福岡県沿岸域における新たな活断層露頭と活断層地形の発見

Finding of some outcrops of the active faults and deformed fluvial terraces in the coastal area of the Japan Sea, Fukuoka Prefecture, west Japan

中村洋介^{1,2}·水野清秀¹

Yosuke Nakamura^{1,2} and Kiyohide Mizuno¹

¹地質情報研究部門(AIST Geological Survey of Japan, Institute of Geology and Geoinformation)

²現在の所属,福島大学うつくしまふくしま未来支援センター(Fukushima Future Center for Regional Revitalization, Fukushima University)

Abstract: We revealed the nature of the active fault located in the Fukuoka coastal zone on the basis of fault outcrops and geomorphic features. We found two new fault outcrops and several deformed fluvial terraces. A newly discovered outcrop of reverse active fault was located in Ikeda, Munakata City. In this outcrop, terrace gravels were deformed by Paleogene sedimentary rocks. We found another new fault outcrop in Kasagi, Iizuka City, basement rocks were deformed by fault and this fault seemed to cut the

Keywords: active fault, lineament, fault exposure, geologic boundary fault, coastal plain, Fukuoka Prefecture

terrace gravels. We also discovered deformed fluvial terraces at several areas. These deformed terraces were characterized by fault scarps associated with accumulation of vertical dislocation of fluvial terraces.

要 旨

福岡沿岸域において未知の活断層を発見すること を目的として,従来の地形面の変形に関する調査の 他にリニアメントや地質境界断層にも着目して現地 調査を実施した.その結果,未知の活断層である可 能性の高い断層露頭を2ヶ所,ならびに断層変位地 形を3ヶ所で発見した.宗像市池田では,古第三系 の堆積岩が段丘礫層に乗り上げる露頭を確認し,飯 塚市笠置では基盤岩を切る断層の先端が段丘礫層に 達している露頭を確認した.その他,福岡市早良区, 宮若市犬鳴川南岸,鞍手町新延の3ヶ所で,後期更 新世の河成段丘面の変形を確認した.これら5ヶ所 のうち,2ヶ所は既存の地質境界断層と位置がほぼ 一致し,残りの3ヶ所もリニアメントと一致する傾 向が認められた.

1. はじめに

北部九州地域(福岡平野〜小倉平野間)には,西 から警固断層,字美断層,西山断層,福智山断層, 小倉東断層などNNW-SSE 走向の活断層が分布する (第1図:活断層研究会,1991;千田,2006).これ らの活断層のうち陸域に分布する範囲については, トレンチ調査・ボーリング調査・反射法探査などが 実施されていて,断層の形状や活動度・最新活動時 期などがある程度明らかにされている(下山ほか, 1999,2005a,2005b,2008;磯ほか,2000;千田ほ か,2001;渡辺ほか,2002;加野ほか,2006;吾妻 ほか,2007など).また,海域における音波探査な どから,警固断層や西山断層は日本海域に延長する 可能性があることが指摘されている(活断層研究会, 1991;千田ほか,1996,2004,2005,2008;池田ほ か,2005;岡村ほか,2009;阿部ほか,2010など). さらに,これらの断層のうち,宇美断層,西山断層, 小倉東断層は第四紀前期には正断層として丘陵と平 野を分化させる地形形成に関与していたが,応力場 の変遷によって第四紀後半には平野側が隆起する逆 断層として再活動したものであるという考えが指摘 されている(下山,2007;下山ほか,2008).

一方で、北部九州地域では上述の活断層に平行して短いリニアメントが何本も走り、それらの一部は 古第三系と花崗岩類を限る地質境界断層(久保ほか、 1993)と一致する.2008年の岩手宮城内陸地震を 始め、地震発生前までに長大な活断層が指摘されて いなかった地域においても、地質境界断層の再活動 などに伴って M7 クラスの地震が発生している例が あることから(例えば、鈴木ほか、2008;遠田ほか、 2010 など)、これらのリニアメントや地質境界断層 が活断層として活動した証拠があるかどうかについ て調査する必要がある.

