石狩低地東縁断層帯における重力探査

Gravity Survey across the Eastern Boundary Fault Zone of Ishikari Lowland, Hokkaido.

岡田真介^{1*}・住田達哉¹・牧野雅彦¹・山口和雄¹・横倉隆伸¹ Shinsuke Okada^{1*}, Tatsuya Sumita¹, Masahiko Makino¹, Kazuo Yamaguchi¹ and Takanobu Yokokura¹

Abstract: There are several collision tectonics associated with plate subduction around the Japan arc. The Eastern Boundary Fault Zone of Ishikari Lowland and Umaoi Hills, which are located in the forefront of the Hidaka Collision Zone, show Quaternary active faulting and folding, respectively. To reveal subsurface structure and its tectonic evolution of the Eastern Boundary Fault Zone of Ishikari Lowland and Umaoi Hills, we carried out seismic reflection survey and gravity survey across the fault zone in November 2010. In this report, we describe gravity survey in detail. Bouguer gravity anomalies of this survey show good correlation with the surrounding geology and seismic profiling images. At the middle of the survey line 1, high-bouguer anomaly corresponds with anticlinal structure of Umaoi Hills. In the survey line 2, two high-bouguer anomalies are found, one of which corresponds with Umaoiyama anticline, while another one corresponds with subsurface anticlinal structure that is shown by seismic profiling image. This gravity survey was carried out as a part of Coastal Geology and Active Fault Survey Project in Advanced Industrial Science and Technology.

Keywords: gravity survey, Bouguer gravity anomaly, Eastern Boundary Fault Zone of Ishikari Lowland, Umaoi hills

1. はじめに

日本列島およびその周辺には、プレートの沈み込み に伴って生じている衝突のテクトニクスがいくつか存 在する. その中でも, 本調査の研究対象である石狩低 地東縁断層帯は,太平洋プレートの斜め沈み込みに伴 った千島弧の前弧スリバーが東北日本弧にぶつかって いる日高衝突帯(例えば, Kimura, 1996; 伊藤ほか, 1999;伊藤・岩崎, 2002など)の最前面に位置し ており、そこでは短縮変形を伴った最新の断層運動を 見ることができる.石狩低地東縁断層帯は、地震調査 推進本部地震調査委員会(2010)によると、活断層 の分布形態から,石狩低地東縁断層帯主部と石狩低地 東縁断層帯南部に区分している(第1図).石狩低地 東縁断層帯主部は、美唄市から勇払郡安平町に至る約 66kmの断層帯であり、その平均的な上下変位速度は、 0.4m/kyr 以上とされている. 石狩低地東縁断層帯南 部は、千歳市から南東方向に発達する活褶曲とその海 域延長部の 54km 以上であり,平均的な上下変位速 度は 0.2m/kyr 程度とされている.また,石狩低地東 縁断層帯主部における反射法地震探査の結果から,馬 追丘陵は地下深部の低角な逆断層運動に伴った背斜で あると解釈されている(地震調査推進本部地震調査委 員会,2010; Kato *et al.*,2004).また,同断層帯南 部の 2 条の活褶曲は,平川・越後(2002)および池 田ほか(2002)によって報告されており,約4万年 前の支笏火砕流によって形成された地形面が変形を受 けていることを根拠として,馬追丘陵よりも西方に, 伏在した断層の存在が推定されている.

石狩低地東縁断層帯における最新の活断層運動の全 貌を明らかにするためには,地下に存在する低角な逆 断層運動に伴った短縮変形をイメージングし,その変 形量を見積もる必要がある.本研究では同断層帯にお ける地下構造を明らかにするために,2010年11月 に同断層帯主部および南部を横切る2測線の反射法 地震探査・重力探査を行った.また,同断層帯南部周 辺の既存反射法地震探査データの再処理を実施した. これらのうち本研究報告では重力探査について詳しく

^{*} Correspondence

¹産業技術総合研究所 地質調査総合センター 地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation)

第1図 石狩低地東縁断層帯に沿った地形陰影図.地形の陰影 には国土地理院の10m DEMを用いた.活断層の位置は, 池田ほか(2002)による.

Fig.1 Shaded relief map along the Eastern Boundary Fault Zone of Ishikari lowland, based on 10 m digital elevation model. Red lines, active faults (after Ikeda *et al.*, 2002).

報告する. 2010年に実施した反射法地震探査につい ては、本研究報告の横倉ほか(2011)に、既存反射 法地震探査データの再処理については、同じく山口ほ か(2011)に報告されている. また本探査は「沿岸 域の地質・活断層調査」の一環として行われた.

