日高変成帯における高温変成作用と地殻溶融

1. はじめに

日高変成帯は北海道中央部の符勝峠から南部の襟 裳岬にかけて、日高山脈に沿って東西10~20 km, 南北約150 km の範囲に分布する. 1980年代以降, 日高変成帯は島弧地殻および海洋地殻の接合衝上体 と見なされるようになり、前者は日高変成帯主帯 (以下,主帯),後者は日高変成帯西帯と呼ばれるよ うになった(小松ほか, 1982; Komatsu et al., 1983). 日高変成帯西帯はおもに緑色片岩相から角 閃岩相(一部低温のグラニュライト相)の塩基性変成 岩類から構成され、日高変成帯の北部から中部地域 にかけて最大幅4km ほどの狭長な分布をなす.こ れらはほぼ完全な層序をもつ変成オフィオライト帯 とされ(宮下, 1983), 最近では幌尻オフィオライ トとも呼ばれている(宮下, 1987; Miyashita and Yoshida, 1988;新井·宮下, 1994). 一方, 主帯 は変成帯の大部分を占め、各種変成岩類とトーナル 岩,はんれい岩,花崗岩などの深成岩類およびかん らん岩類から構成される.これら主帯の岩石構成 ・配列は、東から西へ深部へ向かう島弧地殻断面 をしめすと考えられている(小松ほか,1982; Komatsu et al., 1983;小山内, 1985など). 主帯下 部層では一般に間接的な方法でしか得ることのでき ない下部地殻の情報を,直接的に観察・検討するこ とができる. 主帯最下部のグラニュライト相変成岩 類では部分溶融が起こることも指摘され(Osanai et al., 1991; Tagiri et al., 1989; Komatsu et al., 1994), それに関連する火成作用も検討され始めている(大 和田ほか, 1992;田切, 1992; Osanai et al., 1992a, 1992b).

下部地殻構成物質として一般的な泥質グラニュラ イトの部分溶融と,酸性岩マグマの形成を関連させ

2) 山口大学理学部地鉱教室

小山内 康 人¹⁾•大和田 正 明²⁾

て議論する研究は多い(例えば, Bohlen et al., 1983; Peterson and Newton, 1989; Vielzeuf and Clemens, 1992など). 主帯は以下で述べるように世界でもっ とも若い高温型変成帯の一つの典型と考えられ,現 在の下部地殻での地質現象を理解するうえでも,欠 くことのできない情報提供の場としてとらえること ができる.また主帯における地殻溶融の研究は,現 在も進行中の島弧下部地殻での様々な作用(特にマ グマ発生機構など)を解析するうえでも大きな手掛 かりをもたらすものと思われる.小論では最近の主 帯変成岩類および関連深成岩類についての研究を概 観し,特に"日高島弧下部地殻"における地殻溶融 と酸性火成活動についての最近の知見をのべる.

2. 地質概説

2.1 主帯の地質概略

主帯は岩石構成,地質構造の差異により,大きく 北部,中部,南部の3地域に区分される(第1図). 北部地域とは新冠川から札内川上流にかけての地域 より北方をさし,はんれい岩類,花崗岩類の貫入岩 体が卓越して変成岩類の分布は限られる.南部地域 は幌別川上流メナシュンベッ川から楽古川にかけて の地域より南方で,花崗岩類,はんれい岩類が卓越 するとともに,緩い地質構造をもつ多数のナップの 存在で特徴づけられる.中部地域はペテガリ岳を中 心とする両者の中間部にあたり,貫入岩類が少なく 変成岩類の層序と変成作用を検討するには適した地 域である.

主帯の西側は右横ずれセンスをもつ大規模な衝上 断層(日高主衝上断層:小松ほか,1982)で画され, 幌尻オフィオライトや,イドンナップ層などのいわ ゆる日高帯の非変成堆積岩類と接する.一方東側で

キーワード:日高変成帯,主帯,島弧下部地殻,グラニュライ ト,部分溶融,始新世,アルミナ質トーナル岩, メタアルミナ質トーナル岩

¹⁾ 福岡教育大学教育学部地学教室:

^{〒811-41} 宗像市赤間729-1

は非変成ないし弱変成の堆積岩類(日高帯中の川層 群)と接するが,境界部は漸移的である.中部地域 の主帯は東上位で急傾斜の同斜構造をもつ変成岩類 と,それらに貫入した酸性から塩基性の深成岩類か ら構成される.変成岩類はその原岩構成から,砂泥 質岩主体で塩基性岩を欠く上部層と,塩基性岩を主 体とする下部層に区分される.両者の境界には,角 閃岩相の変成作用を受けた閃緑岩質のシート状貫入 岩体(現在は角閃石-黒雲母片麻岩)やトーナル岩が 分布する.

前田ほか(1986)は北海道中軸帯に産する第三紀 の深成岩類を、産状・岩相・全岩化学組成および同 位体組成に基づいて、日高火成活動帯・ピパイロ~ 豊頃火成活動帯・上支湧別火成活動帯に区分した. 日高火成活動帯は分布と年代値から東列と西列に細 分され、日高変成帯中に産する深成岩類は日高火成 活動帯・西列に属するとされた(前田ほか, 1986). 主帯には、塩基性~酸性深成岩類まで、幅広い組成 の深成岩体が分布する、このらち塩基性岩体の分布 は北部地域(芽室岳岩体・パンケヌシ岩体・トッタ ベッ複合岩体)と南部地域(音調津複合岩体・幌満岩 体)に集中するが,酸性岩体は主帯の全域に分布す る. 塩基性岩体の分布は変成岩の構造と斜交するの が一般的である.しかし,高変成度地域(下部層)に 分布する塩基性岩体には,変成岩類が最高変成条件 に達した以降に起きた変成・変形作用の影響もしば しば認められる(Toyoshima, 1991).酸性深成岩体 は、母岩の変成岩を貫き、明らかに接触変成作用を あたえているものから,変成岩類と密接に伴いミグ マタイト構造を呈して産するものまで様々な産状を 示す(小松ほか,1986,大和田,1989, 高橋, 1992, 志村, 1992).

