Sikhote-Alin の地質と鉱床

佐藤 興平¹⁾ • N. I. Lavrik²⁾ • A. A. Vrublevsky³⁾

1. はじめに

ロシア南東端のシホテアリン(Sikhote-Alin)地域 と日本列島は、日本海を挟んで近距離にありなが ら、日露両国の歴史的経緯を反映して、互いに余り なじみのない地域であった。もともと両地域は日本 海ができるまで隣り合い、地質学的には類似の歴史 を経てきたと考えられるが、その実態は必ずしも明 確になっていない。しかし、今後両国の関係が密接 になれば、人的・経済的交流とともに地質・鉱物資 源分野での研究協力も進められ、日本海を挟む2 つの地域を総合化した共通の理解が深まると期待さ れる。このような動向も念頭に置いて、本稿ではこ れまでに得られている資料を基に、シホテアリン地 域の地質の概略と主な鉱床を紹介してみたい。

シホテアリン地域には, 旧ソ連邦でも有数の錫 ・タングステンおよび鉛・亜鉛鉱床が産する. こ れらは, 白亜紀-古第三紀の酸性火成活動により形 成された鉱床で、日本の同時代の鉱床と類縁関係に あると考えられるが、鉱化時期や関係火成岩の特徴 についてはデータに乏しく、日本列島の鉱床生成区 と対比するうえでは、今後に残された検討課題も多 い.本稿の目的のひとつは、このような検討課題を 整理してみる事にある.執筆にあたっては、まずロ シア科学アカデミー研究所の2名が鉱床各論を中 心に草稿を作成し、関連資料も参照しつつ佐藤が全 体をまとめた.用いた鉱床地質図の原図は未公表資 料であるが,一部は末尾に示した参考文献(例えば, Smirnov, 1978)に採用され公表された形になって いる.しかし、旧ソ連邦の他の多くの文献と同様 に、それらには縮尺が付いていないので、この機会

第1図 シホテアリン(Sikhote-Alin)地域の位置.

に縮尺を入れて鉱床の規模を理解しやすいようにした.

2. シホテアリン地域の地質概略

シホテアリン地域は日本海北西岸沿いの山岳地帯 である(第1図).本州の規模に相当する延長1200

¹⁾ 地質調査所 鉱物資源部

Institute of Tectonics and Geophysics, Russian Academy of Sciences, Khabarovsk

Institute of Complex Analysis of Regional Problems, Russian Academy of Sciences, Birobidzhan

キーワード:ロシア、日本海、シホテアリン(Sikhote-Alin)、 付加体,花崗岩,鉱床、スカルン、鉱脈、タング ステン、錫、鉛、亜鉛、ホウ素、Vostok-2、Dalnegorsk, Kavalerovo

km 幅200 km 余りのこの山地は、シホテアリン山 脈と呼ばれるが、平均高度は800 m 前後で最高地 点でも2000 m をわずかに超えるに過ぎず、比較的 なだらかな地形を特徴とする.東側はやや急傾斜で 日本海に迫り、西側は中国国境のウスリー川やその 下流のアムール川が流れる平地へと徐々に高度を下 げていく.この非対称な山脈の西斜面を山脈と平行 に走るシホテアリン中央断層(Central Sikhote-Alin Fault)は、第一級の構造線にふさわしく広域的な地 形図にも明瞭に現れている.

シホテアリン山脈は植生が密で開発も余り進んで いないため、地質調査には多大の困難を伴う.この 地域の主な産業は鉱業と林業で、山脈南西端のウラ ジオストックやナホトカは良港に恵まれて水産業も 盛んである.現在の行政区分では、南半分がプリモ ーリエ地方(Primorye-krai;沿海州)に、北半分が ハバロフスク地方(Khabarovsk-krai)に属する.こ こで紹介する鉱床はいずれもプリモーリエ地方にあ る.

地質学的にみたシホテアリン地域は、先カンブリ ア紀-古生代の地塊であるブレヤ(Bureya)およびハ ンカ(Khanka)地塊の東側に分布する中生代の付加 褶曲帯である.アジア東縁部は三畳紀までは大西洋 型大陸縁が主体であったが、ジュラ紀に至り太平洋 型の活動的大陸縁に転化し、全域で付加体が発達し 始めたとみられる(例えば、Maruyama et al., 1989).シホテアリン地域や日本列島の骨格はこの ような活動的大陸縁で形成された地質体からなる.

シホテアリン地域は10年程前までは中一古生代の 地向斜とされてきた.1980年代に入って,付加帯 の考え方が導入され,以後同様の視点に立つ研究が 数多くなされてきた(Zonenshain et al., 1990).し かし,調査が充分進んでいないため時代や成因の判 っていない岩体や地帯が多数残されており,また断 層や褶曲により複雑な構造を呈するため,地体区分 やその名称は研究者により異なる事があって,この 地域の構造発達史の詳細はまだ研究途上にあると言 わなければならない.第2図にはシホテアリンと その周辺地域の地質構造区分の概略を示した.