2. 重力探查概要

本重力探査は,勇払地域において取得した2測線 の反射法地震探査(2010年11月1日~24日実施; 横倉ほか,2011)に沿って,およそ250m間隔で通 常の相対重力測定を行った.測線1は,2010年11 月11日から15日にかけての5日間で測定を終了し, 79点において測定を行った.測線2は,2010年11 月16日から19日にかけての4日間で測定を終了し, 61点の測定を行った.測定点の分布は第2図に示す.

重力基点は、宿泊施設である千歳エアポートホテル アネックスの玄関前を選択した.重力基点の位置お よびその重力値の決定については、後に詳しく述べ る.毎日の測定は、宿泊施設前の重力基点の測定より 出発し、また同日の最終測定として同基点に戻るよ うに環測定を実施した.使用した重力計は、LaCoste & Romberg 社製の D 型重力計(D-205)である.実 際の測定風景を写真1に示す.重力測定点の名称は、 反射法地震探査の受振点番号と同じものを用いた.し かし、道路交通および路面凍結などの条件により、 重力測定点を反射法地震探査受振点位置より数m~ 10m 程度移動したものもある.このような測定点の 名称には末尾に a を付加している.また測定点の移動 はできるだけ反射法地震探査測線に対して直交する方 向に移動した.

重力測定点の位置座標および楕円体高は,Trimble 社製 R8 GPS (写真 1 参照)を用いて,干渉測位(高 速静止測量)を行った(1 秒サンプリング,10 分間 測定を標準).解析には,Trimble 社製のソフトウェ ア Trimble total controlを用い,電子基準点厚真を基 準として,その他周囲 6 つの電子基準点と測線上に 置いた臨時基準点 1 つを利用することにより,網平 均で位置座標および楕円体高を求めた.楕円体高から 標高値へ変換するために必要なジオイド高は,国土 地理院のソフトウェアパッケージ,日本のジオイド 2000 ver.5 (国土地理院,2010)を用いて計算した.

3. 重力基点について

本調査では、千歳エアポートホテルアネックス前

- 第2図 本重力探査における測定点の分布. 青丸は重力測定位置,緑線は,反射法地震探査測線. 赤線は,活断層の分布(池田ほか, 2002)を示す.背景には,陰影に国土地理院の10mDEMに用い,さらにその上に5万分の1地形図を用いた.
- Fig.2 Distribution of gravity station in this survey. Small blue circle, gravity station; green line, seismic line; red lines, active faults (Ikeda *et al.*, 2002). 10mDEM of GSI was used for shaded relief and 1:50,000 topographic maps were used in the background.

写真1 本調査における重力測定風景(測線2, csd0375a).

Photo.1 Photograph of gravity data acquisition in this survey at the station of csd0375a on Line 2.

に重力基点を作成した.重力基点の重力値測定は, 2010年11月19日に実施し,重力基点の測定から 出発し,千歳市役所庁舎横6等重力基準点および千 歳空港内1等重力基準点を測定した後,再び重力基 点を測定するように行った.測定を行った2つの重 力値を用いて,千歳エアポートホテルアネックス前重 力基点の重力値を,980431.990mgalと決定した.

4. データ処理

重力計の測定読取値からブーゲー異常値の算出まで の処理は、地質調査所重力補正標準手順 SPECG1988 (地質調査所重力探査グループ,1989)に基づいて 行った.具体的には、測定読取値を重力単位に換算 し、その後、潮汐補正・ドリフト補正を行い、測定点 における重力値を決定した.さらに求めた重力値に対 して、緯度補正・大気補正・高度補正・地形補正を計 算し、フリーエア重力異常値およびブーゲー重力異常 値を求めた.地形補正には、国土地理院作成の50m メッシュおよび250m メッシュを用いている(村田

第3図 断面 A-A' に沿った地形断面,反射法地震探査時間断面,およびブーゲー重力異常.(a)地形断面.黒線は投影線 A-A' に沿った 地形であり,10mDEM を用いた.灰色線は,投影線に平行に南北 250m 離れた地形である.黒丸は重力測定点の標高を示し, 緑線は,反射法地震探査測線(横倉ほか,2011)の標高を示す.赤三角は活断層(池田ほか,2002)の位置を示す.(b)測 線1の予備的重合断面(横倉ほか,2011).(c)ブーゲー重力異常.青丸は,本調査で得られたブーゲー異常値を A-A' に投影 したものである.仮定密度には 1.80g/cm³を用いた.

^{Fig.3 Gravity and topographic profile along project line A-A'. (a) Topographic profile. Black solid line, topography along project line A-A' using 10mDEM. Gray solid line, topography along 250 m north and south of project line A-A'; black open circle, altitude of gravity stations; green line, atlitude of seismic line (Yokokura} *et al.*, 2011); red triangle, active faults (Ikeda *et al.*, 2002). Note that vertical exaggeration of topography is 20. (b) Preliminary stacked time section of Line 1 (after Yokokura *et al.*, 2011). (c) Bouguer gravity anomaly. Blue small circle, bouguer gravity anomaly of this survey projected to project line A-A'. Reduction density of 1.80 g/cm³ was applied.