2.2 変成岩類

下部層の変成岩類は下位(西側)からグラニュライ ト,褐色角閃石角閃岩,角閃石-黒雲母片麻岩の3 つの地質ユニットに区分される(小山内,1985). グラニュライトユニットはざくろ石-しそ輝石-菫青 石片麻岩,ざくろ石-菫青石-黒雲母片麻岩などの砂 泥質グラニュライトと,しそ輝石片麻岩,しそ輝石 (一単斜輝石)角閃岩などの中性〜塩基性グラニュラ イト,およびそれらと互層状に出現する褐色角閃石 角閃岩から構成される.まれにざくろ石,単斜輝石 を含む石灰珪質岩がレンズ状またはブロック状に産

第1図 日高変成帯の地質概略図 日高主衝上断層およびその派生断層は太線でし めす。

する. グラニュライトユニットの岩石は, 主衛上断 層の活動にともないマイロナイト化している場合が 多い. 褐色角閃石角閃岩ユニットは褐色角閃石角閃 岩(稀にゼードル閃石やカミングトン閃石を含む)を 主体とし, ユニット下部にざくろ石角閃岩やざくろ 石-董青石-黒雲母片麻岩, ユニット上部にざくろ石 -黒雲母片麻岩, ゼードル閃石-董青石片麻岩などを 挾有する. 角閃石-黒雲母片麻岩ユニットはおもに, 変成作用以前あるいは同時に貫入した閃緑岩質岩が 原岩と考えられる角閃石-黒雲母片麻岩から構成さ れ, 黒雲母片麻岩, 緑褐色角閃石角閃岩, ざくろ石 -黒雲母片麻岩などの薄層をはさむ.

上部層は下位(西側)から黒雲母-白雲母片麻岩(片 岩)ユニットと変堆積岩ユニット(注1)に区分され, さらに東側の非変成〜弱変成堆積岩類(日高帯中の

1994年6月号

川層群)に漸移する. 黒雲母-白雲母片麻岩ユニット は黒雲母-白雲母片麻岩ないし黒雲母-白雲母片岩か らなり,マンガンに富むざくろ石,董青石,紅柱石 を含む.変堆積岩ユニットは主帯変成岩類の最上部 を構成する.本ユニット下部では片理の発達した黒 雲母-白雲母-緑泥石片岩が出現する.ユニット上部 では片理の発達が弱く白色雲母-緑泥石の鉱物組み 合わせをもち,級化層理や砂泥互層などの原岩の堆 積構造がみられる変堆積岩が出現する.

2.3 酸性火成岩類

主帯に産する酸性岩類は、アルカリ長石に乏しい トーナル岩~花崗閃緑岩を主体とし少量の花崗岩を 伴う.このうちトーナル岩~花崗閃緑岩は変成岩と 密接に産する.トーナル岩類も変成岩類と同様に西 側ほど深部相が出現し、非変成中の川層群に貫入す る花崗岩類を含め、西から東へ最下部・下部・中部 トーナル岩および上部花崗岩に区分される(小松ほ か、1986).最下部トーナル岩は主帯のグラニュラ イトユニット中に産する.一方、下部・中部トーナ ル岩は、それぞれ褐色角閃石角閃岩ユニットおよび 黒雲母-白雲母片麻岩ユニットに貫入し、上部花崗 岩は、非変成中の川層群の堆積岩に貫入する(第2 図).

トーナル岩類は、さらに岩相・鉱物組み合わせに よりアルミナス質トーナル岩とメタアルミナス質ト ーナル岩に区分される(Komatsu et al., 1989). 前 者は Chappell and White (1974)の S-type 花崗岩 類,後者は I-type 花崗岩類にそれぞれ相当する. アルミナス質トーナル岩は一般に不均質で、特に岩 体の周辺部には変成岩類の包有物を多量に含む産状 (ミグマタイト構造)を示す.基質部には、ざくろ 石, 菫青石, 白雲母などの高アルミナ鉱物を特徴的 に含む.一方,メタアルミナス質トーナル岩はアル ミナス質トーナル岩に伴なって小規模に産するが, 主帯中部地域の札内川上流と最南部の豊似岳地域に は比較的大きな岩体が見られる. これらは変成岩の 包有物をほとんど含まず均質な岩相を示し、黒雲母 トーナル岩~花崗閃緑岩あるいは角閃石を特徴的に 含む角閃石-黒雲母トーナル岩である.

最下部トーナル岩は大部分がアルミナス質しそ輝 石-ざくろ石トーナル岩で,日高主衝上断層に沿っ て分布し,多くはマイロナイト化している.周囲の グラニュライトを包有するアグマタイト質な産状を

酸性火成岩(右)の貫入深度と量を表している.

示すことが多い.基質部にはざくろ石,董青石,し そ輝石,黒雲母を含み岩相変化に富む.

下部トーナル岩は大部分がアルミナス質ざくろ石 - 董青石トーナル岩で、中部地域の褐色角閃石角閃 岩ユニット中に小規模に分布する.また、日高主衝 上断層から東に派生した衝上断層に挟まれ、上部層 の黒雲母-白雲母片麻岩ユニット中に見られること もある.角閃岩を包有物として含み、種々のミグマ タイト状構造を示す.基質部は黒雲母、董青石、ざ くろ石などを含む.