この地域の中生代以降の地史をごく大まかに記述 すれば以下のようになろう.すなわち,ジュラ紀-前期白亜紀の海洋プレート(イザナギプレート?) 沈み込み帯に堆積した陸源堆積物と海洋起源の火山

第2図 シホテアリン(Sikhote-Alin)地域の地質構造区分. (Vrublevsky, 1991; Natalin, 1991). 1. 先カンブリア紀-古生代の地塊, 2. Mongol-Okhotsk 褶曲スラスト帯, 3. Badzhal-Amur 褶 曲スラスト帯, 4-5. Sikhote-Alin 褶曲スラスト 帯(4. ジュラ紀付加体, 5. 前期白亜紀付加体), 6. 内陸堆積盆(I. 新生代 Middle Amur 盆地, II. 白亜紀 Partizan 堆積盆), 7. 前期白亜紀 Khingan-Okhotsk 火山岩地帯, 8. 後期白亜紀一新 生代火山岩地帯, 9. 主な断層(① Mongol-Okhotsk suture, ② Amur suture, ③ Central Sikhote-Alin Fault), 10. 主な鉱床(① Vostok-2(W), ② Dalnegorsk(Pb-Zn), ③ Dalnegorsk (B), ④ Kavalerovo (Sn)).

岩や堆積岩が渾然一体となった付加コンプレックス がその後さらに左横ずれ成分をもつ著しい変形を受 け,後期自亜紀から古第三紀にかけて一帯は大規模 な酸性火成活動の場となり,これに伴って様々な鉱 床(Sn, W, B, Pb, Zn, Au, Ag)が形成された.新第 三紀-第四紀には,散点的ながら広い範囲で安山岩-玄武岩質の火山活動が生じ,内陸盆地は砕屑性堆積 物で埋められた.

2.1 ジュラ紀-白亜紀付加体

ジュラ紀の付加体はシホテアリン地域の中部から 南部にかけて分布し, Central Complex または Samarkinsk Complex と呼ばれる(第2図の凡例 4). この地帯には、まだ成因のよく判らない地質 体が多数含まれている.後期デボン紀-前期二畳紀 のチャートと前期石炭紀-前期二畳紀の石灰岩を伴 う後期古生代のオフィオライトや後期二畳紀-三畳 紀の陸源堆積物に被われた斑れい岩-角閃岩複合岩 体も含まれる.最も広範な分布を示す異地性岩体は 三畳紀のチャートである.

前期白亜紀の付加体はシホテアリン地域の南東部 に分布し、Primorsk Complex または Taukhinsk Complex と呼ばれる(第2図の凡例5). この地帯 には、後期古生代-ジュラ紀のチャートや石灰岩や 玄武岩質火山岩類あるいはモノチス(*Monotis*, 二枚 貝類)を含む後期三畳紀の砂岩が異地性岩塊として 含まれている. 三畳紀のチャートの上にジュラ紀の 泥岩と白亜紀初期(ベリアス階, Berriasian,約130 Ma)の砂岩が重なる例も認められる.

シホテアリンの特にジュラ紀の付加体は、日本列 島と対比すると、美濃-丹波帯に似た特徴を持ち、 かつては一連の地帯を構成していたと考えられる (例えば、Mizutani, 1987; Kojima, 1989).

2.2 白亜紀-古第三紀の火成活動と鉱化作用

後期白亜紀にはシホテアリンのほぼ全域が陸化し 酸性火成活動の場となった.ほとんどの活動は80-50 Ma に生じたらしい(Zonenshain et al., 1990). 日本海岸沿いには後期白亜紀-古第三紀の火山岩類 が広く分布し, East Sikhote-Alin Volcanogenic Belt と呼ばれる(第2図の凡例8).第2図には示 してないが,同時代の火山岩類はシホテアリン中央 断層をこえて内陸深くハンカ地塊上にまで分布して おり,花崗岩質岩体も同様の広い範囲に貫入してい る(第3図A参照).シホテアリン地域の主要鉱床 はこの花崗岩活動により形成されたもので、ジュラ 紀−前期白亜紀の付加体に含まれる石灰岩(古生代− 三畳紀)は、スカルン鉱床の母岩として重要な役割 を果した.

シホテアリン地域の後期白亜紀以降の地質は、前 期白亜紀以前の複雑な構造に比べて、比較的単純な 構造を持つらしい. 最も詳しく調べられているのは 鉱床地域であるが、例えば後で述べる Kavalerovo 地域では(第2図と3図Aに位置を示す),余り変 形していない後期白亜紀-古第三紀の火山岩層が, 著しく変形した下部白亜系を不整合に被っている(第 7図参照).シホテアリン全域の地質図を見ても, 後期白亜紀以降の火山岩類の分布が断層によって大 きく乱されているようには見受けられない. この地 域最大のシホテアリン中央断層は, それ以前の北東 - 南西方向の断層を大きく左ずれさせているが(第 2図),主なずれは花崗岩類の活動以前におこった らしい、この断層の活動は古第三紀まで続き、すで に述べたように地形にもよく現れているが、花崗岩 質岩体のずれから見積られた左ずれ変位は60-100 km 程度である(Natalin et al., 1986). したがって, ここで取り上げる後期白亜紀-古第三紀の花崗岩類 や鉱床の分布は形成時の位置関係を保持していると みてよいだろう.この事は、日本列島の鉱床生成区 との対比を行なう場合に考慮すべき要素のひとつで ある.