ほか,1995). 測線1および2に沿った地表地質は, 馬追丘陵よりも東側では,主に中新統後期から鮮新統 の地層が分布しており,一方,西側(石狩低地側)で は低密度の支笏火砕流が広く分布している.各種の 補正に用いる仮定密度は,これらの地質分布も考慮 し,地形との相関がもっとも少ない1.8g/cm³を採用 した.またブーゲー補正には,無限平板ではなく測点 から 60km 以内の範囲で地球の曲率を考慮した方法 を用いている.測線1の各種補正値,フリーエア重 力異常値およびブーゲー重力異常値を第1表に示し, 測線2については第2表に示す.それぞれの測線に おけるブーゲー重力異常値を A-A'および B-B'の断面 線に投影したものを第3図,第4図に示す(断面線 の位置と重力測定点の分布は,第2図を参照).読取 値の誤差は,およそ0.01mgal 程度である.GPS 測量 に伴う標高の測定誤差は、10cm以内であるので、それに伴う重力値の誤差は0.03mgal以下と見積もれる。2010年11月11日の測定のみ悪天候に起因して、重力計のドリフトは0.2mgal程度と大きいが、 それ以外の測定日は、0.05mgal以下であった。また、 GPS測量から得られた標高と50mDEMの標高の差は、 3点を除いては5m以内であるため、50mDEMを用いた地形補正計算は十分な精度を持っていると判断した。これらのことから、得られたブーゲー重力異常値は0.1mgal以上の精度をほぼ達成できている。

5. 結果

本調査で得られた2測線のブーゲー重力異常は, 両測線ともに,東下がりの傾向を示している.これは 東に緩く傾いた先新第三系基盤の形状を示している

第4図 断面 B-B' に沿ったブーゲー重力異常と地形断面.(a)地形断面.黒線は投影線 B-B' に沿った地形であり,10mDEM を用いた. 灰色線は,投影線に平行に南北 250m 離れた地形である.黒丸は重力測定点の標高を示し,緑線は,反射法地震探査測線(横 倉ほか,2011)の標高である.赤三角は活断層(池田ほか,2002)の位置を示す.(b)測線1の予備的重合断面(横倉ほ か,2011).(c)ブーゲー重力異常.青丸は,本調査で得られたブーゲー異常値を B-B' に投影したものである.仮定密度には 1.80g/cm³を用いた.

^{Fig.4 Gravity and topographic profile along project line B-B'. (a) Topographic profile. Black solid line, topography along project line B-B' using 10mDEM. Gray solid line, topography along 250 m north and south of project line B-B'; green line, atlitude of seismic line (Yokokura} *et al.*, 2011). black open circle, altitude of gravity stations; red triangle, active faults (Ikeda *et al.*, 2002). Note that vertical exaggeration of topography is 20. (b) Preliminary stacked time section of Line 2 (after Yokokura *et al.*, 2011). (c) Bouguer gravity anomaly. Blue small circle, bouguer gravity anomaly of this survey projected to project line B-B'. Reduction density of 1.80 g/cm³ was applied.

第1表 本重力探査における重力測定結果(測線1,苫小牧-安平測線).

Table 1 Result of gravity survey of Line 1, Tomakomai-Abira line.