本研究では、先行研究において活断層として指摘 されていない、いわゆる「未知の活断層」の検出を 目的として、リニアメントが認められる地質境界断 層などにも着目して調査を実施した.まず,空中写 真(約1/40,000および約1/20,000)の判読によって 断層変位地形の疑いのある河成段丘面の変形やリニ アメントの抽出を行った.その後の写真判読の結果 をもとに,断層変位地形と疑わしいと判断した河成 段丘面やリニアメントの現地調査を実施したところ,福岡県宗像市池田において段丘礫層の上に古第 三紀の堆積岩が衝上する断層露頭を発見した.また, 宗像市池田の活断層露頭以外にも,福岡県内にて未 知の活断層である可能性がある既層露頭を1ヶ所, ならびに未知の活断層である可能性がある段丘変位 地形を3ヶ所で確認したので,以下に報告する.

2.活断層であることが確実な断層露頭 (宗像市池田:第2図)

宗像市池田地区にある採石場にて第四紀後期の段 丘礫層の上に古第三紀の堆積岩である池田層(尾崎 ほか、1993)が衝上する活断層露頭を確認した(第 3図).段丘礫層と池田層は露頭の西側では不整合 で接し、露頭中央部では破砕帯を伴う断層で接して いる(第3図A).本断層は段丘礫層の上に池田層 が乗り上げる逆断層である.断層の走向傾斜はそれ ぞれ N20°W, 28°W である.断層の下盤側(南 東側)に変質した池田層を確認できることから、断 層は地下で二条以上に分岐していることが示唆され る(第3図B). 2010年12月に調査を行った際に は盛り土の部分が掘削され、下盤側の段丘礫層と礫 層に不整合に覆われる花崗閃緑岩を確認することが できた(第4図A). 花崗閃緑岩は一見未固結の砂 岩層に見えるほど風化しており,ねじり鎌で容易に 削ることが可能である.段丘礫層の下限の断層を挟 んでの高度差は段丘礫層堆積後の断層運動による上 下変位量を示すことから、段丘礫層/池田層の不整 合面(上盤)と段丘礫層/花崗岩の不整合面(下盤) の高度差を測定したところ、約3.2mの値が得られ た(第4図B).

池田地区周辺には扇状地性の河成段丘面が分布 し、上位より池田 I 面~池田V面の大きく5つの面 に区分できる(第2図).活断層露頭が見つかった 採石場では池田Ⅲ面を構成する段丘礫層が観察でき る.段丘礫層は、砂岩(凝灰質なものを含む)、シ ルト岩、花崗閃緑岩などの亜円~亜角礫から構成さ れる.平均粒径は10-15cm程度であり、やや風化 が進んでいる.Ⅲ面を構成する土壤層と段丘礫層の 間に挟在するシルト層の中から火山ガラスとβ石英 が検出された.土壤層の下部にはほとんど火山ガラ スが含まれないこと、ならびにシルト層中から検出 された火山ガラスの屈折率が n=1.497-1.499 を示し たことから、この火山ガラスは鬼界-葛原火山灰 (K-Tz:町田・新井、2003)に由来する可能性が高い. その場合は池田Ⅲ面の形成時期はK-Tz降下(約 95ka:町田・新井, 2003) 直後であると推測される.

3.活断層である可能性がある断層露頭ならびに 段丘変位地形

3.1 福岡市早良区(椎原川下流域:第5図)

福岡市早良区を流れる椎原川の下流域には、早良 花崗岩から構成される山地・丘陵ならびにそれらを 開析して形成された河成段丘群が分布する(第5 図).本地域に分布する河成段丘面は大きく早良 I 面~早良V面の5面に区分される.これらのうち早 良Ⅱ面を覆う土壤層中からバブルウォール型の火山 ガラスの濃集層(ただし、肉眼では確認できない) を検出した.火山ガラスの屈折率 n=1.497-1.500 で ありβ石英が含まれないことから、姶良-丹沢火山 灰(AT:町田・新井,2003)に同定した.なお, AT は土壤層の中位に濃集しているため、同面は AT 降下時期よりも有意に古いものと推測される.