第3図には、プリモーリエ地方における後期白 亜紀−古第三紀の花崗岩類と主要金属鉱床の分布を 示し、あわせて磁気および重力異常の広域変化も示 した. 錫-タングステン鉱床が低重力-低磁気異常域 に分布する事が読み取れる.磁気異常の分布は錫-タングステンの鉱化を伴う火成岩類が低磁性つまり 還元型(チタン鉄鉱系)である事を示唆する. Ishihara (1977)の指摘はこの地域でも有効であるかに みえる (Ishihara and Sato, 1991; Sato et al., 1992). 詳細は不明だが, Romanovskii (1989) や Mishin and Petukhova (1991)も、ロシア極東地域の火成 岩類の帯磁率を広域的に調べ、同様の見解を述べて いる.ところが、実際にこの地域を訪れた石原 (1980)は、磁鉄鉱系(酸化型)火成岩卓越地帯に多 量の錫石が産する点でプリモーリエ地方は世界的に は異色である、と指摘している.実際には余り単純

ではないらしい.筆者らの予察的検討によっても,

第3図 プリモーリエ (Primorye)地方の(A)花崗岩類と主な鉱床の分布,(B)磁気および(C)重力異常の広域変化. (A)は Kosygin et al. (1984)と Circum-Pacific Council for Energy and Mineral Resources (1993)
 参照. (B)および(C)はカルニッチ(1971)参照. (B)のハッチは正の磁気異常域(USSR Ministry of Geology, 1977)にほぼ対応.

両系列の花崗岩類が確認されている(佐藤ほか, 1993).それらの詳しい分布や鉱化作用との関係に ついては、今後の研究に待たねばならない.

2.3 ジュラ紀の付加体と火成活動

アジア東縁部における中生代の火成活動と鉱化作 用という枠組みからみると、シホテアリン地域周辺 にジュラ紀の活動が欠落しているように見える点が 注目される、ジュラ紀の火成活動は中国東部から朝 鮮半島までと北方のオホーツク海沿岸の長大な範囲 に生じていたのに、その中間のシホテアリン付近に は存在しなかったかのように見える. ブレヤ・ハン カ両地塊には花崗岩類が広く露出するが、その大部 分は古生代のもので、ジュラ紀の火成岩類を欠く (Kosygin et al., 1984; Zonenshain et al., 1990). ジ ホテアリン地域に付加体を発達させたジュラ紀の沈 み込み帯に対応する火成活動帯が、その西側に見出 せないのである. Parfenov and Natalin (1986)もこ の矛盾を指摘したが、これに回答を与えていない. この問題の解決には、シホテアリン地域周辺の広い 範囲について、更に詳しい年代データを集積する必 要があると共に、地体構造の再配列の可能性も考慮 する必要があろう.

ブレヤーハンカ地塊とシベリア大陸の間にあった 海が消滅して両大陸が衝突合体したのは、ジュラ紀 中頃から前期白亜紀の事とされる(例えば, Natalin et al., 1986; Zonenshain et al., 1990). シホテアリ ン地域に付加体が発達し始めたのは、詳しくみると ジュラ紀の中-後期であって(例えば、Khanchuk、 1992), ブレヤーハンカ地塊北縁での衝突事変と調 和する.おそらくこの時まで,シホテアリン地域は 大西洋型陸縁かトランスフォーム型の境界であっ て、北縁での衝突と共に太平洋型に転化したのでは なかろうか. 第2図に示した前期白亜紀の Khingan-Okhotsk 火山岩地帯(凡例の7)はこの沈み込み に関係するのかも知れない.一方, Zonenshain et al. (1990)は、ジュラ紀の火成活動帯の欠如を念頭 に置いて、ジュラ紀まで大西洋型大陸縁であったブ レヤーハンカ地塊の東縁に白亜紀中頃に沈み込み帯 が形成され、別の場所で出来たシホテアリン島弧が 付加したと主張している.彼らのモデルは(117頁 Fig. 103-104の古地理図参照),付加体を構成する 膨大な陸源堆積物の起源に問題があるが、シホテア リン地域そのものが原地性でないとする発想は評価 されよう.いずれにしても、ジュラ紀の沈み込み帯 - 火成活動帯という配列の議論には、斜め沈み込み 帯で生じたであろう大規模な左ずれの変動像が明ら かにされなければならない.

