Strategical roles of hydrological and geochemical methods in earthquake prediction research

Naoji KOIZUMI (Tectono-Hydrology Research Group, Institute of Geoscience, GSJ, AIST)

1.Introduction

- * Contribution to making a physical fault model
- 2.Estimation of earthquake-related volumetric strain
 - changes from groundwater data
- **3.Estimation of earthquake-related pore pressure changes from groundwater data**
- **4.Supply of material information**
- 5. Estimation of groundwater's effect on the long-term geodetic measurement

'STRAIN MODEL'

CRACK MODEL

'STRAIN MODEL'

2. Estimation of earthquake-related volumetric strain changes from groundwater data **1) CRUSTAL DEFORMATION** (VOLUMETRIC STRAIN CHANGE) **GROUNDWATER CHANGE** (QUQNTITATIVE ESTIMATION) 2) GROUNDWATER CHANGE CRUSTAL DEFORMATION (PAST, PRESENT) (VOLUMETRIC STRAIN CHANGE) DATABASE **CONTRIBUTION TO MAKING PHYSICAL MODEL** (FAULT MODEL FOR PRE-SLIP AND MAIN SLIP)

LARGE EARTHQUAKES IN NANKAI TROUGH AND GROUNDWATER CHANGE

DATE	М	GROUND	WATER	(K I)		GRO	UNDW	ATER	(SIF	(oku)
1.NOV.29, 684	8 1	/4 MURO	HOT S	PRING	STOP	1Y0	НОТ	SPR	ING	STOP
2. AUG. 26, 887	8 1	/4								
3. FEB. 22, 1099	8.2									
4. AUG. 3, 1361	8.4	YUNOM	INE HO	T SPRI	NG ST	0P				
5. FEB. 3, 1605	7.9) —-								
6. OCT. 28, 1707	8.4	4 HOT	SPRIN	GS STO	P	DOGO	HOT	SPR	ING	STOP
7. DEC. 24, 1854	8.4	2 HOT	SPRIN	GS STO	P					
8. DEC, 21, 1946	8	BEFO	RE AN	D AFT	TER T	HE F	EART	ΓHÇ	UA	KE
		DECRE	ASE OF	DISCH	IARGE	DECR	EASE	0F	DISC	HARGE
T.	Ε	DECRE	ASE OF	LEVEL		DECR	EASE	0F	LEVE	Ľ
E		(AT I	MANY W	ELLS)		(AT I	IANY	WEL	LS)	

USAMI(1987), KAWABE(1991)

LARGE EARTHQUAKES IN NANKAI TROUGH AND GROUNDWATER CHANGE

DATE	M GROUNDWATER (KII)	GROUNDWATER (SIKOKU)
1.NOV.29, 684	8 1/4 MURO HOT SPRING	STOP IYO HOT SPRING STOP
2. AUG. 26, 887	8 1/4	
3. FEB. 22, 1099	8.2	
4. AUG. 3, 1361	8.4 YUNOMINE HOT SPRI	NG STOP
5. FEB. 3, 1605	7.9	
6. OCT. 28, 1707	8.4 4 HOT SPRINGS STO	DOGO HOT SPRING STOP
7. DEC. 24, 1854	8.4 2 HOT SPRINGS STO)P
8. DEC, 21, 1946	8 BEFORE AND AFT	TER THE EARTHQUAKE
	DECREASE OF DISCH	IARGE DECREASE OF DISCHARGE
	DECREASE OF LEVEL	DECREASE OF LEVEL
	(AT MANY WELLS)	(AT MANY WELLS)

3.Estimation of earthquake-related pore pressure changes from groundwater data

POSTSEISMIC STRESS CHANGE AFTERSHOCK DISTRIBUTION
+ pore pressure changes from
OBSERVED deep groundwater data
(PRESENT, PAST) DATABASE MAKING A MODEL

•POSTSEISMIC CRUSTAL DEFORMATION AND GROUNDWATER

Distribution maps of the coseismic water level changes and the monitoring wells in different aquifers

The coseismic decrease sites locates on the hill slope area

COSEISMIC Pollitz(2001) Just after 1992 Landers + Big Bear

4. Supply of material information

MATSUSHIRO EARTHQUAKE SWARMS (1965-1968) PACIFIC PLATE

PHILIPPINE SEA PLATE

NAWAI TROUGH

5. Estimation of groundwater's effect on the long-term geodetic measurement

 $(2002/04/01 \ 00:00 - 2002/07/24 \ 00:00)$

*What are conditions of sensitive wells? *How can we detect sensitive wells systematically? (Taiwan) GPS data are useful or not? (Japan) Relation among GPS data, groundwater level data and (borehole) strain data? (Japan) *What is a mechanism of preseismic changes in unconfined groundwater level? (Japan) *What is a mechanism of geochemical precursors? *How can we develop the ' crack model '? *Can we suggest information of pore pressure and permeability in the seismic region? And how can we? * How should we design a long-term stable geochemical observation? *How can we manage a condition of hith temperature, high pore pressure and high water or steam content? Investigation of earthquakes in hydrothermal region is important. (USA)