椎原川右岸の福岡市脇山では,椎原川の流下方向 に斜交する北東側低下の緩やかな崖が認められる. 崖を挾んだ両側において段丘面の最大傾斜方向は北 を示すことから,この崖が小笠木川の浸食によって 形成されたとは考えにくい.また,(1)同様の崖が 脇山の東南方に位置する栗尾においても認められる こと,(2)椎原川流域において早良花崗岩によって 形成された丘陵の先端が直線状に並び,西北西-東 南東方向の地形境界を形成していること,(3)脇山 ならびに池田における河成段丘上の崖の走向が(2) の地形境界とほぼ一致すること,より脇山ならびに 栗尾における緩やかな崖は河川の浸食によるもので はなく,活断層によって形成された変動崖である可 能性が高いと考える.

本地域では断層を挟んだ A-A' ~ D-D' の 4 測 線において地形断面測量を実施した(第6図). A-A'測線ならびに B-B'測線の測量はIII面上で実 施し, 3.9 m (A-A'測線)ならびに 3.5m (B-B' 測線)の上下変位量が算出された. A-A'測線はV 面上で, D-D'測線はIV面上で測量を実施し, 1.9m (C-C'測線)ならびに 4.0m (D-D'測線)の上下 変位量が算出された.

3.2 飯塚市笠置(第7図)

飯塚市の北方の笠城ダム周辺(地名は笠置でダム の名前は笠城である)では、5km以上の範囲にわたっ て直線状の急崖ならびに谷地形が連続的に認められ る(第7図).特に大山や笠置東方では尾根や谷の 系統的な右横ずれが認められ(第7図:a地点,b 地点),本地域における右横ずれ断層の存在を示唆 する.

この度,飯塚市笠置地区において段丘礫層に接する断層露頭を発見した(第8図A).基盤岩中に発達する断層粘土の直上に段丘礫層が堆積する.断層

露頭付近には,主として泥岩から構成される基盤岩 類とそれを不整合に覆う段丘礫層と未固結の砂層が 分布する(第8図B).段丘礫層は泥岩を主体とし, わずかに砂岩を含む.礫径は直径20cmを超えるも のが多く,新鮮な亜角礫ないし角礫を主体としてい る.本地域では河成段丘面はほとんど分布せず,相 田付近に中位段丘相当の段丘面が僅かに分布するの みである.よって,本地域では段丘面の変形を確認 することはできなかった.

3.3 宮若市犬鳴川南岸地域(第9図)

宮若市を流れる犬鳴川の南岸地域(旧若宮町付近) には新旧の河成段丘面が発達する.本地域に分布す る河成段丘面は大きく犬鳴 I 面~犬鳴 V 面の5つの 面に区分される.これらのうち犬鳴Ⅱ面を覆う土壌 層下部からβ石英を含む火山ガラスを検出した.火 山ガラスの屈折率が n=1.497-1.498 を示したことか ら、この火山ガラスを K-Tz に同定した.本地域に は現河川の流路方向(南北方向)に直交し、高位の 段丘面ほど比高の大きな北落ちの撓曲崖が認められ る(第9図). これらの崖は、(1) 複数の河成段丘 において東西方向に連続的に認められること、(2) 高位の段丘面ほど崖の比高が大きいこと、(3) 崖を 挟んだ地点における段丘面の形成時期がほぼ同時期 であると考えられることなどから、河川の浸食によ るものではなく、断層活動によって形成されたと考 えられる (第9図, a-b ライン).

一方,第9図のcとdを結ぶライン上には,尾根 ならびに谷の系統的な右屈曲が認められ,同じく eとfを結ぶライン上には明瞭な地形境界が存在する ことから,断層が複数条に分かれて分布する可能性 がある.本研究では最も平野側を通る活断層(図9 図:a-bライン)に直交する6つの測線において地 形断面測量を実施した(第10図).6本の測量断面 のうち,F-F'断面は犬鳴II面上で計測し,残る5 測線は犬鳴V面上で計測した.その結果,犬鳴V面 における断層の上下変位量は1.9m~2.4mと2m程 度の値を示すのに対し,犬鳴II面(F-F'断面)で は5.8mと低位面における上下変位量の3倍近い値 を示す(第10図).