第4図 Vostok-2 タングステン鉱床の地質(左:平面図;右:断面図, A. Ivakin および N. Lavrik et al. 原図).
 1. 砂岩, 2. 黒雲母ホルンフェルス, 3. 石灰岩, 4. チャート, 5. 花崗岩および花崗閃緑岩, 6. 鉱体,
 7. ひん岩脈

3. 鉱床各論

シホテアリン地域で最も重要な鉱床は,タングス テン・ホウ素・スズおよび鉛・亜鉛鉱床である.以 下にその代表的な例を北から南へと紹介しよう.こ れらはいずれもプリモーリエ地方にあり(第2,3A 図参照),旧ソ連邦のなかでも代表的な鉱床である (例えば,Smirnov,1978).ここに示す図の原典の 多くは未公表資料であるが,この機会に縮尺を付け て公表する.

3.1 Vostok-2 タングステン鉱床

Vostok-2 はプリモーリエ北部のシホテアリン中 央断層近くに位置する大規模なタングステン・スカ ルン鉱床である.この鉱床は、ジュラ紀の付加体に 異地性岩体として含まれる二畳紀の石灰岩が、白亜 紀の花崗岩質岩体の貫入に伴う鉱化作用により交代 されてできたもので、鉱体は原岩の石灰岩体の形態 を反映して板状をなし(厚さ \leq 70 m),走向(北東-南西)方向に600 m以上,傾斜(60-85°北西)方向に 800 m以上連続する事が確認されている(第4 図参 照).鉱床中央部に貫入した岩株状の花崗岩質岩体 は、斑状の花崗岩-花崗閃緑岩からなり、周辺にグ ライゼン変質を伴う.

鉱石は灰重石-硫化鉱と石英-灰重石鉱とからな る. 灰重石-硫化鉱は、この鉱床の最も重要な鉱石 で、主に磁硫鉄鉱からなり(平均70-80%), 灰重石 の他に硫砒鉄鉱・黄銅鉱その他の鉱石鉱物(錫石, 閃亜鉛鉱, Bi 鉱物など)を含む. 石英-灰重石鉱は, 花崗岩質岩体との接触部付近に産し, 灰重石-硫化 鉱に比べて量は少ないが、タングステン品位が極め て高い事で特徴づけられ、しばしば灰重石のみから なる塊をなす.

鉱化作用は早期から後期へ以下の4つのステージに分けられる.

- (1) 輝石-ざくろ石-アクチノ閃石スカルンの生成. 鉱石鉱物の晶出は比較的少ない.
- (2) 石英-灰重石鉱の生成.
- (3) 硫化鉱の生成.スカルンと石英-灰重石鉱に重 複.
- (4) 鉱体を切る微弱な石英-方解石脈の生成.

Vostok-2 鉱床は、スカルン鉱物に比べて磁硫鉄 鉱の量が極めて多いという点で、典型的なタングス テン・スカルンとはいくぶん異なるが、鉱石の鉱物 組合せは山口県玖珂地域のタングステン鉱床に似て

第5図 Nikolayevsk Pb-Zn 鉱床の地質断面図
(A. Sedykh and A. Natarov 原図).
1. 流紋岩質凝灰岩-凝灰角礫岩, 2. 石灰岩, 3. 礫岩, 4. 珪質泥岩, 5. 礫岩-泥岩互層, 6. 閃緑岩-斑れ い岩, 7. 輝緑ひん岩脈, 8. スカルン鉱体, 9. 火山岩中の石英-硫化物脈, 10. 断層.

おり, 還元型(Sato, 1982)に属するとみられる.

3.2 Dalnegorsk 地域の鉛・亜鉛鉱床

Dalnegorsk 地域の Pb-Zn 鉱床は、ナホトカの北 東約300 km のシホテアリン山脈東斜面にあり、 Tetyukhe 川を下るとわずか25 km 余りで日本海に 達する.この地域の鉱床は、これまで Tetyukhe ス カルン鉱床群と称されてきたもので、Cu や Au-Ag なども伴う事から、旧ソ連邦の文献ではしばし ば多金属鉱床として分類されている.

この地域で最大の鉱床は Verkhneye であるが, 1910年以来開発が続けられ,採掘はほぼ終了した. その他の主要鉱床は, First Soviet, Second Soviet, Eastern, Middle, Western Partizan などで,これら はさまざまな開発段階にある.過去10数年間に比 較的大きな潜頭鉱床のSadovoye および Nikolayevsk が発見され,現在この地域の主要な鉱 石供給源となっている.

この地域の鉱床は、前期白亜紀の付加体に含まれ

る三畳紀の石灰岩を交代したスカルンー硫化物鉱体 からなる. 鉱体は板状・レンズ状・マント状・脈状 など様々な形態をとるが、鉱石の特徴は互いによく 似ている.後期白亜紀-暁新世の酸性火成活動が鉱 化作用をもたらしたとみられ、流紋岩質火山岩類が 付近の白亜系を不整合に被い、その一部は鉱化を受 けている. 第5図には, Nikolayevsk 鉱床の地質断 面図を示した、この鉱床の主要鉱体は地下700-1200 m の深度にあり、全体として緩傾斜の板状を なすが、パイプ状に下に伸びて複雑な形態を示す. 鉱石はヘデン輝石・ざくろ石・斧石などのスカルン 鉱物と硫化鉱物および石英・方解石からなる.硫化 鉱物は主に方鉛鉱・閃亜鉛鉱・磁硫鉄鉱で、少量の 硫砒鉄鉱や黄銅鉱などを含む.鉱床上位の火山岩中 にも,熱水変質帯を伴う石英-硫化物脈が産する(凡 例の9).