Station		Latitude	Longitude	height	obs gravitv	normal	atm	Free-air	Free-air	Bouguer	Торо	Bouguer
name	No	(WGS84)	(WGS84)			gravity		corr.	gravity	corr. *1	corr. *1	gravity *1
+=0001	2001	ddmmss.sss	1415215 511	65 700	mgal	mgai	mgai	20 204	mgal _1 420	mgal	mgal 0.146	mgal
ta0001	2001	424832.903	1415206 377	55 629	980399.518	980422.114	0.804	17 166	-2 261	-4.900	0.140	-6.322
ta0050	2003	424843.777	1415158.344	56.090	980401.181	980421.884	0.865	17.308	-2.530	-4.251	0.137	-6.644
ta0075	2004	424838.064	1415150.945	48.344	980402.737	980421.741	0.865	14.918	-3.221	-3.664	0.140	-6.745
ta0100	2005	424830.853	1415151.005	58.160	980399.899	980421.560	0.864	17.947	-2.850	-4.408	0.126	-7.132
ta0125	2006	424824.109	1415150.039	60.555	980398.944	980421.391	0.864	18.686	-2.897	-4.589	0.118	-7.368
ta0150	2007	424818.454	1415142.520	58.099	980399.494	980421.249	0.864	17.928	-2.963	-4.403	0.115	-7.251
ta0175	2008	424812.780	1415134.963	55.222	980400.065	980421.107	0.865	17.040	-3.137	-4.185	0.107	-7.216
ta0200	2009	424807.758	1415128.282	52.628	980400.547	980420.981	0.865	15.240	-3.330	-3.989	0.101	-7.21/
ta0225	2010	424801.998	1415120.017	49.403	980401.144	980420.837	0.805	14 473	-3.818	-3 555	0.093	-7.220
ta0275	2012	424750.543	1415105.458	45.097	980401.889	980420.550	0.866	13.916	-3.879	-3.418	0.094	-7.203
ta0300	2013	424744.758	1415057.768	36.030	980404.202	980420.405	0.867	11.118	-4.218	-2.731	0.101	-6.848
ta0325	2014	424739.178	1415050.402	33.785	980405.051	980420.265	0.867	10.425	-3.922	-2.561	0.094	-6.389
ta0350	2015	424731.333	1415050.561	37.833	980403.752	980420.069	0.866	11.675	-3.776	-2.868	0.091	-6.552
ta0375	2016	424724.220	1415050.978	38.549	980403.409	980419.890	0.866	11.895	-3.720	-2.922	0.108	-6.534
ta0400	2017	424/22.642	1415040.324	44.860	980402.273	980419.851	0.866	13.843	-2.869	-3.400	0.079	-6.190
ta0425	2018	424/21.11/	1415029.534	40.000	980404.048	980419.813	0.800	12.544	-2.355	-3.081	0.077	-5.359
ta0450	2019	424715.340	1415025.477	28 783	980400.442	980419.008	0.807	9.913	-1 986	-2.435	0.111	-4.770
ta0500	2020	424705.995	1415010.258	26.762	980409.215	980419.434	0.867	8.258	-1.093	-2.029	0.120	-3.015
ta0525	2022	424703.807	1415000.440	26.909	980409.954	980419.379	0.867	8.304	-0.254	-2.040	0.101	-2.192
ta0550	2023	424656.759	1414957.232	27.182	980410.097	980419.202	0.867	8.388	0.150	-2.061	0.099	-1.812
ta0575	2024	424648.842	1414955.053	27.307	980410.090	980419.004	0.867	8.426	0.380	-2.070	0.098	-1.592
ta0600	2025	424641.320	1414952.535	27.895	980409.983	980418.815	0.867	8.608	0.643	-2.115	0.095	-1.377
ta0625	2026	424635.056	1414947.474	28.562	980409.755	980418.658	0.867	8.814	0.778	-2.165	0.096	-1.292
ta0650	2027	424629.31/	1414939.828	27.435	980410.462	980418.514	0.867	8.466	1.281	-2.080	0.106	-0.693
ta00/0	2028	424622.076	1414934.584	23.187	980411.814	980418.333	0.868	6 900	1.504	-1.758	0.107	-0.14/
ta0703	2029	424014.514	1414920.993	22.004	980411.991	980418.144	0.000	6 5 2 8	1.524	-1.604	0.096	-0.030
ta0720	2030	424608 325	1414911 391	19 620	980413 239	980417 988	0.868	6 054	2 173	-1 487	0.107	0.233
ta0775	2032	424602.808	1414903.843	17.898	980413.408	980417.850	0.868	5.523	1.949	-1.357	0.117	0.710
ta0800	2033	424557.365	1414857.259	17.571	980413.108	980417.714	0.868	5.422	1.685	-1.332	0.122	0.475
ta0825	2034	424551.860	1414850.487	17.005	980412.791	980417.576	0.868	5.247	1.331	-1.289	0.129	0.171
ta0850	2035	424546.187	1414843.066	15.341	980412.721	980417.434	0.869	4.734	0.890	-1.163	0.141	-0.133
ta0875	2036	424540.518	1414835.212	15.493	980412.499	980417.292	0.869	4.781	0.857	-1.175	0.135	-0.183
ta0900	2037	424535.455	1414828.783	16.9/6	980412.083	980417.165	0.868	5.239	1.025	-1.28/	0.124	-0.137
ta0925	2038	424529.695	1414821.270	17.802	980411.414	980417.020	0.868	5.493	0./55	-1.350	0.126	-0.468