3.4 鞍手町新延(第11図)

鞍手町新延地区周辺には遠賀川の支流である西川 のさらに支流によって形成された扇状地性の河成段 丘面が発達する.この段丘面は東流する河川によっ て形成されたため最大傾斜方向は東であるが,新延 小学校付近には東に向かって撓み下がる緩やかな崖 が存在する(第11図B).この崖は,段丘面を形成 した河川に直交することから河川による浸食では説 明がつかず,断層活動によって形成された変動崖で ある可能性が高い(第12図).また,福岡県(1972) が示した白亜系の花崗岩と古第三系の堆積岩を限る 地質境界断層がこの崖と近接平行している.本地域 に分布する河成段丘面は大きく鞍手 I 面~鞍手IV面 の4面に区分され,これらのうち鞍手II 面を覆う土 壌層下部から火山ガラス (n=1.497-1.499) と β 石英 を検出し,K-Tz に同定した. 鞍手小学校周辺と同 様の地形は新延の北方延長の数地点において確認す ることができ(第11 図 A),鞍手IV面における上下 変位量は概ね 2-3m(第12 図:N-N'~P-P')であ る.

4. 断層の解釈(分布形態,平均変位速度など) について

4.1 宗像市池田地区

今回発見された断層露頭は後期更新世の段丘礫層 に古第三紀の池田層が衝上することから(第3図), 地すべりなどの重力性のすべりでは説明がつかず, 過去の地震によって形成された活断層であると考え るのが妥当である. 断層露頭発見以前に空中写真判 読に基づいて本地域の地形分類予察図を作成した が、その時点では段丘面の変形には気づかないほど 明瞭でなかった. 断層露頭周辺の河成段丘面は全体 的に東から西に向かって傾斜しているが、本断層露 頭の上方の段丘面は断層の真上で東に向かって逆傾 斜する様子が、縮尺 1/10000 分の空中写真の検討か ら再判読された(ただし,現在は断層露頭付近の礫 層の最上部が人工的に切り取られているために現地 では確認できない). このことも, 段丘面を変位さ せる断層活動が過去に発生したことを示唆する.こ の段丘面の逆傾斜は断層の走向の北方延長 200 mの 地点でも確認ができた(第2図:A地点).ただし、 両地点の間の開析谷やその他の地域では段丘面の変 形は認められない.

前述のように、断層露頭における上下変位量は約 3.2m である(第5図B).池田層と段丘礫層の間に 幅 10cm 以上の断層粘土が発達していることから考 えて、3.2mの変位が1回の地震によって引き起こ されたとは考えにくく,この変位は複数回の地震に よって引き起こされたと考えるのが妥当であろう. 段丘構成層上部のシルト層中のガラスは K-Tz 起源 と考えるので、段丘礫層の形成年代は約10万年前 であると推定されるので、平均上下変位速度は0.03 mm/yr である. ただし, 断層の傾斜が 28 度と低角 であることから、この傾斜が深部まで続くと考える とネットスリップの速度は上下変位速度の倍程度に なると予測される.ただし、今回の調査では最新イ ベントならびに地震時の単位変位量を示すデータを 得ることができなかったため、平均活動間隔に関し ては今後も検討していく必要がある.

本地域では白亜紀の花崗岩類と池田層を限る地質 境界断層の存在が指摘されている(尾崎ほか, 1993).今回発見された露頭は下盤側の段丘礫層の 下位に花崗岩類が認められることから、本断層は尾 崎ほか(1993)が指摘した地質断層と一致すると考 えられる.ただし、今回の調査では池田の断層露頭 周辺以外の地域において活断層露頭ならびに段丘変 位地形を確認することができなかったので、断層が どこまで延長するかについては現在のところ不明で ある.また、他の活断層(例えば西山断層)の活動 と連動して動くかについても現段階では不明であ り、今後の課題である.

4.2 福岡市早良区(椎原川下流域)

福岡市早良区周辺では活断層研究会(1980)によっ て,直線状の尾根や鞍部の連続性から日向峠断層な らびに小笠木峠断層の存在が指摘されている(第1 図).本研究において断層を認定した場所は椎原川 下流域を中心とした小笠木川〜室見川流域の約5km の区間であり(第1図,第5図),日向峠断層と小 笠木峠断層を結ぶ地域に当たる。先行研究(活断層 研究会,1980;九州活構造研究会,1989;活断層研 究会,1991;中田・今泉編,2001など)では日向 峠断層と小笠木峠断層の間に位置する第四紀後期の 地形面には顕著な変位は認められないとしている が,本研究において複数の河成段丘面が変位を受け ていることを明らかにした.