この地域の鉱床を日本の例と比べると、白亜紀末 -古第三紀初期に形成された比較的浅成の Pb-Zn ス カルンという点では,飛騨山地の神岡鉱床に類似す ると言えよう(佐藤・内海,1990参照).ただし, 鉱床母岩の時代や鉱体の産状は異なり,神岡にはホ ウ素(B)の鉱化を伴わない.

Dalnegorsk 地域の鉱床は、その経済的な重要性 に加えて、みごとな自形結晶の集合した鉱物標本を 産する事でも注目される.これは鉱体中の晶洞に産 するもので、自形結晶は硫化鉱物の他に石英・珪灰 鉄鉱・蛍石・方解石などである.方解石にはピンク を含むさまざまの色合いの7つの結晶形態が見ら れる.

3.3 Dalnegorsk ホウ素鉱床

この鉱床は Dalnegorsk 地域の中央部にあるが, 上記の Pb-Zn 鉱床群からはいくぶん離れている. ホウ素のみが経済的に採掘されるという点でも,鉱 化作用のユニークさという点でも,この鉱床は多く の地質学者の興味の対象となってきた.最近の研究 によると,この鉱床は前期白亜紀の付加体中の石灰 岩を交代した単一のスカルン岩体で,原岩の三畳紀 石灰岩は巨大な板状のブロックとして珪質な陸源堆 積物に含まれている(第6図参照).鉱床の下位に は大きな花崗岩質岩体が伏在する事が,試錐によっ て確認されている.

スカルンは主に珪灰石・ざくろ石・ヘデン輝石か らなる.最も重要なホウ素鉱物はダトーライト (Datolite, CaBSiO₄(OH))で,他に斧石(Axinite, (Ca, Mn, Fe)₃Al₂BSi₄O₁₅(OH))も含まれる.スカ ルンはリズミックな縞状構造を持ち,磨いて装飾品 としても活用される.また,鉱床の北東部には、ダ ンブリ石(Danburite, CaB₂(SiO₄)₂が産し,晶洞中

(V. Shcherbinin 原図, USSR Ministry of Geology, 1983).
1. 未固結堆積物, 2. 後期ジュラ紀の珪質泥岩-砂岩, 3-5. 上部三畳系(3. 石灰岩, 4. 砂岩層を挟む泥岩, 5. 砂岩泥岩互層), 6-8. 古第三紀岩脈(6. 輝緑ひん岩, 7. 安山岩質ひん岩, 8. フェルサイトと石英斑岩), 9-11. スカルン(9. 含ダトーライトスカルン, 10. ダンブリ石スカルン, 11. ホウ素鉱物を含まないざくろ石スカルン), 12. 石英-方解石脈, 13. 断層.

第7図 Kavalerovo 地域の地質の概略と錫鉱床の分布. Khanchuk et al. (1989)を簡略化. 1. 前期白亜紀付加体(砂岩・泥岩(Berrasian-Valanginian), チャート・石灰岩・玄武岩(石炭紀-ジュラ 紀)), 2. 付加後の前期白亜紀陸源堆積物(砂岩・泥岩, Hauterivian-Albian), 3. 後期白亜紀花崗岩類, 4. 後期白亜紀-暁新世火山岩類, 5. 主な断層, 6. 錫鉱床.

の美しい結晶は鉱物収集家の注目の的となっている.

この鉱床のもうひとつの特徴は、ホウ素スカルン 中に産する中性ないし塩基性の小規模貫入岩体であ る.これらは板状の岩脈もしくは複雑な形のラコリ スで、鉱化作用の間に鉱化を規制した割れ目系にマ グマが貫入したものとみられる.ラコリスは大きく みると南北ないし北東-南西系の断裂と水平の断裂 の交差部にあり、下にマグマの通路となった高角度 の岩脈を伴う.

鉱化作用は上記の小岩体の貫入と断裂の形成を境 に2つのステージに分けられる.早期のステージ には、ダトーライトを含む縞状スカルンが形成さ れ、続いて空隙にダンブリ石が晶出した.後期のス テージには、ダンブリ石が石英−方解石に交代され、 含まれていたホウ素は空隙の周辺部にあるいは離れ たスカルン中にダトーライトとして再沈澱したと考 えられる.

3.4 Kavalerovo 地域の錫鉱床

錫鉱床はシホテアリン地域に広く分布するが(第 3 図 A 参照),ここでは代表的な Kavalerovo 地域 の鉱床を取り上げる. Kavalerovo は Dalnegorsk 南西約50 km のシホテアリン山脈中軸部に位置し, 国際会議の巡検コースにも組み入れられた事がある.