中部トーナル岩は日高山脈の主稜線に沿って主帯 全域に分布し,一般にアルミナ質菫青石トーナル岩 である.最南部の豊似岳地域では,アルミナ質トー

第1表 日高変成帯主帯の変成鉱物組み合わせ。

U.S. は上部層,	L.S. は下部層をし	めす.○:出	現,△:稀,−:	出現しない.
ゲードル閃石,	カミングトン閃石,	しそ輝石は,	砂質岩および塩素	基性岩に出現する.

			and the component of													The second second	concentration of the sec	And the factory of grants.
	Sequence	Zone	Chl	Phe	Ms	Bt	And	Sil	Grt	Crd	Ged	Cum	Hbl	Срх	Opx	Pi	Kfs	Qtz
Pelitic rock-	U.S.	I	0	0												0		0
Psammitic rock		П	Δ		0	0	Δ		Δ							о		о
	L.S.	п			Δ	0	Δ		Δ	Δ						0		0
		III				о		Δ	0	о	Δ					Q	Δ	0
		IV				0		Δ	0	0					0	0	Δ	0
Basic rock	L.S.	п				Δ							0			0		Δ
		ш							Δ		Δ	Δ	о			0		Δ
		IV											0	Δ	0	0		Δ

Mineral abbreviations; Chl: chlorite, Phe: phengite, Ms: muscovite, Bt: biotite, And: andalusite, Sil: sillimanite, Grt: garnet, Crd: cordierite, Ged: gedrite, Cum: cummingtonite, Hbl: hornblende, Cpx: clinopyroxene,

Opx: orthopyroxene, Pl: plagioclase, Kfs: K-feldspar, Qtz: quartz

ナル岩体が低角の衝上断層を境に変成岩類を覆らナ ップ構造をなし,トーナル岩体の分布が見かけ上広 くなっている(在田ほか, 1986, 大和田, 1989). これらは一般に,黒雲母-白雲母片麻岩ユニットを 構成する砂泥質変成岩を包有する.貫入母岩との境 界部付近では包有物を多量に含み、アグマタイト質 ~ネビュライト質ミグマタイト・縞状ミグマタイト など様々なミグマタイト構造を示す. 岩体の中心部 には、変成岩包有物をほとんど含まない均質な部分 も見られる. これらの基質部は黒雲母, 董青石, 白 雲母を含む、また、まれにざくろ石を伴うことがあ る.豊似岳地域では、メタアルミナ質トーナル岩が アルミナ質トーナル岩と密接に出現する.両者は貫 入関係で接し、多くの露頭では前者が後者を貫く が,しばしば逆の場合も見られる.一方札内川上流 地域では、変成岩中に直接貫入するメタアルミナ質 トーナル岩体が分布する. 均質な角閃石トーナル岩 が岩体の中心部を占めるが、変成岩と接する周辺部 付近では変成岩包有物を含み不均質な岩相に変化す る(高橋, 1992). 基質の鉱物組み合わせは岩体の 中心部では角閃石・黒雲母であるが、周辺部へ向か うに従い角閃石は減少し、さらに縁辺部では白雲母 ・黒雲母へと変化する.

上部花崗岩はメタアルミナ質な組成を示すことが 多く,包有物をほとんど含まず均質な岩相を示す. 主に斜長石・黒雲母・石英・カリ長石からなり,角 閃石を含むことがある.

3. 主帯の変成作用

広域変成帯の変成作用を解析する際、変成度の地 域的変化に着目することと,一つの変成岩が経た時 間的変成度変化に着目することが必要である。前者 は Progressive 変成作用とよばれ,累進変成作用と いう訳語に相当する. 主帯の場合, 東から西へ地殻 の深部へ向かう変成度上昇として捉えることがで き,変成分帯が可能である.また各深度の変成岩が 最高変成条件に達した,ある一時期の metamorphic field gradient (Spear et al., 1984:地温勾配に相 当)を見積ることができる.一方後者は Prograde 変成作用とよばれ、ある変成岩における時間ととも に変化した温度・圧力履歴を意味する. これには筆 者らの知るかぎり適当な邦訳は見当たらず、後退変 成作用(Retrograde metamorphism)の対語として の上昇変成作用や、履歴を意味して累歴変成作用と いう語が当てられているようである. 主帯を含め多 くの変成帯では、非平衡残留鉱物の解析や鉱物の累 帯構造の解析から温度・圧力・時間変遷(P-T-t path)が描かれ, Prograde 変成作用が検討されてい る.

3.1 主帯の Progressive 変成作用と変成分帯

主帯の変成岩類は上部層・下部層すべてに出現す る砂泥質岩の鉱物組み合わせ変化をもとに、上部 (東)から下部(西)へ4帯(I帯~N帯)に変成分帯 される(小山内ほか、1986; Osanai et al., 1991).各 帯の砂泥質岩および塩基性岩の鉱物組み合わせを第 1表にしめす. I帯はフェンジャイト+緑泥石で特 徴づけられる.II帯は白雲母+黒雲母の組み合わせ が顕著であり、まれに紅柱石が出現する. II帯下部 (高変成度部)では塩基性岩がみられ、ホルンブレン ド±黒雲母の組み合わせをもつ. II帯の砂泥質岩は ざくろ石-珪線石-カリ長石の鉱物組み合わせを特徴 とし、塩基性岩では黒雲母や輝石を欠き、ホルンブ レンド+斜長石が普通にみられる. N帯の砂泥質岩 ではざくろ石-菫青石-カリ長石あるいはざくろ石-菫青石-しそ輝石共生が特徴的であり、塩基性岩で もしそ輝石+ホルンブレンドが普遍的に見られるよ うになる. I帯とII帯の低変成度部は緑色片岩相~ 緑れん石角閃岩相、II帯高変成度部およびII帯は角 閃岩相、N帯はグラニュライト相に相当する. 上部 層はI帯およびII帯低変成度部にあたり、下部層は II帯高変成度部~N帯にあたる. 主帯全域の変成分 帯図を第3図にしめす.