中でも、池田~脇山間では早良Ⅲ面~早良V面が 連続して変位を受けており、早良V面(第6図:C -C'断面)と早良IV面(第6図:D-D'断面)の 上変位量を比較すると早良IV面の方が形成時代が古 く変位量も大きいことから、変位の累積性が認めら れる。一方で、池田における早良Ⅲ面の上下変位量 は3.8~3.9m(第6図:A-A'断面,B-B'断面) であることから、早良Ⅲ面形成時から早良IV面形成 時にかけては断層運動が発生しなかった可能性があ る.本地域では早良Ⅱ面の形成時期がAT降下時期 よりも古いことしか判明しておらず、早良Ⅲ面以降 の詳細な形成時期は不明であることから断層の平均 変位速度を算出することは不可能である.ただし、 現河床との関係からみて早良IV面ならびに早良V面 は低位段丘面である可能性が高い.

上述のように、本研究で指摘したのは小笠木川~ 室見川流域の約5kmの区間であるが、日向峠断層 ならびに小笠木峠断層が活断層であった場合は全長 20km以上の長さになる.ただし、現在のところ日 向峠断層ならびに小笠木峠断層が第四紀後期に活動 した証拠を示す断層露頭や段丘面の変形などは確認 されておらず、今後さらに調査を続けていく必要が ある.

4.3 飯塚市笠置

既述の通り, 笠城ダム周辺では直線状の急崖なら びに谷地形が 5km 以上の範囲にわたって連続的に 認められるが, 1条の断層ではなく2条に分岐して 並走する(第7図).谷の屈曲は右ずれであり,本 地域の応力場とも調和的である.飯塚市笠置におい て確認した断層の走向傾斜はN70°E,52°Sであ り,その先端は段丘礫層に達しているように見える. 仮に段丘礫層が変位していたとしてもその上下変位 量は10cm程度とごく僅かである(第8図).その 理由としては,①今回発見した断層は主断層ではな く副次的な断層である可能性が高いこと,②地形的 に想定される断層は右ずれ成分が卓越する横ずれ断 層であることから上下変位量がそれほど大きくない 可能性がある,の2点より説明することが可能であ る.

本露頭の段丘礫層を充填する粗粒堆積物を分析した結果,ATならびにアカホヤ由来と考えられる火山ガラスが検出された.したがって本露頭の断層が活断層である場合,最新イベントは完新世であると解釈され,さらなる慎重な判断が必要とされる.

4.4 宮若市犬鳴川南岸地域

大鳴II面を覆う土壤層の下部から K-Tz が検出されたことから、大鳴II面の形成時期は約10万年前であると考えられる. 宮若市金生における犬鳴II面の上下変位量は約5.8mであることから、同面における最近10万年間の平均上下変位速度は0.06mm/yrである. ただし、本地域では断層は3条に並走して分布していることから、3条を合算すると平均変位速度はさらに大きくなる可能性がある(第9図). 今回の調査では犬鳴III面以下の段丘面の形成時期を明らかにすることはできなかったが、犬鳴V面における上下変位量は2m前後であり変位の累積性が認められる. したがって、本地域では犬鳴II面形成以降に複数回の断層活動が起こってきたと考えられる.

4.5 鞍手町新延

既述のように、新延小学校付近では断層活動に よって形成されたと考えられる段丘面上の変動崖と 花崗岩類/古第三系の地質断層の位置がほぼ一致す ることから、本地域の活断層運動は地質断層の再活 動によるものと解釈される.この地質断層は、遠賀 平野の西縁において鞍部や傾斜変換点などとして地 形境界をなすことから、本地域において地震が発生 する場合にはこの地質断層に沿って地表変位が現れ る可能性が高い.その場合の全長は約7kmである (第11 図).