1993年 8 月号

1979年の第14回太平洋学術会議(ハバロフスク)に 参加した石原(1980)は、巡検で訪れたこの地域の 鉱床を本誌で詳しく紹介している.以下に述べる地 質の概略は、その後の研究結果も考慮して、主に Khanchuk et al. (1989)を参考にした.第7図に地 質の概略と錫鉱床の分布を示す.

Kavalerovo 地域は,著しく変形した前期白亜紀 の堆積岩類とこれを不整合に被う余り変形してない 後期白亜紀の火山岩類からなる(第7図). 下部白 亜系の褶曲軸や主な断層は、西側を走るシホテアリ ン中央断層(北北東-南南西)とほぼ平行である.第 7図に示した下部白亜系の東半分は、泥岩と砂岩を 主とし所々に後期古生代-ジュラ紀の異地性岩体(チー ャート・石灰岩・玄武岩)を含む白亜紀初期の付加 体である(約140-120 Ma). 1970年代の文献では, この部分は後期古生代-ジュラ紀とされていた. こ の地帯はやがて降起に転じ、前期白亜紀の後半には 陸化して削剝を受けていたらしい、この時期西側に はまだ海が残り,泥や砂が堆積した(約120-100 Ma). これらは白亜紀中頃(約100-90 Ma)の大規模 な左ずれの変動を受けて著しく変形し、古い断層も 再活動した. この時の断裂は、後期白亜紀の火成活 動やそれに伴う鉱化作用を規制している.鉱化地帯 の主な断層は北北東-南北系であるが、これと直交

第8図 Dubrovsk (Rudny)錫鉱床の地質断面図 (M. Nikolayev および I. Kigai 原図).

1. 鉱脈, 2. 鉱染鉱, 3. 断裂, 4. ひん岩脈, 5. 変質閃緑ひん岩脈, 6. 閃緑ひん岩, 7. 石英閃緑ひん岩, 8. 砂岩泥岩互層.

する西北西-東西系も見られる.

- 24 --

この地域の錫鉱床は、主に下部白亜系中の断裂に 沿う鉱脈からなる(第8,9図参照).鉱脈の走向は 北北東-南北系が卓越するが、東西系や北西系のも のも重要で、いずれも傾斜は急である。 鉱化に関係 した花崗岩質岩体は鉱床周辺の地表には露出してい ないが、熱変成帯の分布と物理探査データから、地 下に伏在すると推定される.新期の岩脈中には花崗 岩質捕獲岩が含まれる事があって、この見方を裏付 ける. また, Dubrovsk 鉱山では地表下900 m で, 伏在岩体の一部とみられるアプライト質花崗岩が試 錐により捕捉されている(石原, 1980参照).後期 白亜紀の花崗岩質岩体は,第7図西側のシホテア リン中央断層付近に比較的広く露出し(K-Ar年代 約90-80 Ma), その一部にグライゼン変質やスカル ンや錫ー石英脈を伴うが、有望な鉱床は知られてい ない. 鉱床周辺に露出する貫入岩類は苦鉄質-珪長 質の幅広い岩質の岩株や岩脈であって、一部は上方 で噴出相へと移化するという. 噴火の際の火道とみ られる角礫パイプも見られる.これらは単一の火成 活動で形成されたのではなく、鉱化と前後して長期 にわたる活動の産物と考えられる. 一部の安山岩質 岩脈からは始新世の年代値(約45 Ma)も得られてお り、錫の鉱化はこのような若い岩脈に関係したとい う見解もある.筆者らは鉱化時期を後期白亜紀とみ ているが、詳細については今後さらに検討する必要 がある.

Kavalerovo の錫鉱床群のなかでは(第7図),

Dubrovsk (Rudny)・Verkhnee および Arsenyev が 代表的な鉱床である.これらは緑泥石ときに電気石 を含む錫石-硫化物脈から成るが,鉱石の産状は2 つのタイプに分けられる.すなわち,(1)鉱化を受け た破砕帯に細脈群として産するもので,品位は一定 しないが全体に高品位な鉱体,および(2)比較的低品 位だが広がりの大きい網状鉱染鉱体である.(2)は Dubrovsk・Verkhnee 両鉱床に発達する.第9図 には Dubrovsk 鉱床における2つのタイプの鉱石の 産状を示した.鉱石中にSnは主に錫石(SnO₂)とし て存在するが,少量の黄錫鉱(Cu₂FeSnS₄)も見られ る.錫石は一般に径1mm以下の細粒で,テーブ ルと浮遊選鉱により回収される.

上記3鉱床のうちDubrovsk鉱床は,1941年から開発が進められ最も詳しく研究されている.この 鉱床は脈石鉱物や母岩の変質鉱物として緑泥石と電 気石の両方を含む点でもこの地域の鉱床を代表す る.鉱脈は黒雲母ホルンフェルス化帯(幅約200 m) の上限付近で富鉱部を形成しており,鉱化はその上 下に弱まる(石原,1980参照).ホルンフェルス化 帯の下位には花崗岩体までの約150 m にグライゼ ン化が見られる.鉱石の鉱物組合せは比較的単純 で,主に石英・電気石・緑泥石・錫石・絹雲母から なり,硫化鉱物として磁硫鉄鉱・硫砒鉄鉱・黄銅鉱 および少量の閃亜鉛鉱・方鉛鉱を含む.緑泥石は鉱 床上部に多いが,下部では電気石が石英と共に主要 な脈石鉱物となる(例えば,Kigai,1966).