ta0950	2039	424323.833	1414813.707	17.820	980409.570	980410.874	0.808	5.001	-0.935	-1.301	0.151	-4.060
ta1000	2040	424512172	1414759 287	17.048	980406 736	980416 581	0.808	5 261	-3 716	-1 292	0.093	-4.000
ta1025	2042	424505.906	1414752.473	15.506	980407.992	980416.424	0.869	4.785	-2.779	-1.176	0.085	-3.870
ta1050	2043	424500.361	1414744.484	15.539	980409.056	980416.285	0.869	4.795	-1.566	-1.178	0.079	-2.665
ta1075	2044	424454.395	1414737.054	14.373	980409.575	980416.136	0.869	4.435	-1.257	-1.090	0.074	-2.273
ta1100	2045	424448.436	1414729.612	13.768	980409.470	980415.987	0.869	4.249	-1.399	-1.044	0.068	-2.376
ta1125	2046	424442.468	1414722.179	13.027	980409.007	980415.837	0.869	4.020	-1.941	-0.988	0.060	-2.870
ta1150	2047	424436.669	1414714.984	15.156	980408.055	980415.692	0.869	4.677	-2.091	-1.149	0.054	-3.186
tall/5	2048	424430.706	1414/0/.51/	14 620	980407.585	980415.542	0.869	4.931	-2.15/	-1.212	0.055	-3.310
ta1200	2049	424424.004	1414700.223	12 759	980407.720	980415.390	0.809	3 937	-2 573	-0.967	0.055	-3 484
ta1250	2051	424412.596	1414645.991	12.500	980407.665	980415.089	0.869	3.857	-2.697	-0.948	0.050	-3.595
ta1275	2052	424406.298	1414639.076	11.667	980407.625	980414.931	0.869	3.600	-2.837	-0.885	0.048	-3.674
ta1300	2053	424359.457	1414633.308	10.364	980407.733	980414.759	0.869	3.198	-2.959	-0.786	0.047	-3.698
ta1325	2054	424352.904	1414627.735	15.201	980406.255	980414.595	0.869	4.691	-2.781	-1.152	0.050	-3.883
ta1350	2055	424347.482	1414621.093	16.672	980405.866	980414.459	0.868	5.145	-2.580	-1.264	0.049	-3.795
ta1375	2056	424341.899	1414614.010	16.630	980405.809	980414.319	0.868	5.132	-2.510	-1.261	0.047	-3.724
ta1400	2057	424335.980	1414606.582	14.309	980406.263	980414.171	0.869	4.431	-2.609	-1.089	0.048	-3.000
ta1420	2058	424331.746	1414557.249	7 645	980407.171	980414.005	0.809	2 359	-2.500	-0.800	0.047	-3.319
ta1482	2000	424317 690	1414540 680	8 101	980407 991	980413 713	0.869	2.500	-2 353	-0.614	0.049	-2.918
ta1495	2061	424314.403	1414537.189	8.721	980407.956	980413.631	0.869	2.691	-2.114	-0.661	0.048	-2.727
ta1525	2062	424307.113	1414528.522	13.689	980406.676	980413.448	0.869	4.224	-1.679	-1.038	0.047	-2.669
ta1550a	2063	424301.143	1414521.052	17.760	980405.786	980413.298	0.868	5.480	-1.164	-1.346	0.051	-2.459
ta1575	2064	424254.934	1414514.373	18.091	980405.767	980413.143	0.868	5.583	-0.925	-1.372	0.053	-2.244
ta1604a	2065	424248.516	1414505.187	18.194	980405.867	980412.982	0.868	5.614	-0.632	-1.379	0.050	-1.962
ta1625a	2066	424243.676	1414458.948	1/.422	980406.186	980412.861	0.868	5.376	-0.430	-1.321	0.048	-1.703
ta1674-	2007	424237.900	1414432.823	14.080	900400.929	300412./18 000112.502	0.009	4.032	-0.388 _0.170	-0.005	0.04/	-1.404
ta10/48	2000	727232.372 191991 700	1/1///0 10/	11.00/ 0 670	990407.922	000412.003	0.009	0.043 0.676	0.148	-0.650	0.001	_0.99Z
ta17200	2009	424224.700	141443/ 027	10 020	980408.740	980412.303	0.009	2.070	0.094	-0.008	0.003	-0.099 -0.099
ta1770	2071	424203 174	1414431 993	11 483	980407 891	980411 846	0.869	3 543	0.221	-0.871	0.052	-0.362
ta1800	2072	424154.558	1414426.409	12.785	980407.636	980411.630	0.869	3.945	0.820	-0.969	0.051	-0.099
ta1825	2073	424149.106	1414418.879	13.479	980407.677	980411.494	0.869	4.159	1.212	-1.022	0.050	0.240
ta1850	2074	424143.451	1414411.050	13.460	980407.998	980411.352	0.869	4.154	1.668	-1.020	0.054	0.702
ta1877	2075	424137.268	1414402.816	8.804	980409.494	980411.197	0.869	2.717	1.883	-0.668	0.053	1.269
ta1900a	2076	424132.108	1414355.439	5.296	980410.754	980411.068	0.870	1.634	2.190	-0.402	0.071	1.860
ta1922a	2077	424127.226	1414348.691	4.876	980411.192	980410.945	0.870	1.505	2.621	-0.370	0.068	2.319
taopUI	2078	424110.612	1415251 300	4.946 74 710	980398 810	980410.529	0.870	1.526	4.051 -0 101	-0.375 -5661	0.059	3./34 -5.610
-uopor	_0/0						2.000	-0.00-	0.101	0.001	0.200	0.010