前述の犬鳴II面と同様に, 鞍手II面を覆う土壌層 の下部からK-Tzが検出されたことから, 鞍手II面 の形成時期は約10万年前であると考えられる.新 延小学校付近の鞍手II面では約2.9mの上下変位量 が測定され, 同面における平均上下変位速度は 0.03mm/yrである.

5. まとめ

本研究では、福岡沿岸域において未知の活断層の 検出を目的として現地調査を実施した.その結果、 福岡県宗像市池田において段丘礫層の上に古第三系 が乗り上げる断層露頭を発見した.またその他に、 未知の活断層である可能性がある断層露頭を1ヶ所 (飯塚市笠置)、ならびに未知の活断層である可能性 がある段丘変位地形を3ヶ所(福岡市早良区、宮若 市犬鳴川南岸,鞍手町新延)で確認した.これらの 5条の活断層の諸特徴としては、長さはいずれも全 長10km以下の短い活断層であり、平均変位速度も 0.10mm/yr以下のC級活断層である可能性が高いこ とが挙げられる.走向は、池田、早良ならびに新延 では周辺の既存の活断層と並行するが、笠城ダムな らびに犬鳴川では周辺の既存の活断層とは斜交する 走向をなす(第13図).

また,池田ならびに新延では既存の地質境界断層 (脇田ほか,2009) と今回指摘した活断層の位置が ほぼ一致する(第13図)ほか,残りの三地域もリ ニアメント(鞍部列などの線状地形)と一致する傾 向が認められた.2008年岩手宮城内陸地震におい ても,事前に空中写真の判読において活断層を検出 できなかった地域でM7クラスの地震が発生してい ることから,日本にはこれまでの空中写真判読で指 摘されていない未知の活断層が残されている可能性 がある.今回の断層露頭の発見は,それら未知の活 断層の存在を示すものである.今後は,地質境界断 層やリニアメントにも着目して現地調査を行うこと によって,未知の活断層が発見されることが期待さ れる.

謝辞 断面測量調査の際には元福岡大学理学部の田 中甫脩氏にお手伝いいただきました.ここに記して 謝意を表します.

文 献

- 阿部信太郎・荒井良祐・岡村行信(2010)菊川断層 および西山断層海域延長部における海底活断層 調査の概要.日本地球惑星科学連合大会予稿集 (CD-ROM), SSS017-15.
- 吾妻 崇・宮下由香里・二階堂 学・松浦一樹 (2007) 警固断層南端部,筑紫野市武蔵地区における群 列ボーリング調査.活断層・古地震研究報告, 産総研地質調査総合センター, no.7, 231-239.
- 千田 昇(2006)福岡平野の活断層.月刊地球,号 外,活断層・古地震とアクティブテクトニクス, no.54, 112-117.
- 千田 昇・池田安隆・堤 浩之・中田 高(2004) 2.5 万分の1都市圏活断層図「直方」. 国土地理院 技術資料 D・1-No.435.