石原(1980)は、磁鉄鉱系(酸化型)火成岩帯に錫

第9図 Dubrovsk 錫鉱床の鉱脈と鉱染鉱体の 関係. (Smirnov, 1978を改変). 1. 鉱脈, 2. 鉱化を受けた砂岩, 3. 砂 岩, 4. 変質した岩脈.

石が多産するという点だけでなく,緑泥石が主な脈 石鉱物であるという点でも,この地域の鉱床は世界 的にみて特異であると指摘しており,日本にも類似 の鉱床は知られていない.

4. おわりに

ここで紹介したのはシホテアリン南部の既に開発 の進んだ大規模鉱床もしくは鉱床群である. これら 以外にも多数の鉱床や鉱徴地が知られている.シホ テアリン全域の鉱化作用の特徴を把握し日本のそれ と比較検討する事は今後の課題である. はじめにも 述べたように,日本列島の花崗岩岩石区や鉱床生成 区(例えば、石原ほか、1992;佐藤ほか、1992)と 詳しい比較を行なうためには、ここで紹介した鉱床 も含めて、鉱化時期や関係火成岩類の特徴を広域的 かつ定量的に調べなければならない、シホテアリン 地域の花崗岩類については、かなりの数の放射年代 が測定されており、結果の一部を手近かな文献で知 る事ができるが(例えば, Baskina and Volchanskaya, 1972;岸本, 1980),それらの大半は全岩に ついて得られたもので(約100-40 Ma), 試料の採集 地点も詳しくは判らず、個々の年代値の地質学的意 味や鉱化作用との関係を考察する事は著しく困難で ある. 日本列島とシホテアリン地域の類縁関係を解 明するためには、既存のデータを再整理するだけで はなく、共同で現地調査を行い信頼のおけるデータ を追加取得するといったきめ細かい作業が不可欠で ある.

今年(1993)2月には、モスクワで第一回の日露 科学技術協力委員会が開かれ、新規共同研究テーマ 合意は、両国内での予算措置の確立を意味するもの ではないが、今後しかるべき措置が講じられ、この テーマでの共同研究が進展する事を期待したい. 謝辞:石原舜三工業技術院長は、シホテアリン地域 に関する最新の文献を提供して下さると共に、貴重 な助言を下さった.地質調査所の脇田浩二氏は草稿 の不備を指摘して下さった.以上の方々に深謝す る.

のひとつとして、地質調査所が提案した「環日本海

のメタロジェニー | が合意された. この委員会での

注)日本になじみのない地名・鉱床名・地帯名については、原則としてロシア側2名の英語表記をそのまま示した。シホテアリンをシホテアリニとする文献もあるが、実際の発音に近い前者を採用した。また、 Kraiを'州'とする誤用例も散見されるが、ここでは'地方'とした。

参考文献

- Baskina, V. A. and Volchanskaya, I. K. (1972): The potassiumargon age of igneous rocks in the eastern Sikhote Alin. Dokl. Akad. Nauk. USSR, 204, 60–63.
- Circum-Pacific Council for Energy and Mineral Resources (1993): Mineral-Resources Map of the Circim-Pacific Region, Northwest Quadrant. (印刷中)
- Denisenko, V. K. (1986): Tungsten-bearing provinces of the USSR. In: A. A. Beus ed., Geology of Tungsten, IGCP-26 "MAWAM", UNESCO, 127-156.
- Ishihara, S. (1977): The magnetite-series and ilmenite-series granitic rocks. Mining Geol., 27, 293–305.
- 石原舜三(1980):ソ連プリモーリエの錫鉱床. 地質ニュース no. 308, 36-45.
- Ishihara, S. and Sato, K. (1991): Metallogeny of East Asia. Abstr. GSA Ann. Mtg., SanDiego, 1991, p. 217.

石原舜三・佐々木昭・佐藤興平(1992):日本鉱床生成図.

深成岩活動と鉱化作用(2):白亜紀-第三紀,地質調査所 1:2,000,000地質編集図15-2.