Ⅱ帯~Ⅳ帯の変成温度・圧力条件(第4図)はお もに中~南部地域で検討され,各種地質温度・圧力 計をもとに定量的に見積られている(Osanai et al., 1986, 1991; Komatsu et al., 1989, 1994). Ⅱ帯の変 成条件は280~350 MPa, 450~530℃である. Ⅲ帯 は400~550 MPa の圧力条件で,変成温度は上部: 510~540℃,中部:600~610℃,下部:620~ 650℃が得られている. Ⅳ帯では中部地域で主帯の 屈曲部に発達する東西系の横断断層を境に,北部 (静内川地域:630~720 MPa, 720~870℃)と南部 (元浦川地域:500~600 MPa, 750~790℃)でやや 異なる変成条件が見積られている. これは南部がよ り早い段階で上昇に転じたため,あるいは現在露出 している下部地殻層の層準の違いが現われているた め,など種々の理由が考えられる.

I帯の変成条件を定量的に見積ることは困難であ る.したがってその変成圧力条件の下限として,I 帯と漸移する非変成中の川層群の極細粒〜細粒砂岩 をもちいて孔隙率から埋没深度をもとめ,圧力換算 して180~270 MPa が得られた(小山内ほか, 1989).温度条件の上限は炭質物の結晶構造変化か ら,I帯・II帯の境界で約400℃が推定されている (小山内ほか,1989; Osanai et al., 1991).各帯の変 成条件を結ぶ線が metamorphic field gradient にあ たり,約35℃/km の地温勾配が見積られる.

3.2 主帯の Prograde 変成作用と Retrograde 変 成作用

Komatsu et al. (1989)は主帯の変成・変形史を次

第3図 日高変成帯主帯の変成分帯図 中部地域で変成岩類がもっとも発達する.

の5つのステージに区分した.(i)東西2つの島弧-海溝系の衝突による,白亜紀付加体の構造的パイル 形成と地殻の厚化(M0期),(ii)島弧タイプの火成活 動とそれを熱源とする高い地温勾配下での高温変成 作用(M1, D0期),(ii)地殻深部におけるデュルマン の形成と地殻内水平すべりによる duplex 構造の形 成,および初期後退変成作用(M2, D1期),(v)右ず れトランスプレッション応力下での傾斜-横滑り運 動による変成岩層の上昇,および後退変成作用 (M3, D2期),(v)衝上運動と山脈の形成.

(i)のステージではつみ重なった付加体の下方部分 は圧力が上昇するが温度は低温状態を保持していた と予想される.引き続き(i),(ii)間で等圧温度上昇が 起き,付加体パイル下部ではグラニュライト相に達 した.このM0~M1間のPrograde変成作用は, N帯の泥質グラニュライト中に産する,非平衡残留 鉱物としての十字石の産状から解析される(Osanai

— <u>38</u> —

and Owada, 1990; Osanai et al., 1992a). 石英を含 むドメインでは十字石は2種類(Types 1, 2)の産状 をしめす. Type 1の十字石は粒状で Mg に富み (Mg/(Fe+Mg): X_{Mg} =0.29-0.32), 珪線石やMg に富む菫青石(X_{Mg} =0.75-0.80)と共生してざくろ 石の包有物として産する. まれに Mg に富むへル シナイト(X_{Mg} =0.28-0.30)をともなう場合もある. Type 2の十字石(X_{Mg} =0.22-0.29)は他形〜半自形 で,黒雲母と共生して斜長石の包有物として出現す る. これらは以下の反応の結果形成された.

白雲母+緑泥石

=Mgに富む十字石+黒雲母+石英

- +Vapor ……式1 Mg に富む十字石+石英
 - =ざくろ石+Mg に富む菫青石
- + 珪線石 + Vapor ……式 2 Mg に富む十字石 = ざくろ石 + Mg に富むヘルシナイト
 - + 珪線石 + Vapor ……式 3

式1の反応でPrograde 変成作用初期の段階に Type 1 と Type 2 の十字石が形成される. Type 2 はそのまま斜長石に包有され,以降の反応が進行し なかったのであろう. これらの変成反応は脱水反応 で dP/dT が 高 く 温 度 上 昇 に 敏 感 で あ り, Prograde 変成反応を解析する良い指標になる. こ れらと並行して,N帯泥質グラニュライトでは以下 の反応も起こり最高変成条件(M1)に達した (Osanai et al., 1992a; Komatsu et al., 1994).

- 黒雲母+珪線石+石英
- =ざくろ石+菫青石+カリ長石 +Vapor ……式4
 黒雲母+珪線石+石英+ルチル
 =ざくろ石+珪線石+カリ長石 +イルメナイト+Vapor ……式5

M1 期には後述するグラニュライト相変成岩類の アナテクシス(部分溶融)も起こり,トーナル岩質マ グマが形成された.

(iii),(iv)のステージでは後退変成作用(Retrograde metamorphism)が顕著となる.後退変成の初期
 (M2)は温度降下をあまりともなわない圧力開放
 (200~300 MPa)期で,Mgに乏しい菫青石(X_{Mg})

=0.60-0.67) や Mg に乏しい ヘルシナイト (X_{Mg} =0.15-0.17)が形成される.引き続く M3 期には, 主帯と幌尻オフィオライトが接合することによって 温度降下も顕著となり(小山内ほか,1986; Arita et al., 1993), Mg に乏しい自形の十字石(X_{Mg} =0.17-0.20:Type 3)や紅柱石が形成された.これらの過 程は,泥質グラニュライトにおける以下の反応とし て観察される.

