3次元地質構造可視化のための地下断面図

迫垣内 薫¹⁾・原田 芳金²⁾・西村 進³⁾

1. はじめに

ある地域の地質構造を表現するため、資源開発な どの特定地域を除いて、これまでは一般に地質平面 図と代表的な地質断面図で示されていた。これだけ では地質構造を概念的に理解できても地域の全体像 を3次元的に把握することは難しい。また、今日では 地下の3次元地質構造を地質の専門家以外にも防災 上の観点から理解する必要が出てきている。

3次元地質構造の表現のためには,基本的に精度 のよい地表及び地下の地質データが豊富にあること, これらのデータをコンピュータに入力し,多様な画像 に処理することが必要である.本論では3次元地質 構造を作成する方法として,国土数値情報の標準地 域メッシュシステムに準拠した格子状の地質断面図 を作成する方法を示す.モデル地域として大阪湾を 含む六甲地域(東西約25km,南北約18km,深度5 km)を選定している.

2. モデル地域の概要

近畿地方北部は第四紀後半においては東西性の 圧縮場テクトニクスにより,基盤が逆断層や横ずれ断 層を伴う断層地塊構造を示している.日本列島では 活断層の密度の高い地域である(第1図).モデル地 域である六甲地域は,近畿トライアングル地帯の北西 斜辺に位置し,基盤の隆起部と沈降部とが明確に分 かれており,主要な活断層である有馬一高槻構造線 や六甲断層系を含む地質構造的に興味のある地域 である.1995年1月には兵庫県南部地震が発生し た.大阪盆地周辺には基盤に到達する1,000m級の 試錐データが豊富に存在している.

第1図 六甲地域の位置図.日本の地質「近畿地方」 (1987)に加筆.

50 km

横ずれ断層

六甲地域

逆新屬

3. 六甲地域の地質と地質構造

モデルの対象となる六甲地域は,先第三紀花崗岩 類及び中古生界よりなる六甲山地隆起部(基盤)と鮮 新・更新統よりなる伊丹・大阪沈降部(堆積盆)から 構成される.この地域は第四紀の東西圧縮場テクト ニクスにより基盤は逆断層を伴う撓曲構造を呈して いる.堆積盆における堆積環境はほぼ一定に沈降し ている.基盤の隆起部と沈降部との最大変位量は約 100万年の期間で2000mを越えている.

3.1 地質

-34°

H:花木断層

W:和東新屬

U:上町新屬

I:生動断層

S:諏訪断層

Y:大和川断層

六甲地域の地質総括表を第1表に示す. 主として

¹⁾ 三井金属鉱業(株): 〒140 品川区大井1-23-1

^{2) (}財原子力環境整備センター

³⁾ 京都大学 理学部

キーワード: 可視化, 3次元, 国土数値情報, 六甲地域, 地下 断面図

藤田・笠間(1982)に準ずるが,大阪層群については 大阪盆地に実施された深層ボーリング結果と対応さ せるため市原ほか(1991),市原(1993)の分類を引 用した.本地域の地質系統は大きく基盤岩類と被覆 層とに分類される.

a. 基盤岩類

基盤岩類は中古生層(丹波層群),酸性火山岩類 (有馬層群)及び花崗岩類よりなる.六甲山地にお ける中古生層は砂岩・頁岩よりなり,地表部にルー フペンダント状に残存しているが,有馬一高槻構造 線以北では基盤岩体として存在する.酸性火山岩類 は凝灰岩・凝灰角礫岩よりなり,有馬一高槻構造線 以北に広く分布する.凝灰質泥岩の分布から東西性 の褶曲軸をもつ緩傾斜の波曲構造をとり,丹波層群 の侵食平坦面上を明瞭な傾斜不整合で覆っている.

花崗岩類は領家型の花崗閃緑岩と、広島型の六 甲花崗岩に大別できる.六甲山地はこれら花崗岩 類より構成される.領家花崗岩類は六甲山地の西 部に一部見られるが,六甲山地の大部分は六甲花 崗岩が占めている.六甲花崗岩は東北東一西南西 に伸長し北側に傾斜した岩体で,丹波層群・有馬層 群との関係から比較的浅所に貫入したものと考えら れている.

b. 被覆層

被覆層は新第三紀中新世の神戸層群,鮮新一更 新世の大阪層群及びそれ以降の地層よりなる。神戸 層群は六甲山地北方の三田盆地及び六甲山地の西 方に広く分布し,多数の流紋岩質凝灰岩を挟む礫 岩・砂岩・泥岩層の互層からなり淡水成である。し かし,明石海峡付近には海成層も見られる。

六甲南東麓にドーム状に突出する甲山は瀬戸内系 火山に特徴的なサヌキトイド安山岩よりなり, 岩頚が 残存したものである.