- Khanchuk, A. I. (1992): Tectono-stratigraphic terranes of Primorye Territory. In: Y. D. Zakharov, I. V. Panchenko and A. I. Khanchuk eds., A Field Guide to the Late Paleozoic and Early Mesozoic Circum-Pacific Bio- and Geological Events, IGCP-272 and 321, Vladivostok, 1992, 1–14.
- Khanchuk, A. I., Golozubov, V. V., Nevolin, P. L., Ratkin, V. V. and Kokorin, A. M. (1989): Geology and tin occrrences of Kavalerovo Region in Primorye. USSR Acad. Sci. Far Eastern Branch, Khabarovsk, 1989, 12p.
- Kigai, I. N. (1966): Lifudzin tin deposit and some problems of hydrothermal mineralization. Nauka, Moscow, 248p. (ロシア 語, Lifudzin は Dubrovsk の旧名)
- 岸本文男訳(1980):沿海州の火成活動関係資料.地調月報, 31, 43-53.
- Kojima, S. (1989): Mesozoic terrane accretion in northeast China, Sikhote-Alin and Japan regions. Palaeogeogr. Palaeoclimatol. Palaeoecol., 69, 212–232.
- Kosygin, Y. A., Natalin, B. A., Parfenov, L. M. and Popeko, L. I. (1984): Tectonic Map of Far East and Adjacent Areas, 1:2,000,000, Institute of Tectonics and Geophysics, USSR Acad. Sci., Khabarovsk. (ロシア語)
- カルニッチ, R.G. (1971):沿海州附近の地球物理学的観測結果 およびその地質学的解釈.島弧と縁海,東海大学出版会, 25-30.
- Maruyama, S., Liou, J. G. and Seno, T. (1989): Mesozoic and Cenozoic evolution of Asia. In: Z. Ben-Avraham ed., The Evolution of the Pacific Ocean Margins, Oxford Monograph on Geology and Geophysics, no. 8, 75–99.
- Mishin, L. F. and Petukhova, L. L. (1991): The oxidation of iron as an indicator of the metallogenic specialization of volcanoplutonic complexes: the Far East of the USSR as an example. Geol. Pacific Ocean, 7, 977–992.
- Mizutani, S. (1987): Mesozoic terranes in the Japanese Islands and neighbouring East Asia. In: E. C. Leitch and E.Scheibner eds., Terrane Accretion and Orogenic Belts, AGU Geodynamic Series, 19, 263–273.
- Nalivkin, D. V. (1973): Geology of the USSR. Oliver & Boyd, Edinburgh, 855p. (ロシア語版は1962年出版)
- Natalin, B. A. (1991): Mesozoic accretionary tectonics of the USSR Far East south. Tikhookeanskaya Geologia, 5, 3-23. (ロジア語)
- Natalin, B. A., Parfenov, L. M., Vrublevsky, A. A., Karsakov, L. P. and Yushmanov, V. V. (1986): Main fault systems of the Soviet Far East. Phil. Trans. R. Soc. Lond., A**317**, 267–275.
- Nosenko, N. A., Ratkin, V. V., Logvenchev, P. I., Polokhov, V. P. and Pustov, Yu. K. (1990): Dalnegorsk borosilicate deposit—

a product of polychronic manifestation of skarnation processes. Dokl. Akad. Nauk. USSR, **312**, 178–182. (ロシア語)

- Parfenov, L. M. and Natalin, B. A. (1986): Mesozoic tectonic evolution of northeastern Asia. Tectonophys., 127, 291–304.
- Romanovskii, N. P. (1989): Magmatism-mineralization systems of Asian Pacific mountain belts and their association with deep zones and centers of endogenic activity. Geol. Pac. Ocean, 4, 268–278.
- Sato, K. (1982): Characteristics of tungsten skarns in Japan, two contrasting types. In: J. V. Hepworth and H. Z. Yu eds., Tungsten Geology, 203–209.
- 佐藤興平・内海 茂(1990): K-Ar 年代から見た神岡 Pb-Zn 鉱床 の形成時期. 鉱山地質, 40, 389-396.
- Sato, K., Ishihara, S. and Kamitani, M. (1992): Metallogeny of granitoid affinity in East Asia. Abst. 29thIGC, Kyoto, 1992, p. 726.
- 佐藤興平・石原舜三・柴田 賢(1992):日本花崗岩図. 地質調査 所編集:日本地質アトラス(第2版),朝倉書店発行.
- 佐藤興平・石原丈実・Vrublevsky, A. A.・石原舜三(1993): Sikhote-Alin 南部の磁気異常分布と火成岩類. 地質ニュース(印 刷中).
- Smirnov, V. I. ed. (1978): Ore Deposits of the USSR, vol. 1–3, Nedra, Moscow. (ロシア語)
- USSR Ministry of Geology (1977): Magnetic Anomaly Map of USSR, 1:2,500,000. (ロシア語)
- USSR Ministry of Geology (1983): Prospecting, exploration and estimation of boron deposits. VIMS, Moscow, Nedra. (ロシア 語)
- Vrublevsky, A. A. (1991): Faults and their role in the evolution of fold-thrust systems of East Asia. VINITI, Moscow, 293p. (ロ シア語)
- Zonenshain, L. P., Kuzmin, M.I. and Natapov, L. M. (1990): Geology of the USSR: A Platetectonic Synthesis. AGU Geodynamics Series 21, 242p.
- SATO, K., LAVRIK, N. I. and VRUVLEVSKY, A. A. (1993): Geology and mineral deposits in Sikhote-Alin, Russia.

〈受付:1993年4月19日〉

[追記]本稿脱稿後以下の論文が出版された.シホテアリン地域の地史を理解するのに役立つ.

Natalin, B. A. (1993): History and modes of Mesozoic accretion in Southeastern Russia. The Island Arc, 2, 15-34.