ざくろ石+珪線石+Vapor
=Mg に乏しい菫青石+
Mg に乏しいヘルシナイト式 6
Mg に乏しい菫青石+Mg に乏しい
ヘルシナイト+珪線石+Vapor
=Mg に乏しい十字石式7
珪線石=紅柱石 式8

(w)から(v)のステージでは後退変成作用がさらに進行 し,泥質グラニュライトにおいても白雲母や緑泥石 など緑色片岩相をしめす鉱物が形成されたり,ぶど う石脈が発達したりする.石灰珪質岩では,次のよ うなM3期以降の後退変成反応が観察される.

珪
=ざくろ石+石英+方解石式 9
ざくろ石+斜長石+Vapor
=ゾイサイト+石英+方解石式10
ゾイサイト+ざくろ石+石英+Vapor
=ぶどう石式11
ぶどう石+ゾイサイト+緑泥石+Vapor
=パンペリー石+石英式12

南部地域では、トーナル岩の貫入により局所的に 低圧のグラニュライト相に相当する接触変成作用が 起き、II帯の紅柱石-黒雲母片麻岩中に珪線石、菫 青石、ざくろ石が形成されている(大和田、1989). 以上の Prograde および Retrograde 変成過程は、 時計まわりの P-T-t path としてしめされる(第4 図). I帯~II帯の変成岩類も同様のプロセスを経 たと考えられるが、現在のところ詳細は明らかでは ない.

1994年6月号

泥質グラニュライトのアナテクシスと酸 性火成岩類の形成

島弧-大陸性下部地殻ではグラニュライト相変成 条件下で岩石のアナテクシスが起き、花崗岩質マグ マが形成される.アナテクシスが起こる条件は,温 度・圧力条件のほかに鉱物共生、岩石化学組成、酸 素分圧、流体相中の水・二酸化炭素・フッ素の活動 度などの様々な因子により大きく左右される. 1980年代以降、これらを加味した多くの溶融実験 が行なわれ、泥質グラニュライトにおける黒雲母の 脱水分解による岩石溶融プロセスが明らかにされつ つある. 最近は特に黒雲母中のフッ素含有量が, ア ナテクシスの温度に大きく影響することが指摘され はじめた (Peterson et al., 1991; Osanai and Hensen, in prep.). Osanai and Hensen (in prep.)は黒雲母 (X_{Mg}=0.75)+珪線石+カリ長石+石英という泥質 岩に一般的な鉱物組み合わせにおいて、黒雲母中の フッ素含有量を変化させて溶融実験を行なった. X_F(F/(F+Cl+OH))=0.1の場合,700 MPaでは 850℃で溶融はすでに始まっており、925℃付近で 黒雲母は完全に消失してメルト+残留固相(レスタ イト)となる、 $X_F < 0.1$ の場合はさらに低温から溶 融が始まる、

主帯にはアルミナ質花崗岩類が広範に分布する. アルミナ質花崗岩質マグマ成因として広く考えられ ているモデルは、砂泥質起源物質を下部地殻条件で 部分溶融させることである. 主帯の最下部グラニュ ライトユニットには、部分溶融により形成されたと 考えられる優白質パッチが泥質グラニュライト中に 存在する(第5図). 主帯の泥質グラニュライト(ざ くろ石-菫青石-黒雲母片麻岩)中の黒雲母はX_F =0.02~0.04と低く, 前述したN帯のP-T条件(最 高720 MPa, 870℃)で部分溶融が起こっていたと考 えることに矛盾はない. Osanai et al. (1992a, 1992b)は, 主帯 N帯に産するしそ輝石を欠くざく ろ石-黒雲母片麻岩(080901,081106A)を出発物質 とし,700 MPa,850℃で水を5 wt%加えて溶融実 験を行った. 080901はしそ輝石+斜長石+石英+ カリ長石,081106Aはしそ輝石+菫青石+斜長石

第5図 アナテクシスによる優白質パッチ(しそ輝石, 菫 青石, 斜長石, 石英, カリ長石)を含む, 泥質グ ラニュライト(ざくろ石-黒雲母片麻岩) (91081106A).

+石英+カリ長石の鉱物組み合わせをもつ優白質パ ッチを含み、そこでは斜長石の自形性が強く火成岩 的な組織がみられる.溶融実験では080901はしそ 輝石+斜長石+メルトが,081106A ではしそ輝石 +菫青石+斜長石+メルトが形成され,優白質パッ チは in-situ の部分溶融によって生じたメルトとレ スタイトの集合体であるとみなせる.実験結果の 代表例として081106AのSiO₂-Al₂O₃,SiO₂-FeO +MgO相関を第6図にしめす. レスタイト(しそ 輝石, 菫青石, 斜長石)の組成は平均値をしめして ある.これらは、Ⅳ帯に産する天然のレスタイト集 合体とみなせる、しそ輝石-菫青石(-ざくろ石)片麻 岩(Osanai et al., 1992a, b; Komatsu et al., 1994)中 のそれぞれの鉱物化学組成と近似する(全岩化学組 成は図中×印).母岩(出発物質)の化学組成は、モ - ド組成を考慮して得られたレスタイトの平均化学 組成とメルトの平均化学組成を結ぶタイライン上に プロットされ、さらにレスタイトの平均化学組成は 天然のしそ輝石-菫青石(-ざくろ石)片麻岩の平均化 学組成とも近似する.優白質パッチおよびアルミナ 質の最下部トーナル岩の組成(図中+印)も, ほぼこ のタイライン上にプロットされ,これらがメルトと レスタイトの混合により形成されたものとみなせ る.このときメルトの割合は35~64%程度と見積 られ(第7図),メルトの移動を考慮すると、大和 田・小山内(1989)が計算でしめした50~60%とい う部分溶融量と一致する.溶融反応としては以下の 反応が考えられる(Osanai et al., 1992a; Komatsu et

1994年6月号

第0回 谷融 実験における, 実験生成物とは右 (081106A)の組成関係.
X印:主帯N帯のレスタイトの組成, +印:ア ルミナ質トーナル岩の組成.

al., 1994).