大阪層群は六甲山地南東部に広く分布する. 試錐 により伊丹台地や尼崎・大阪平野下に広く厚く分布 している. 砂礫層・粘土層が繰り返す単調な地層群 であるが,多数の火山灰層を挟み,よい鍵層になっ ている. これらの層準と構造的位置関係から第四紀 の地殻変動の実態が明らかとなってきている.

高位段丘面は大阪層群最上部の堆積面であり,中 位段丘以下が段丘的特徴を備えたものである.

3.2 地質構造

隆起山塊をなす六甲山地の範囲は,東西系の有

第1表 六甲地域の地質総括表 藤田・笠間(1982),市 原ほか(1991)による。

地質時代			地質系統		主な地史
	第	完新世 〔 ^{後期}	沖積層 低位段丘 中位段丘]	沖積平野の形成
新	四紀	■ 更新世 】 ■ 中期	高位段丘	被	段丘の形成
生		し、「前期	大阪層群	1	第二瀬戸内海時代
代	新	鮮新世	L 最下部履	§ (**	瀬戸内湖水湖時代
	第二	第	甲山安山岩		瀬戸内系火山岩の噴出
	紀	中新世	神戸層群	j	古神戸湖の時代 第一瀬戸内海時代
中生代	白亜紀		六甲花崗岩 有馬層群 領家花崗岩類	基盤岩橋	広島型花崗岩の貫入 酸性火山岩類の活動期 領家型花崗岩の貫入
古生代			} 丹波層群	J ***	ジュラ紀付加体

馬ー高槻構造線と南北系の高塚山断層,北東ー南西 系の甲陽・五助橋断層で囲まれた三角形の地域であ り,その東部及び南部は沈降部である伊丹盆地〜大 阪盆地に臨むが,北及び西へはほとんど断層が消滅 している.千里丘陵の標高は低いものの,地質構造 的には伊丹盆地の東端に位置する南北系の逆断層 を伴う隆起域であり,その隆起域は大阪市内に伏在 する上町断層にまで連続しているものと考えられる.

上下変位量は、大阪平野の大阪層群では海面下 1,000mの深度に及び、六甲山地では大阪層群堆積 時の平坦面が海抜900mに達する.これらは約20km の距離で基盤の深度が約2,000mに達する変位差を 示している.

六甲山地南東麓における活断層の活動時期と変 位量は次のとおりである(藤田・笠間, 1982).

- ① 断層の活動時期は少なくとも100万年前以降に 始まり、五助橋断層、芦屋断層、甲陽断層と南東 方向へ移行していった傾向がある。
- ② 甲陽断層の運動は海成粘土層Ma5層準以降, 即ち,約50万年以降に活発化している.また,大 阪市内で実施された深層ボーリングOD1,2では, 上町断層を挟む海成粘土層Ma4とMa6との間 (約50~60万年前頃)で上下変位速度が急激に 大きくなり,現在に至っている傾向が認められて いる.
- ③ 各断層に沿う上下変位速度は大きくても0.1mm /年(B級)のオーダーが多いが、各断層変位の総 和としての六甲山地と大阪盆地間に見られる変位 量は、少なくとも1mm/年以上(A級)を示してい る、

地質ニュース 502号

4. 六甲地域の地質構造変動史

六甲地域における大阪層群の岩相,層序,地史に 関するデータ,及び活断層の活動のセンス,変位量, 変位速度,活動の時期に関するデータに基づいた第 三紀後期以降の六甲地域における地質構造変動は 次のようにまとめられる.第2図に六甲地域の隆起・ 沈降の概念を示す.

・300万年前:大阪層群最下部層(O3)の堆積開始

・160万年前:大阪層群下部層(O2)の堆積開始
120万年前:海水の侵入

100万年前:一部の活断層の発生

(100万年以前は撓曲により解消)・87万年前:大阪層群上部層(01)の堆積開始

50万年前:断層地塊運動の活発化(大部分の現存活断層の活動開始)

・現在:50万年以降の断層地塊運動の継続

5.3次元地質構造モデルの作成

以上のような現在の六甲地域の地質構造的位置づけに基づいて,六甲地域の3次元地質構造モデルを 作成することとした.以下の作成基準に基づいて作 業を実施し,最終的に六甲地域の地質平面図(地表, 深度1km,深度2km)及び地質断面図(東西11断 面,南北12断面)を作成した.また,大阪層群の地 質構造や堆積速度の確認のために基盤の等深度線 図(第3図)や層等高線図を作成し、3次元的な地質 構造に矛盾が生じないよう配慮している。第4図に 地質平面図を、第5図及び第6図に地質断面図例を 示す。なお、3次元可視化のための画像処理にあた っては、地表地質平面図及び地質断面図(計23断面) のデジタル化を行っている。

次に3次元地質構造モデルの作成基準を示す.