*1 仮定密度には, 1.80 g/cm³を用いた. *1 1.80 g/cm³ reduction density was applied.

第2表 本重力探査における重力測定結果(測線2,千歳駐屯地測線).

Table 2 Result of gravity survey of Line 2, Higashi-chitose Self Defense Force line.

Station		Latitude	Longitude	la a i alat	aha masihi	normal		Free-air	Free-air	Bouguer	Торо	Bouguer
name	No	(WGS84)	(WGS84)	neight	obs gravity	gravity	atm	corr.	gravity	corr. *1	corr. *1	gravity *1
name		ddmmss.sss	dddmmss.sss	mm.mmm	mgal	mgal	mgal	mgal	mgal	mgal	mgal	mgal
csd0001	1001	424850.891	1414132.866	18.211	980428.058	980422.063	0.868	5.620	12.483	-1.381	0.0617	11.164
csd0025a	1002	424854.524	1414142.215	19.015	980427.943	980422.154	0.868	5.868	12.525	-1.442	0.0590	11.142
csd0050a	1003	424858.213	1414151.999	18.5/2	980428.130	980422.246	0.868	5./31	12.483	-1.408	0.0617	11.13/
csd00/5a	1004	424901.881	1414201.811	17.887	980428.376	980422.338	0.868	5.520	12.426	-1.356	0.0617	11.131
csd0100a	1005	424905.513	1414211.2/1	19.512	980427.954	980422.429	0.868	6.021	12.414	-1.4/9	0.0591	10.994
csdU125a	1006	424909.148	1414221.129	19.817	980427.806	980422.520	0.868	0.115	12.269	-1.502	0.0600	10.826
csd0150a	1007	424912./24	1414230.002	21.392	980427.257	980422.610	0.868	0.001	12.110	-1.022	0.0600	10.554
csd01/5a	1008	424910.227	1414240.200	23.031	980420.804	980422.098	0.808	7.107	11.060	-1./40	0.0582	10.393
csduzuua	1009	424919.913	1414249.929	21.480	980427.232	980422.790	0.808	0.030	12.041	-1.029	0.0600	10.391
csd0225a	1010	424923.400	1414200.420	22.970	960420.901	900422.070	0.000	7.090	12.041	-1.001	0.0564	10.337
csd0250a	1011	424927.221	1414307.900	20.077	980420.400	900422.973	0.000	7.730	11 075	-1.901	0.0504	10.100
csd0275a	1012	424931.204	1414317.024	24.740	000420.440	980423.073	0.000	7.034 9.007	11.075	-1.075	0.0502	0.011
csd0325a	1013	424930.000	1414334 779	26.093	980425 987	980423.200	0.000	8 052	11.627	-1 978	0.0070	9 709
csd0350a	1015	424903.418	1414345 515	27 591	980425 557	980423 323	0.867	8 5 1 4	11.615	-2.092	0.0000	9 584
csd0375a	1016	424942 913	1414356 259	29.640	980425.048	980423 367	0.867	9 1 4 6	11 695	-2 247	0.0609	9 509
csd0400a	1017	424944 619	1414407 025	32 178	980424 573	980423 409	0.867	9 930	11.000	-2 439	0.0636	9 585
csd0425a	1018	424946 347	1414417 750	35 512	980424 036	980423 453	0.867	10 958	12 408	-2 692	0.0645	9 781
csd0450a	1019	424948 050	1414428 524	38 569	980423 815	980423 495	0.866	11 902	13 088	-2 923	0.0672	10 231
csd0475a	1020	424950.396	1414439.008	40.063	980423.999	980423.554	0.866	12.363	13.674	-3.037	0.0690	10.706
csd0500a	1021	424952.302	1414449.461	41.070	980423.728	980423.602	0.866	12.673	13.665	-3.113	0.0771	10.630
csd0526a	1022	424950.913	1414500.064	43.824	980422.801	980423.567	0.866	13.523	13.623	-3.322	0.0816	10.383
csd0550a	1023	424953.564	1414505.935	45.060	980422.441	980423.634	0.866	13.905	13.578	-3.415	0.0879	10.250
csd0575a	1024	424950.290	1414513.902	45.897	980421.860	980423.551	0.866	14.163	13.337	-3.479	0.0915	9.950
csd0600a	1025	424953.839	1414523.094	49.916	980420.458	980423.640	0.865	15.403	13.086	-3.783	0.1023	9.405
csd0625a	1026	424954.790	1414533.967	50.505	980419.815	980423.664	0.865	15.585	12.601	-3.828	0.1356	8.908
csd0650a	1027	424956.948	1414543.907	63.465	980415.534	980423.718	0.864	19.584	12.263	-4.809	0.1725	7.627
csd0675a	1028	425000.105	1414553.927	58.281	980416.181	980423.797	0.864	17.984	11.232	-4.417	0.1914	7.007