黒雲母+ざくろ石+斜長石+石英
 +Vapor=しそ輝石+メルト・・・・・・式13
 黒雲母+ざくろ石+石英+Vapor
 =しそ輝石+菫青石+メルト ・・・・・式14
 黒雲母+ざくろ石+ルチル+石英
 +Vapor=しそ輝石+菫青石
 +イルメナイト+メルト ・・・・・・式15

主帯の泥質グラニュライト(ざくろ石-菫青石-黒 雲母片麻岩)とその中に含まれる優白質パッチ,お よびアルミナ質トーナル岩(しそ輝石-ざくろ石トー ナル岩:アナテクサイト)をもちいた Rb-Sr 全岩年 代は55 Ma を示す(第8図). このことは、しそ輝 石-ざくろ石トーナル岩の起源物質が主帯の泥質グ ラニュライトであることをしめすと同時に、55

平均値の組成関係. 主帯のアルミナ質トーナル岩はメルトが35~ 64%の割合で残留固相の鉱物と混合する.

Maにトーナル岩マグマが起源物質から分離したと 考えれる(Owada et al., 1991, 大和田ほか, 1992, Osanai et al., 1992a, b). 主帯グラニュライトユニ ットの変成 P-T 条件は700 MPa, 870℃に達する (Osanai et al., 1991)が、しそ輝石-ざくろ石トーナ ル岩に含まれる塩基性グラニュライト(複輝石グラ ニュライト)の変成温度条件は900℃を越す(Osanai et al., 1991, Shimura et al., 1992). また, しそ輝石 -ざくろ石トーナル岩は、優白パッチを含む泥質グ ラニュライトに貫入する産状もみられる. このこと は、しそ輝石-ざくろ石トーナル岩マグマの牛成条 件が主帯グラニュライトのしめす最高変成条件より さらに高いこと、すなわち現在露出している主帯最 下部層のグラニュライトよりさらに深部でマグマが 発生し、主帯がほぼ水平な状態にあった時(M1~ M2 期)にマグマが上昇・定置したことを示唆する.

一方、メタアルミナス質トーナル岩(角閃石-黒雲 母トーナル岩)マグマの成因としては、閃緑岩質マ グマの分化と地殻物質の同化が同時に起こる"分化 ー同化作用"(Ishihara and Terashima, 1985),およ び、主帯グラニュライトユニットを構成する"しそ 輝石角閃岩の部分溶融"(池田, 1984, Tagiri et al., 1989,大和田・小山内, 1989)があげられる.塩基 性岩の部分溶融温度は、一般に泥質岩のそれより高 温であるとされている(Beard and Lofgren, 1991). したがって、角閃石-黒雲母トーナル岩マグマの成 因を後者に求めた場合、角閃石-黒雲母トーナル岩

第8図 主帯におけるアナテクシスの Rb-Sr アイソクロン図(大和田ほか, 1992). 母岩(ざくろ石-菫青石-黒雲母片麻岩),レスタイト(ざくろ石-しそ輝石-菫青石片麻岩)およびアナテクサイト(しそ輝石トーナル岩,優白質パッチ)が一本のアイソクロンにのる.

マグマ形成場は、しそ輝石-ざくろ石トーナル岩マ グマ同様に主帯のさらに深部であると考えられる (大和田・小山内、1989).

6. おわりに

日高変成帯は1940年代から1960年代にかけての 先駆的な研究により、地向斜造山論に基づいて、日 本列島におけるアルプス造山運動(日高造山運動)の 典型的産物として理解された(舟橋・橋本, 1951; Minato et al., 1965; 市川ほか, 1972). 1980年代 以降は、プレートテクトニクスに基づいて新たな造 山論(地殻形成プロセス)が展開され、東西2つの 島弧-海溝系の衝突による変成帯形成論が唱えられ ている(小松ほか, 1982; Komatsu et al., 1983; 小 松、1986など)、いずれの場合にも日高変成帯は、 日本列島における地殻形成史を検討するうえで、最 も典型的な題材を提供する地域とみなされてきてい る.小論では、日高変成帯主帯における高温型変成 作用と酸性火成岩類の成因の関連について、これま で明らかにされた点を概観してきた. 主帯形成史は 以下のようにまとめられる.

主帯は典型的な時計まわりの変成プロセスを経た 低圧/高温型の変成帯である(第4図).原岩形成年 代は,主帯上部層と一連である中の川層群から産出 した放散虫化石によって,80~65 Ma(図中①)と考

えられている(七山・君波, 1989). Prograde 変成 反応を経て55 Ma に変成作用のピークに達し(②), このとき泥質グラニュライトのアナテクシスも起こ った. 主帯には, 現在みられるグラニュライト相変 成岩類のアナテクシスだけでは説明できない量の. アルミナ質・メタアルミナ質トーナル岩が存在す る. 主帯最下部は主衝上断層によって切られてお り、さらに深部に変成岩層が連続していた可能性が ある.そこではアナテクシスがより大規模に起こる ことが予想され, 志村(1992), Shimura et al. (1992)によっても主帯トーナル岩類の大部分はさ らに深部から貫入したものと指摘されている. 主帯 南部地域では40.3 Ma (Rb-Sr 全岩アイソクロン 法)のトーナル岩の貫入により、周囲の変成岩類が 接触変成作用を受けている(⑤)(大和田・小山内, 1988).