- 千田 昇・池田安隆・岡田篤正・鈴木康弘・中田
 高(2005) 2.5 万分の1都市圏活断層図「行橋」.
 国土地理院技術資料 D・1-No.449.
- 千田 昇・岡田篤正・中田 高・渡辺満久・鬼木史
 子(1996) 2.5 万分の1都市圏活断層図「福岡」、
 国土地理院技術資料 D・1-No.333.
- 千田 昇・下山正一・松田時彦・鈴木貞臣・茂木
 透・岡村 眞・渡辺満久(2001)福智山断層系
 の新期活動.活断層研究, no.20, 79-91.
- 千田 昇・渡辺満久・岡田篤正(2008)2.5万分の
 1都市圏活断層図「小倉」(第2版).国土地理
 院技術資料 D・1-No.502.
- 福岡県(1972)土地分類基本調查「直方」,福岡県 農政部,51p.
- 池田安隆・千田 昇・越後智雄・中田 高(2004) 2.5 万分の1都市圏活断層図「太宰府」. 国土地理 院技術資料 D・1-No.435.
- 磯 望・下山正一・峯元 愛・千田 昇・松田時彦・ 松村一良・杉山雄一・鈴木貞臣・茂木 透・岡 村 眞・熊井教寿・松山尚典・黒木瑞昭・川口 小由美(2000)西山断層帯(福岡県)の津屋崎 町および飯塚市におけるトレンチ調査報告.活 断層研究, no.19, 91-101.
- 加野直巳・稲崎富士・山口和雄・田中明子(2006) 警固断層南東部での極浅層反射法調査.活断層・ 古地震研究報告,産総研地質調査総合センター, no.6, 143-152.
- 活断層研究会編(1980)日本の活断層 分布図と資 料.東京大学出版会,363p.
- 活断層研究会編(1991)新編日本の活断層 分布図 と資料.東京大学出版会,437p.
- 久保和也・松浦浩久・尾崎正紀・牧本 博・星住英 夫・鎌田耕太郎・広島俊男(1993)20万分の1 地質図幅「福岡」. 地質調査所.
- 九州活構造研究会編(1989)九州の活構造. 東京大 学出版会, 562p.
- 町田 洋・新井房夫 (2003) 新編火山灰アトラス [日 本列島とその周辺].東京大学出版会,336p.
- 中田 高・今泉俊文編 (2002) 活断層詳細デジタル マップ.東京大学出版会, 60p+DVD 2 枚.
- 岡村 眞・松岡裕美・中島徹也・中田 高・千田
 昇・平田和彦・島崎邦彦(2009) 博多湾におけ
 る警固断層の活動履歴. 地震 2, 61, 175-190.
- 尾崎正紀・濱崎聡志・吉井守正(1993)折尾地域の 地質.地域地質研究報告(5万分の1地質図幅), 地質調査所,121p.
- 下山正一(2007) 北部九州の第四紀変動-福岡県西 方沖地震の背景-,月刊地球,29,139-144.
- 下山正一・松田時彦・千田 昇・杉山雄一・磯 望・ 松村一良・鈴木貞臣・茂木 透・岡村 真・松 山尚典・黒木瑞昭・蚊爪康典(1999) 警固断層, 大佐野地区(福岡県)でのトレンチ調査報告.

活断層研究, no.18, 55-64.

- 下山正一・磯 望・松田時彦・市原季彦・千田 昇・ 岡村 真・茂木 透・鈴木貞臣・落合英俊・長 沢新一・今西 肇・川畑史子・矢ヶ部秀美・樗 木政昭・松浦一樹(2005a) 警固断層,薬院地 区(福岡市)でのトレンチ調査報告.活断層研 究, no.25, 117-128.
- 下山正一・松田時彦・磯 望・市原季彦・千田 昇・ 岡村 眞・茂木 透・鈴木貞臣・落合英俊・長 沢新一・今西 肇・川畑史子・矢ヶ部秀美・樗 木政昭・松浦一樹(2005b) 福岡市街地の警固 断層について.九州大学西部地区自然災害資料 センターニュース, no.33, 7-12.
- 下山正一・磯 望・千田 昇・岡村 眞・松岡裕美・ 池田安隆・松田時彦・竹中博士・石村大輔・松 末和之・松山尚典・山盛邦生(2008) 福岡平 野東縁部に位置する宇美断層の特徴について. 活断層研究, no.29, 59-70.
- 鈴木康弘・渡辺満久・中田 高・小岩直人・杉戸信 彦・熊原康博・廣内大助・澤 祥・中村優太・ 丸島直史・島崎邦彦(2008)2008年岩手・宮 城内陸地震に関わる活断層とその意義---関厳 美町付近の調査速報.活断層研究, no.29, 25-34.
- 遠田晋次・丸山 正・吉見雅行・金田平太郎・粟田 泰夫・吉岡敏和・安藤亮輔(2010)2008年岩手・ 宮城内陸地震に伴う地表地震断層―震源.過程 および活断層評価への示唆―,地震第2輯, 62,153-178.
- 脇田浩二・井川敏恵・宝田晋治(編)(2009) 20 万分の1日本シームレス地質図 DVD 版,数値 地質図 G-16.
- 渡辺満久・松田時彦・千田 昇・下山正一・岡村 眞・鈴木貞臣・北九州市防災対策部(2002) 小倉東断層の活動性.活断層研究, no.22, 83-98.