csd0700a	1029	425003.348	1414604.003	54.085	980416.766	980423.879	0.865	16.689	10.442	-4.099	0.2337	6.576
csd0725a	1030	425006.961	1414613.763	52.526	980416.398	980423.969	0.865	16.208	9.502	-3.981	0.3121	5.833
csd0750a	1031	425009.434	1414624.159	57.582	980415.214	980424.031	0.864	17.769	9.816	-4.364	0.3444	5.796
csd0775a	1032	425008.836	1414635.121	55.424	980416.315	980424.016	0.865	17.103	10.266	-4.200	0.4434	6.509
csd0800a	1033	425009.589	1414645.778	58.928	980416.014	980424.035	0.864	18.184	11.027	-4.466	0.3804	6.942
csd0820a	1034	425012.739	1414653.428	60.169	980416.379	980424.114	0.864	18.567	11.696	-4.560	0.3751	7.511
csdop01	1035	425009.037	1414712.213	78.754	980413.199	980424.021	0.862	24.302	14.342	-5.967	0.2499	8.625
csdop02	1036	425026.670	1414718.641	65.698	980416.780	980424.463	0.864	20.273	13.453	-4.979	0.1519	8.627
csdop03	1037	425020.323	1414817.163	78.876	980410.558	980424.304	0.862	24.339	11.456	-5.976	0.2635	5.743
csdop04	1038	425016.656	1414/35./29	65.91/	980416.146	980424.212	0.864	20.340	13.138	-4.995	0.1591	8.302
csd0880a	1039	425008.386	1414/18.441	87.920	980411.213	980424.005	0.862	27.130	15.199	-6.661	0.1//0	8./15
csd0860a	1040	425008.993	1414/09./11	/5.855	980413.641	980424.020	0.863	23.407	13.891	-5./48	0.3237	8.467
csd0840a	1041	425009.915	1414/01.100	67.889	980414.815	980424.043	0.803	20.949	12.584	-5.144	0.4057	7.845
CSQ0/88	1042	425008.527	1414040.737	57.957	980415.962	980424.008	0.804	17.884	10.702	-4.392	0.3319	0.042
csd0703a	1043	425009.093	1414029.830	54 425	980415.002	980424.023	0.800	17.070	10.174	-4.340	0.4042	0.289
csd0736a	1044	425006.436	1414019.110	52 200	960415.267	960424.000	0.005	16.797	0.943	-4.123	0.2000	5.103
csd0688a	1045	425005.012	1414009.247	56 865	980410.021	980423.920	0.805	17547	10.013	-/ 309	0.2913	6 772
csd0663a	1040	423001.734	1414549 201	63 360	980415 200	980423.040	0.005	19 55/	11 863	-1 802	0.1300	7 268
csd0638a	1047	424956.451	1414539 368	59 578	980413.200	980423.733	0.804	18 384	12 594	-4.502	0.2070	8 2 2 0
csd0613a	1040	424950.012	1414528 711	47 867	980420.812	980423.662	0.865	14 771	12.004	-3 628	0.1212	9 280
csd0588a	1050	424952 255	1414518 270	47.350	980421 438	980423 601	0.865	14.611	13 314	-3 589	0.0987	9 8 2 4
csd0563a	1051	424950 618	1414509 925	44 780	980422 282	980423 560	0.866	13.818	13 406	-3 394	0.0861	10.098
csd0538a	1052	424952 640	1414503 050	43 493	980422 922	980423 610	0.866	13 421	13 599	-3 296	0.0834	10 386
csd0513a	1053	424950 872	1414454 434	43 105	980423 002	980423 566	0.866	13 301	13 603	-3 267	0.0825	10,000
csd0488a	1054	424951.807	1414444.390	40,102	980424.174	980423.590	0.866	12.375	13.825	-3.040	0.0708	10.856
csdop05	1055	425025.573	1414852.613	42.628	980416.883	980424.436	0.866	13.154	6.467	-3.231	0.1177	3.354
csdop06	1056	425029.166	1414921.916	38.167	980416.712	980424.526	0.866	11.778	4.830	-2.893	0.0988	2.036
csdop07	1057	425038.062	1414951.137	55.477	980412.608	980424.749	0.865	17.119	5.843	-4.204	0.0880	1.727
csdop08	1058	425038.253	1415011.066	42.429	980415.514	980424.753	0.866	13.093	4.719	-3.216	0.0898	1.593
csdop09	1059	425044.256	1415047.174	46.789	980413.426	980424.904	0.866	14.438	3.826	-3.546	0.1087	0.388
csdop10	1060	424840.409	1414104.640	16.640	980428.062	980421.800	0.868	5.135	12.265	-1.262	0.0689	11.072
csdop11	1061	424834.390	1414049.091	17.587	980427.669	980421.649	0.868	5.427	12.315	-1.333	0.0680	11.050

*1 仮定密度には、1.80 g/cm³を用いた.