泥質グラニュライトの K-Ar 法による黒雲母年 代と Rb-Sr 法による黒雲母-全岩年代は、黒雲母の 閉止温度を考慮して図中③でしめされ、19.9~ 16.3 Ma が得られている(柴田ほか, 1984; Osanai et al., 1991). Arita et al. (1993)は黒雲母, 角閃石の K-Ar 鉱物年代を多数もとめ、岩種・変成度とは無 関係に19.1~16.3 Ma に集中することをしめした. これは、前期中新世後期には主帯の各岩石がすでに 急傾していた結果であり、主帯と幌尻オフィオライ トの接合がそれ以前に起こったとした(Arita et al., 1993). Arita et al. (1993)の年代は, M3 期の主帯 と幌尻オフィオライトの接合が17.1~23.4 Maに起 こったとする小山内ほか(1986)の考えと矛盾しな い. 主帯変成岩類が最終的に地表に露出した(④)時 期は、日高山脈東麓に発達する礫岩中の変成岩礫の 産状から解析され、Ⅲ帯が約10 Ma、Ⅳ帯は5 Ma 程度と見積られている(宮坂, 1987).

このように日高変成帯主帯では,白亜紀末から古 第三紀初頭における原岩形成にはじまり,未成熟な がらも島弧性地殻を形成しつつ,始新世にはその地 殻下部でグラニュライト相変成作用と地殻溶融が起 きた.中新世初期にはオフィオライト帯と接合し, 少なくとも中新世末にはすでに山脈を形成してい た.したがって,主帯は詳細が研究されている変成 帯では世界でもっとも若い高温型変成帯と考えら れ,その特性ゆえに主帯の研究を通して,高温型変 成帯における様々な未解決の問題が明らかになって いくものと思われる. 今後に残された最大の課題の 一つは, 熱源の詳細を明らかにすることであろう.

謝辞:本稿をまとめる機会を与えていただき,有益 なご指摘を下さった北海道大学・石原舜三教授に厚 く感謝申し上げる.

注1:本ユニットはかつてホルンフェルスユニットと呼ば れていた(小山内, 1985など).しかし語意に誤解を生む 点があることから,変堆積岩ユニットに改称された (Osanai et al., 1992a).

文 南

- 新井孝志・宮下純夫(1994):シュンペッ川上流地域における日高 帯ボロシリオフィオライトの剪断変形作用と変成作用.地質 雑, 100, 162-176.
- 在田一則・豊島 剛・大和田正明・宮下純夫・Jolivet, L. (1986): 日高変成帯の構造運動.地団研専報, no. 31, 247-263.
- Arita, K., Shingu, H. and Itaya, T. (1993): K-Ar geochronological constraints on tectonics and exhumation of the Hidaka metamorphic belt, Hokkaido, northern Japan. Jour. Miner. Petr. Econ. Geol., 88, 101-113.
- Beard, J. S. and Lofgren, G. E. (1991): Dehydration melting and water-saturated melting of basalic and andesitic greenstones and amphibolites. Jour. Petrol., 32, 356-401.
- Bohlen, S. R., Boettcher, A. L., Wall, V. J. and Clemens, J. D. (1983): Stability of phlogopite-quartz and sanidine-quartz. A model for melting in the lower crust. Contrib. Miner. Petrol., 83, 270-277.
- Chappell, B. W. and White, A. J. R. (1974): Two contrasting granite types. Pacific Geol., 8, 173–174.
- 舟橋三男・橋本誠二(1951):日高帯の地質.地団研専報, no.6, 1-38.
- 市川浩一郎・藤田至則・島津光夫(1972):日本列島地質構造発達 史.築地書館,232p.
- 池田保夫(1984):北海道,日高帯の花崗岩の徴量元素. MAG-MA, no. 70, 9-14.
- Ishihara, S. and Terashima, S. (1985): Cenozoic granitoids of central Hokkaido, Japan — an example of plutonism along collision belt. Bull. Geol. Surv. Japan, 36, 653-680.
- 小松正幸(1986):日高変成帯のテクトニクス.地団研専報, no. 31,441-450.
- 小松正幸・在田一則・宮下純夫(1986):日高変成帯の構成. 地団 研専報, no. 31, 189-203.
- Komatsu, M., Miyashita, S., Maeda, J., Osanai, Y. and Toyoshima, T. (1983): Disclosing of a deepest section of continentaltype crust up-thrust as the final event of collision of arcs in Hokkaido. In Hashimoto, M. and Uyeda, S. eds., Accretion Tectonics in the Circum-Pacific Regions, 149-165, TERRA Publ., Tokyo.
- 小松正幸・宮下純夫・前田仁一郎・小山内康人・豊島剛志・本吉 洋一・在田一則(1982):日高変成帯における大陸性地殻一上

1994年6月号

部マントル衝上体の岩石学的構成.岩鉱特別号, no.3,229-238.

