Estimation of groundwater-level anomalies associated with preseismic sliding of the anticipated Tokai earthquake

Norio Matsumoto, Makoto Takahashi and Naoji Koizumi

Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan.

In this paper we represent a detectability of preseismic sliding prior to an anticipated Tokai earthquake using groundwater-level monitoring network of National Institute of Advanced Industrial Science and Technology.

Kato and Hirasawa (1999) showed that volumetric strain associated with a preseismic sliding rapidly changes one day before the anticipated Tokai earthquake simulated by a friction law. In order to detect such changes as soon as possible, we need to know usual water-level changes and responses of groundwater level to volumetric strain in advance.

Kobayashi and Matsumori (1999) defined a maximum difference of borehole strainmeter strainmeter data with 5 minutes to 24 hours. Japan Meteorological Agency (JMA) is monitoring borehole strain data to detect anomalous data larger than the 'maximum difference' (Yoshida, 1999).

We investigate a maximum difference of groundwater level in six observation wells to detect anomalous groundwater-level changes associated with the preseismic sliding using the following procedure:

-- We firstly estimate responses of the groundwater level to M2 and O1 tidal constituents using computer program BAYTAP-G, and compare them with response of JMA volumetric strainmeter data to these constituents or theoretical earth + ocean tides. We estimate a sensitivity of groundwater level to volumetric strain in each well using the result.

-- We investigate maximum differences of the residual water level with 1, 3, 24-hours lags, respectively.

-- We calculate strain change associated with a M6.0 preseismic sliding that occurs 10 km underneath each well. This calculation is based on Kato and Hirasawa (1999).

-- We finally compare estimated strain change associated with the preseismic sliding with maximum differences of water level with 1-hour, 3-hours and 24 hours lags.

As a result we will detect anomalous groundwater-level changes associated with the preseismic sliding 1 - 45 hours before the mainshock.