(受付:2011年10月10日,受理2012年1月5日)

- 第1図 研究地域の陰影図と活断層の分布. 断層の分布は千田(2006)ならびに下山(2007)を基に作成. 第2図範囲: 宗像市池田,第5図範囲:福岡市早良区,第7図範囲:飯塚市笠置,第9図範囲:宮若市犬鳴川南岸地域,第11 図範囲:鞍手町新延
- Fig. 1 Shaded map and active faults around the study area [modified from Chida (2006) and Shimoyama (2007)]. Fig.2 : Ikeda, Munakata City, Fig.5 : Sawara Ward, Fukuoka City, Fig.7 : Kasagi, Iizuka City, Fig.9 : Southern bank of the Inunaki River, Miyawaka City, Fig.11 : Ninobe, Kurate Town

第2図 宗像市池田地区周辺の地形分類図. 基図は国土地理院発行の数値地図 25000(地図画像)を使用. Fig. 2 Geomorphological map around the Ikeda, Munakata City. Digital map 25,000 (Map Image) published from Geographical Survey Institute of Japan is used as the basal map.

第3図 宗像市池田における断層露頭の写真(A)とそのスケッチ(B). Fig. 3 Photo (A) and sketch (B) of faults, in Ikeda, Munakata City.

第4図 断層露頭下盤側の写真(A) とそのスケッチ(B). Fig. 4 Photo (A) and sketch (B) of footwall of the fault outcrop.

第5図 福岡市早良区,椎原川下流域の地形分類図. 基図は国土地理院発行の数値地図 25000(地図画像)を使用. Fig. 5 Geomorphological map around the lower reaches of Siiba River, Fukuoka City. Digital map 25,000 (Map Image) published from Geographical Survey Institute of Japan is used as the basal map.

第6図 椎原川下流域における河成段丘面の変形を示す地形断面.断面の位置は第5図参照.

Fig. 6 Topographic cross sections across the deformed fluvial terraces in the lower reaches of Siiba River basin. Locations are shown in Fig.5

第7図 飯塚市笠城ダム周辺の活断層の分布. 基図は国土地理院発行の数値地図 25000(地図画像)を使用. Fig. 7 Active fault map around the Kasagi Dam, Iizuka City. Digital map 25,000 (Map Image) published from Geographical Survey Institute of Japan is used as the basal map.

第8図 飯塚市笠置における断層露頭の写真(A)とそのスケッチ(B). Fig. 8 Photo (A) and sketch (B) of faults, in Kasagi, Iizuka City.

第9図 宮若市大鳴川南岸地域の地形分類図. 基図は国土地理院発行の数値地図 25000(地図画像)を使用. Fig. 9 Geomorphological map of the southern bank of the Inunaki River basin, Miyawaka City. Digital map 25,000 (Map Image) published from Geographical Survey Institute of Japan is used as the basal map.

第10図 犬鳴川南岸地域における河成段丘面の変形を示す地形断面. 断面の位置は第9図参照. Fig. 10 Topographic cross sections across the deformed fluvial terraces in he southern bank of the Inunaki River basin, Miyawaka City. Locations are shown in Fig.9.

第11図 鞍手町周辺の地形分類図. 基図は国土地理院発行の数値地図 25000(地図画像)を使用. Fig. 11 Geomorphological map around the Kurate Town. Digital map 25,000 (Map Image) published from Geographical Survey Institute of Japan is used as the basal map.

第12図 鞍手町における河成段丘面の変形を示す地形断面. 断面の位置は第11 図参照. Fig. 12 Topographic cross sections across the deformed fluvial terraces in the Kurate Town. Locations are shown in Fig.11.

- 第13図 福岡地域の地質図. 脇田ほか(2009)に加筆. ①:宗像市池田, ②:福岡市早良区, ③:飯塚市笠置, ④:宮 若市犬鳴川南岸地域, ⑤:鞍手町新延
- Fig. 13 Geological map of Fukuoka area [modified from Wakita et al. (2009)]. ①: Ikeda, Munakata City, ②: Sawara Ward, Fukuoka City, ③: Kasagi, Iizuka City, ④: Southern bank of the Inunaki River, Miyawaka City, ⑤: Ninobe, Kurate Town