*1 1.80 g/cm³ reduction density was applied.

と考えられる(第3c 図および第4c 図). その長波長 の変化の上に,測線1では,距離3.5~13kmに波長 約10kmの上に凸の高ブーゲー重力異常が重なって いる. この高ブーゲー異常は,反射法地震探査時間 断面(第4b図)でCMP500~2200に見られる馬追 丘陵を中心とした背斜構造と一致する.測線1では, さらに距離6~7.5kmに波長約1.5kmの低ブーゲ異 常が見られるが、この低重力異常は、安平川沿いに堆 積する低密度な河川堆積物による影響や恵庭岳・樽前 山・支笏火山を起源とする火山灰層による影響などが 考えられるが、今後詳細な検討が必要である.測線2 では、東下がりの重力変化に、距離1~3kmと距離4 ~8km付近に2つの上に凸の高ブーゲー重力異常が 認められる.そのうち、東側の距離4~8kmに位置 する高重力異常は,馬追山背斜と一致している.一方, 西側の距離 1~3km に位置する高重力異常に対応す る構造は,地表では認められていないが,反射法地震 探査の結果からは CMP1000 を中心とした背斜構造 が認められ,これとよく一致する.

ブーゲー重力解析は唯一の構造解を持たないが,反 射法地震探査,地表地質および坑井データから得られ る地質構造を拘束条件として用いることにより,ほぼ 唯一の解を得ることができる.また重力データは,反 射法地震探査では得られにくい深部構造に起因する情 報も含んでおり,反射法地震探査から得られる地下構 造のイメージングを強力に支持するデータである.反 射法地震探査データ,重力データ,地表地質データ, および地表の変動地形のすべてを矛盾無く説明できる 地下構造およびその発達史を説明する構造解釈をする 必要がある.

謝辞

本調査は、陸上自衛隊東千歳駐屯地、安平町役場, 苫小牧市役所,北海道開発局苫小牧道路事務所の方々 に多くのご協力をいただき実施することができまし た.関係機関の方々に謝意を表します.

文献

- 池田安隆・今泉俊文・東郷正美・平川一臣・宮内崇裕・ 佐藤比呂志(2002),第四紀逆断層アトラス, 254p,東京大学出版会,東京.
- 伊藤谷生・井川秀雄・在田一則・篠原雅尚・木村 学・ 清水信之・森谷武男・井川 崇・津村紀子・宮 内崇裕・奥池司郎・井川 猛(1999),日高 衝突帯におけるデラミネーション - ウェッジ構 造,月刊地球,**21**,130-136.
- 伊藤谷生・岩崎貴哉(2002), 島弧衝突研究の新展開, 77, 87-96.
- Kato, N., H. Sato, M. Orito, K. Hirakawa. Y. Ikeda, T. Ito (2004), Has the plate boundary shifted from central Hokkaido to the eastern part of the Sea of Japan?, *Tectonophysics*, 388, 75-84.
- Kimura, G. (1996), Collision orogeny at arc-arc junctions in the Japanese Islands, *Island Arc*, 5, 262-275.
- 国土地理院 (2010),日本のジオイド 2000 GSIGEO2000 ver.5,2010年12月12日.
- 地震調查研究推進本部地震調查委員会(2010)「石狩

低地東縁断層帯の評価 (一部改訂)」

- 地質調査所重力探査グループ(1989),地質調査所重 力補正標準手順 SPECG1988 について,地質調 査所月報,**40**,601-611.
- 地質調査総合センター(2004),日本重力 CD-ROM 第2版,数値地質図P-2,地質調査総合センター.
- 平川一臣・越後智雄(2002),石狩低地南部・馬追丘 陵西縁の伏在活構造に関わる地形の変形,活断 層研究,22,63-66.
- 村田泰章・牧野雅彦・遠藤秀典・渡辺和明・渡辺史郎・ ト部厚志(1995),重力探査法による神戸市及 び芦屋市の活断層調査,物理探査学会第93回 学術講演会論文集,135-139.
- 山口和雄・横倉隆伸・岡田真介(2011),苫小牧周辺 の反射法地震探査データ再処理,平成22年度 沿岸域の地質活断層調査研究報告,地質調査総 合センター速報(本研究報告).
- 横倉隆伸・山口和雄・岡田真介(2011),石狩低地東 縁断層帯における反射法地震探査,平成22年 度沿岸域の地質活断層調査研究報告,地質調査 総合センター速報(本研究報告).