Critical phenomena of rock fracturing in groundwater level observation before the 2000 eruption of Usu volcano, Japan

Tomo SHIBATA¹, Norio MATSUMOTO² and Fujio AKITA¹

¹ Geological Survey of Hokkaido ² Geological Survey of Japan, AIST

Contents:

- I. Introduction
- II. Observation
- III. Fourier power spectrum
- IV. Log-periodic oscillation
- V. Prediction of the rock fracturing
- VI. Conclusions

Introduction 1: Can we predict an earthquake ?

✓ What is the nature of rock fracturing?

Hypothesis

The rupture is similar to "critical point".

Macroscopic phenomena have their origin in a microscopic organization which can be transferred to large scales.

If true

the mechanism of fracturing would be constrained by critical phenomena, and we can approach to earthquake prediction.

Introduction 2: Examples of critical phenomena

✓ Groundwater level in GSH-1 well indicated log-periodic fluctuation at 3 months before the eruption.

Introduction 3: Hydrological anomalies before the Usu eruption

Usu volcano (42°32'N, 140°50'E) erupted on 31 March 2000 at 13:07 JST (4:07GMT).

» Hydrological anomalies were observed in many wells around the Usu volcano.

Fig.4 Akita et al., 2000 (modified)

Introduction 4 : Fluctuation in groundwater level of the GSH-1 well

✓ The water level

» gradually decreased on 14 December,

1999.

» dropped by more than 5 m on 28 March, 2000.

» suddenly increased by more than 100 m on 3 April, 2000, and water spouted from the well like a fountain.

Fig.7 photograph of the GSH-1 well

✓ Strain sensitivities are 6.8 and 6.5 mm/10⁻⁸ strain for M_2 and O_1 tidal constituents (used by a Baytap-G program).

Observation 1: Information of the GSH-1 well

- ✓ The GSH-1 well
 - » is located 2 km north (142 m a.s.l.) from summit of Usu volcano.
 - » is 1200 m deep (screen: 930-1200 m).
 - » is tapping a confined fractured-rock aquifer in silicified rock.
- \checkmark The water level is ~57 m a.s.l., which is ~85 m below the ground.
- ✓ The water level is sensitive to the barometric pressure, the tide and the crustal strain.

Fig.9 Schematic of the GSH-1 well

Observation 2: Groundwater level before the eruption

 \checkmark There are three specific periods in the entire period.

Fig.10 Variation in residual water level

P1 (~ 14 Dec.): a steady variation.
P2 (14 Dec. ~ 28 Mar.): an oscillation pattern like self-similarity.
P3 (28 Mar. ~): an oscillation pattern like self-similarity?

✓ The earthquake started on 27 March about 20:00.

 ✓ However, the first earthquake, whose epicenter was determined, was 28 March at 0:23.

Fourier power spectrum: Check on self-similarity (fractal) Important!

- ✓ The concept of fractal is scale invariance (i.e., self-similarity).
- ✓ Spectral analysis is frequency change in observation ($f \rightarrow \lambda f$).
- ✓ Scale invariance is equal to invariance in spectral analysis.

✓ If such a transformation ($f \rightarrow \lambda f$) is invariant

» the power spectrum, S(f), is proportional to $f^{-\beta}$. » $S(f) \propto f^{-\beta}$ » fractal dimension, *D*, is equal to $(7-\beta)/2$. » $D = (7-\beta)/2$

Fig.11 Fourier power spectra

The fluctuations in P2 and P3 are confirmed as fractal (critical) phenomena.

Fractal dimension is 2.62. *Ex.: D=2.25-2.75* experiment of acoustic emission in rock fracturing (*Hirata et al.*)

Log-periodic oscillation

 An acceleration of interactive force near a critical point obeys the log-periodic oscillation superposed on the power law.

 $f(t) = A + B (t_c - t)^m \{1 + C \cos[\omega \log(t_c - t) + \psi]\}$ (1)

f(t): water level, *t*. time, t_c : critical point, *m* and ω : critical exponents *A*, *B*, *C* and ψ : constants.

Fig.12 Optimal log-periodic oscillation

Result: *t_c*: 0:18±2:11 on 28 Mar. (first larger earthquake: 0:23 on 28 Mar) *m*: 0.694±0.006 *ω*: 7.96±0.05

Ex. 0.2≤*m*≤0.6, 6≤*ω* ≤12 (*Huang et al.*)

Prediction of the rock fracturing: Initial parameters

The critical point could be estimated from different data period by using Eq. 1.

 $f(t) = A + B (t_c - t)^m \{1 + C \cos[\omega \log(t_c - t) + \psi]\}$ (1)

- 1. The beginning of data period is fixed to be on 19 December 1999.
- 2. The target data period is lengthened 5 days from on 18 January 2000.
- 3. Initial parameters are settled on those listed in Table 1.

 Table 1
 Initial parameter.

No.	initial parameters			estimate
	t _c	т	W	t _c
1	2000.1.19	0.2	9	2000.3.28
2	2000.1.19	0.4	9	2000.3.28
3	2000.1.19	0.6	9	2000.3.28
4	2000.3.19	0.2	6	2000.8.9
5	2000.3.19	0.2	9	2000.3.28
6	2000.3.19	0.2	12	2000.8.17
7	2000.3.19	0.4	6	2000.7.25
8	2000.3.19	0.4	9	2000.3.28
9	2000.3.19	0.4	12	2000.3.28
10	2000.3.19	0.6	6	2000.3.28
11	2000.3.19	0.6	9	2000.3.28
12	2000.3.19	0.6	12	2000.6.12
13	2000.6.19	0.2	9	2001.5.8
14	2000.6.19	0.4	9	2001.7.3
15	2000.6.19	0.6	9	2000.3.28

» The estimated critical point is settled on 28 March 2000 from 9 sets in 15 sets.

Prediction of the rock fracturing: Estimation of critical point

 \checkmark The best estimation of critical point is determined by minimizing χ^2 .

 $\chi^{2} = \Sigma \{ [f(t_{i}) - f_{0}(t_{i})] / \sigma \}^{2}$ (2)

 $f(t_i)$: value of Eq. 1 *at* $t = t_i$, $f_0(t_i)$: residual water level, σ : the standard deviation.

» The critical point is settled on 28 March 2000 at the beginning of March.

End of the data period

Fig.12 Estimated critical point.

Conclusions

- ✓ Groundwater level indicates critical phenomenon.
- The critical phenomenon is confirmed by using an analysis of Fourier power spectrum.
- ✓ The fractal dimension is obtained from a Fourier analysis.

 \checkmark The rock fracturing would be driven by accumulation and interaction of microcracks in the eruption of Usu.

✓ The critical point of rock fracturing can be predicted by a log-periodic equation.

» Concept of fractal would potentially offer earthquake prediction.

