Geological Survey of Japan Cruise Report No. 24, p. 33-50, 1999

IV. HIGH RESOLUTION MULTICHANNEL SEISMIC SURVEY
IN THE OFF TOKAI AREA

Shin’ichi Kuramoto, Yukinobu Okamura, Kohsaku Arai and Fumitoshi Murakami

Introduction

High resolution multichannel seismic (here after MCS) surveys were carried out
during the GH97 cruise by the R/V Hakurei-maru and the GA97 cruise by the Asia-
maru off Tokai, in 1997. The main purpose of the surveys was to get much higher
resolution seismic data and to get much deeper crustal images rather than single
channel seismic data, that are covering the entire survey area. Fig. IV-1 shows all the
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Fig. IV-1 Map with all the MCS track lines of the GH97 and GA97 cruises. Solid lines show the
GH97 cruise, and broken lines show the GA97 cruise respectively.

Keywords: Nankai trough, high resolution multichannel seismic survey, active fault, accretionary
prism



MCS survey lines of the GH97 and GA97 cruises. MCS data were successfully
gathered and processed just after the cruises. This report introduces the preliminary
results of MCS data from the off Tokai area.

High Resolution MCS System
What is the high resolution MCS data acquisition system that we are using? Our
system is in general focusing on surveys of relatively deep ocean of 1000 m depth or
more. We use the following data acquisition system.
1) Sound source >>> Two GI-GUNs (G = 250 cu. in., | = 105 cu. in.; X 2)
2) Streamer Cable >>> 12.5 m spacing, 48-channel solid streamer cable with five
depth controllers
3) Recording >>> 24 bits, SEG-D (8048) demultiprexed format
4) Navigation >>> Differential GPS and Glonass complex operation
We were able to detect differential navigation data during the surveys off Tokai. The
navigation accuracy is less than 1 m. Manually controlled GI-GUNSs are fired every 25
or 50 m. The recording length is 8 seconds, and the sampling interval is 2 msec.
Recorded data are processed as follows.
1) data loading
2) gain recovery
3) band-pass filtering
4) velocity analysis every 300 or 600 m
5) NMO correction
6) stacking
7) band-pass filtering
8) mute
9) f-k migration
10) band-pass filtering
11) auto gain control
12) plotting
This processing procedure is very common as a preliminary processing. Further
precise processing, e.g. multiple removal, pre-stack dip move out, finite difference
depth migration, etc., are planned as a future work.
We will briefly show the preliminary processed data and point out some interesting
features in the basis of selected profiles. Fig. IV-2 illustrates the selected lines that are
shown in this report.

West Sagami Bay and the Southern off 1zu Peninsula

MCS-04 crosses the Manazuru knoll from the south to the north (Fig. IV-3). The
knoll shows a northward dipping antiformal structure that was formed in conjunction
with a reverse fault that is seen at its southern foot. Thick sediments exposed in this
area are deformed by the reverse fault. It could be an active fault.

MCS-10 runs over the Iro submarine canyon and the lzu spur (Fig. IV-4). The
canyon has a NNE-SSW direction, that changes the direction to the west, to the
Nankai trough axis, at around 347 I5"N. The western wall of the Iro submarine
canyon (around shot #850) is formed by an active fault scarp. The fault dips to the
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Fig. IV-2 Selected MCS profiles are used in this report. Solid lines show the GH97 cruise, and
broken lines show the GA97 cruise respectively.

west and deforms the sediments in the Iro canyon.

Suruga Bay

MCS-18 crosses over the Suruga bay (Fig. IV-5). The eastern block. Izu Peninsula
side, tilts to the west and does not show any significant internal structure. The eastern
block, however, shows extremely different structures. Some imbricated thrusts and
tilted blocks are visible suggesting that the structure resembles that of an accretionary
prism. A relatively high amplitude reflector is visible at 0.8 seconds (two-way travel
time) depth from seafloor, around shot #330. It is possible to trace it about 5 km to the
west. This reflector is interpreted as a décollement reflector, suggesting subduction at
the Suruga trough. The western part of profile. at the Senoumi knoll, is characterized
by non-deformed sediments of about 0.4 sec. thickness that cover an acoustic
basement. The basement shows relatively scattered reflections and looks a chaotic
reflector.

