B)} P_{t} + \frac{(1 - \theta_{1}B)}{(1 - \phi_{1}B - \phi_{2}B^{2})} a_{t}$
3	Chu-Shan(1)	$X_{t} - X_{t-1} = (W)P_{t} + (1 - \theta_{1}B)a_{t}$
4	His-Chou(3)	$X_{t} - X_{t-1} = (WB^{142})P_{t} + \frac{(1 - \theta_{1}B)}{(1 - \phi_{1}B)}a_{t}$

Part (III) – Simu. & Real-Case for Anomaly Detection [1/5]

Simulation of Leap Anomaly

2003/09/22

Simulation of Leap Pattern for Anomaly Detection

Anomaly Pattern		Leap											
Case			(A)			(B)			(C)			(D)	
Detection Metho	d	1	2	3	1	2	3	1	2	3	1	2	3
(1) Moving <i>t</i> Testing	N=2	498	498	498	599	599	599	499	499	499	499	499	499
	N=50	499	498	500	575	575	575	465	499	499	499	499	499
	N=100	499	498	500	549	549	549	566	499	499	499	499	499
(2) Cramer's Method	N=2	*	*	*	599	599	599	*	*	499	*	*	*
	N=50	499	499	499	599	599	599	*	*	499	*	*	*
	N=100	499	499	499	599	599	599	*	*	499	*	*	*
(3) Yamamoto Method	N=2	498	498	498	599	599	599	499	499	499	499	499	499
	N=50	499	498	500	587	587	587	467	499	499	499	499	499
	N=100	499	498	500	549	549	549	434	499	499	499	499	499
(4) Moving <i>T</i> max Testing		499	500	500	549	549	549	512	786	499	499	499	499
(5) Mann-Kendall Method	UF	499	499	499	449	499	499	*	499	499	*	*	*
	UB	*	*	*	*	*	*	*	499	499	*	*	*
(6) Pettitt Method		499	499	499	599	599	599	*	*	499	*	*	*

The symbol "*" means the anomaly is not detected by the method for the case.

2003/09/22

Part (III) – Simu. & Real-Case for Anomaly Detection [3/5]

Part (III) – Simu. & Real-Case for Anomaly Detection [5/6]

Percent (%) of Anomaly Detection for Groundwater Level

	921 Eai	331 Earthquake		
Method	Leap	Pulse	Leap	
Moving <i>t</i> Testing	100%	43%	100%	
Cramer's Method	55%	86%	28%	
Yamamoto Method	100%	43%	100%	
Moving <i>T</i> max Testing	76%	58%	78%	
Mann-Kendall Method	69%	14%	28%	
Pettitt Method	67%	14%	17%	

Concluding Remarks [1/2]

- Many cases show that the anomaly pattern of seismic groundwater level is so complicated and multiplex, but there is the possibility on the reappearance of anomaly pattern in the same well.
- The leap and pulse pattern of groundwater level by two earthquakes can obtain the specific transfer function of intervention model.

Concluding Remarks [2/2]

- The moving t testing and Yamamoto method are suitable to detect the leap anomaly and the Cramer's method is suitable to detect the pulse anomaly.
- A further study is focused on the topics as follows:

To develop the testing procedure of anomaly detection.

Automatic algorithm for detecting the timepoint of anomaly.

THANKS FOR YOUR ATTENTION AND COOPERATION