縮尺:5万分の1で作成する.

② 対象範囲·深度

国土地理院によって整備された国土数値情報の標 準地域メッシュシステムに準拠した次のメッシュを使 用して作成する.すなわち,一次メッシュ:5235,二 次メッシュ:02,03,04,12,13,14,22,23,24である. モデル地域は,基準点を二次メッシュに当たる国土 地理院5万分の1地形図「大阪西北部」の南西端(北 緯34°00',東経135°15')とする東西約25km,南北 約18kmの範囲で深度は5kmとする.

③ 断面線

基準点を通る東西断面線をW0,南北断面線をS0 とし,基準点より順次北にW10,東にS11まで断面 線(東西断面:約1.9km間隔,南北断面:約2.3km間 隔)を設定する.断面数は東西11断面,南北12断面 となる.

④ 層序区分

基本となる六甲地域の層序は,下位から先第三紀

第4図 六甲地域の地質平面図

の丹波層群,領家花崗岩類,有馬層群,六甲花崗岩, 新第三紀の神戸層群,鮮新一更新世の大阪層群(最 下部,下部,上部),段丘堆積物,沖積層に区分する。 甲山安山岩は分布が小範囲であることから省略する。 また,段丘堆積物,沖積層は層厚が薄いことから,こ

れら地質単元の境界の表示は平面図,断面図とも省 略する.

⑤ 基本地質データ

基本地質及び活断層データは,藤田・笠間(1982), 市原ほか(1991),市原(1993)及び活断層研究会

第5図 六甲地域の東西地質断面図

1996年6月号

地質ニュース 502号

(1991)を引用,参考とする.

⑥ 基準面

現在における基準面は海抜0mとする.

⑦ 活断層の活動年代とその形態

活断層の活動年代については,第2図に示したよ うに,約100万年前に一部の活断層が発生,さらに, 約50万年前に現在活動中の活断層が発生し現在も 活動を継続しているとする.活断層の形態について は,深度5kmまでは高角度でほぼ直線上に連続す るものとし,長さも変化しないものとする.深度5km 以深の活断層の形態については考慮していない. ⑧ 活断層でない過去の断層の取り扱い

過去の断層については,地質データの不足のため 母岩に含まれるものとして取り扱い,モデル地域の 地質平面図,地質断面図には表現していない.しか し,有馬一高槻構造線のように過去の断層の一部が 再活動する場合や,新たに活断層が発生する場合の 発生源となる場合が考えられるため,基盤岩類中の 過去の断層構造を把握する必要は残されている.

6. おわりに

現在の3次元地質構造を可視化するためのモデル 地域として,第四紀後半において隆起・沈降活動の 顕著な六甲地域(東西約25km,南北約18km,深度 5km)を選定し,国土数値情報の標準メッシュに準 拠した格子状の地質断面図(東西11断面,南北12断 面)を作成する方法を述べた. 平成7年1月に発生した兵庫県南部地震後,各機 関により各種の地質調査・物理探査が実施されてき ており,その一部は既に公表されている.特に,六甲 地域周辺については,活断層である有馬ー高槻構造 線や六甲・淡路断層系を中心として活断層の活動特 性を特定するためのトレンチ調査や試錐,弾性波や 重力を利用した地球物理探査が実施されており,活 断層の活動年代や過去の被害地震との関係,六甲・ 淡路山地の隆起部と大阪湾沈降部との詳細な地質 構造に関する新知見が得られつつある.今後は,こ れらの新知見を取り込んで,六甲地域周辺における 活断層の3次元的な形態や深部の構造,活断層の発 生から成長の発達過程などを含めたテクトニクスの 観点から,過去から現在に至る活断層の発達史を含 む地質構造を3次元的に可視化していく必要がある.

文 献

- 藤田和夫・笠間太郎(1982):地域地質研究報告5万分の1図幅 大阪西北部地域の地質.地質調査所,京都(11)第50号.
- 市原 実・吉川周作・三田村宗樹・水野清秀・林 隆夫(1991):12 万5千分の1 大阪とその周辺地域の第四紀地質図. アーバンク ボタ,30号.
- 市原 実(1993):大阪層群、創元社、1~340.
- 活断層研究会(1991):新編日本の活断層一分布図と資料.東京大 学出版会.
- 日本の地質「近畿地方」編集委員会編(1987):日本の地質6 近畿 地方.共立出版,169.

SAKOGUCHI Kaoru, HARADA Yoshikane and NISHIMURA Susumu (1995) : Underground Section for Three Dimentional Geological Visualization.

<受付:1996年4月12日>

[付図] 本文の方法で作成した東西・南北断面のブロックダイアグラム