Nankai Trough-Suruga Trough Junction
MCS-20 and GA-01 run from the Nankai trough axis to the deformation front of
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the accretionary prism. The boundary between the Suruga trough and the Nankai
trough occurs here, off the Kanasunose knoll. Fig. IV-6 to 1V-10 show the profiles
from west to east. The characteristic deformation structures are changing from profile
to profile. The trough-fill sediments are about | sec. thick and they are deformed at the
boundary between the landward slope and the trough (Fig. 1V-6, IV-7). There is an
unclear thrust. that is, however, not an obvious décollement reflector; the landward
block tilts to the northwest. Fig. V-8 shows a thrust at the boundary, that is no longer
visible in fig. IV-9 and IV-10. Striking is the change of deformation structure and the
change of subduction vergence from oceanward to landward, shown by the profiles.
Fig. IV-8 to 10 do not show typical subduction structures. but rather show obduction
structure from ocean side. MacKay et al. (1992) reports similar structure at the Oregon
margin where the Pacific plate is subducting beneath the North American plate in
general. The landward vergence structure may be an active structure that is supported
by the occurrence of many landslide deposits and the topography. A bottom
simulating reflector (BSR) is seen around the Kanasunose knoll (Fig. [V-6: shot #70-
350). A BSR shows a base of a gas hydrate stability zone in sediments. The BSR depth
varies from 0.2 to 0.4 seconds below the seafloor, that basically depends on the
topography. The BSR depth is the shallowest at the top of the Kanasunose knoll.
However, the BSR encounters the seafloor at shot #350. This may suggest that the
sediments above the BSR were removed by slope failure, related to active landward
vergent tectonics.

Enshu Fault Zone

MCS-26 runs from the No.2 Atsumi knoll (shot #400-900) to the Enshu fault zone
(shot #1450~-1950) (Fig. [V-11). The No.2 Awsumi knoll is bounded by reverse faults
at its northern and southern limits. The Enshu fault zone are composed of three major
faults, each showing a flower structure. pointing to a strike slip faulting. The
topography of Enshu fault zone area shows step-like displacement; suggesting that the
faults have a dip-slip components too. However, the strike-slip component may be
dominant rather than dip slip from the topographical point of view. The most
submarine canyons close to the faults are displaced to the dextrally, and the acoustic
imagery of wade-range side-scan sonar data shows extremely strait lineaments
(Kuramoto et al,, 1998). This interpretation is also supported by deep-towed multi-
sensor data (see Kuramoto et al, this volume). The northeastern fault of the Enshu
fault zone could be an active fault and may continue more than 100 km. However the
fault is divided into several segments based on an acoustic imagery (kuramoto et al,
1998). The Enshu fault zone must be paid much attention to from an earthquake
hazard point of view.

Deformation Front

MCS-29 and 31 cross almost the entire off Tokai accretionary wedge that is
perpendicular to the general structural trend of the accretionary wedge. Especially. the
deformation front is focused in this report (Fig. IV-12 to 15, from west to east). There
are many variations of deformation style in the first deformation area. Some thrusts are
imaged through the faults have small offsets. This suggests that the data have a high



resolution. However, the décollement reflector is not imaged clearly. An intense
reflector at shot #1400-1520, 4.8-4.5 sec. depth (Fig. [V-15) may correspond to the
“shallow detachment fault” that was pointed out by Chamot-Rook et al. (1992). It is
impossible to recognize the reflector from a fault or displaced strata by the current
MCS profiles. We must process the data much more.

Summary

The MCS data of GH97 and GA97 have a high resolution data quality. This report
showed only preliminary processed data and pointed out some interesting features of
this survey area. We will process the data by much more precise methods and much
further interpret using the acoustic imagery map that of Kuramoto et al (1998). We
also aim at estimating the velocity structure from the MCS data., This may help the
interpretations from physical property point of view. It is also very important point to
evaluate an activity of active faults.
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Fig. IV-12 Migrated profile of the MCS-29 line (west; time section).
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