- Komatsu, M., Osanai, Y., Toyoshima, T. and Miyashita, S. (1989): Evolution of the Hidaka metamorphic belt, northern Japan. J. Geol. Soc. London, Spec. Publ., 43, 487–493.
- Komatsu, M., Toyoshima, T., Osanai, Y. and Arai, M. (1994): Prograde and anatectic reactions in the deep arc crust exposed in the Hidaka metamorphic belt, Hokkaido, Japan. Lithos, (in press).
- 前田仁一郎・末武晋一・池田保夫・戸村誠司・本吉洋一・岡本康 成(1986):北海道中軸帯の第三紀深成岩類一分布・活動年代 ・主要元素組成・テクトニクス一.地団研専報, no. 31, 223-246.
- Minato, M. Gorai, M. and Hunahashi, M. (1965): The geologic development of the Japanese Islands. Tsukiji Shokan, Tokyo, 442p.
- 宮坂省吾(1987): 衝突帯における山地形成一日高山脈の上昇史 一. 松井愈教授記念論文集, 195-202.
- 宮下純夫(1983):日高変成帯西帯におけるオフィオライト層序の 復元.地質雑, 89, 69-86.
- 宮下純夫(1987):日高帯の緑色岩.松井愈教授記念論文集,215-223.
- Miyashita, S. and Yoshida, A. (1988): Pre-Cretaceous and Cretaceous ophiolites in Hokkaido, Japan. Bull. Geol. Soc. France, 8, 251–260.
- 七山 太・君波和雄(1989):北海道中軸帯における中の川層群の 形成.月刊地球,11,328-335.
- 小山内康人(1985):静内川上流地域における日高変成帯主帯変成 岩類の地質と変成分帯.地質雑,91,259-278.
- Osanai, Y., Arita, K. and Bamba, M. (1986): P-T conditions of granulite-facies rocks from the Hidaka metamorphic belt, Hokkaido, Japan. Jour. Geol. Soc. Japan, 92, 793-808.
- Osanai, Y., Komatsu, M. and Owada, M. (1991): Metamorphism and granite genesis in the Hidaka Metamorphic Belt, Hokkaido, Japan. Jour. metamorphic Geol., 9, 111-124.
- 小山内康人・宮下純夫・在田一則・番場光隆(1986):大陸地殻-海洋地殻接合衡上体における変成作用と温度・圧力構造一日 高変成帯主帯・西帯の例--・地団研専報, no. 31, 205-222.
- Osanai, Y. and Owada, M. (1990): Finding of staurolite in pelitic granulites from the Hidaka metamorphic belt, Hokkaido, Japan. Jour. Geol. Soc. Japan, 96, 549-552.
- Osanai, Y., Owada, M. and Kawasaki, T. (1992a): Tertiary deep crustal ultrametamorphism in the Hidaka metamoprhic belt, northern Japan. Jour. metamorphic Geol., 10, 401–414.
- Osanai, Y., Owada, M. and Kawasaki, T. (1992b): Tertiary deep crustal anatexis of pelitic granulites in island arc-type crust of the Hidaka metamorphic belt, Hokkaido, north Japan. Abstracts 29th IGC, Kyoto, 2, 518.
- 小山内康人・大和田正明・高須岩夫(1989):日高変成帯主帯変成 岩類の原岩構成. 福岡教育大紀要, 38,3,71-91.
- 大和田正明(1989):日高変成帯南部に分布する花崗岩類の地質お よび化学組成一特に,董青石花崗岩類について一.地質雑, 95,227-240.

- 大和田正明・小山内康人(1989):日高変成帯における花崗岩類の 成因.月刊地球,11,252-257.
- Owada, M., Osanai, Y. and Kagami, H. (1991): Timing of anatexis in the Hidaka metamorphic belt, Hokkaido, Japan. Jour. Geol. Soc. Japan, 97, 751-754.
- 大和田正明・小山内康人・加々美寛雄(1992):地殻深部における 花崗岩質マグマの形成とその時期―日高変成帯主帯の例―. 月刊地球,14,291-295.
- Peterson, J. W., Chacko, T. and Kuehner, S. M. (1991): The effects of fluorine on the vapor-absent melting of phlogopite+quartz: Implications for deep-crustal processes. Amer. Mineral., 76, 470-476.
- Peterson, J. W. and Newton, R. C. (1989): Reversed experiments on biotite-quartz-feldspar melting in the KMASH: Implications for crustal anatexis. Jour. Geol., 97, 465-485.
- 柴田 賢・内海 茂・宇都浩三・中川忠夫(1984): K-Ar 年代測 定結果,2-地質調査所測定未公表資料-・地調月報,35, 331-340.
- 志村俊昭(1992):花崗岩質マグマのへい入と日高変成帯の衝上テ クトニクス. 地質雑, 98, 1-20.
- Shimura, T., Komatsu, M. and Iiyama, T. (1992): Genesis of the lower crustal garnet-orthopyroxene tonalites (S-type) of the Hidaka Metamorphic Belt, northern Japan. Trans. Roy. Soc. Edin: Earth Sci., 83, 259-268.
- Spear, F. S., Selverstone, J., Hickmott, D., Crowley, P. and Hodges, K. V. (1984): P-T paths from garnet zoning: a new technique for deciphering tectonic processes in crystalline terrains. Geology, 12, 87-90.
- 田切美智雄(1992):日高変成帯主体のミグマタイト系列とマグマ の分離上昇.月刊地球,14,254-258.
- Tagiri, M. Shiba, M. and Onuki, H. (1989): Anatexis and chemical evolution of pelitic rocks during metamorphism and migmatization in the Hidaka metamorphic belt, Hokkaido. Geochem. Jour., 23, 321-337.
- 高橋 浩(1992):日高変成帯主帯札内川上流地域のトーナル岩類 の岩石学的研究—S-タイプ/I-タイプ花崗岩類の共存関係—. 地質雑, 98, 295-308.
- Toyoshima, T. (1991): Tectonic evolution of the Hidaka metamorphic belt and its implication in late Cretaceous — middle Tertiary tectonics of Hokkaido, Japan. Sci. Rep. Niigata Univ. Ser. E, Geol. Miner., 8, 1-107.
- Vielzeuf, D. and Clemens, J. D. (1992): The fluid-absent melting of phlogopite+quartz: Experiments and models. Amer. Mineral., 77, 1206-1222.
- OSANAI Yasuhito and OwADA Masaaki (1994): High temperature metamorphism and related crustal anatexis in the Hidaka metamorphic belt, Hokkaido, north Japan.

〈受付:1994年3月28日〉