海底の金属鉱物資源

~海底に存在する鉄マンガン金属塊~

最近の科学技術分野の進展は急速で これまで実施困 難と考えられていた宇宙開発・地球内部探査・原子エネ ルギーの平和利用・海洋開発等 各種の調査計画が立案 され実施されつつある.

8 -

海洋の開発・利用については ドゴール(仏)大統領 が昭和35年に ケネディ(米)大統領が昭和36年に そ れぞれ国会で その重要性について演説し フランスで は海洋開発委員会──→海洋評議会を設け 昭和41年には 海洋技術研究のセンターとして海洋開発研究所を設立し た. アメリカでは海洋調査機関間委員会(ICO)が 毎年海洋研究関係計画を策定し 昭和41年には海洋資源 開発法を制定 大統領府に副大統領を議長とする海洋資 源技術開発委員会を設け 強力に海洋開発技術政策を進 めている.

ソ連では 古くからオホーツク海・日本海・北部太平 洋において各種の調査を進め 昭和32~33年には国際地 球観測年事業の一環として太平洋赤道域の調査を 翌34 年にはインド洋の調査と 広域に海洋資源を含めた各種 の海洋調査を推進 昭和43年2月の新聞報道ではソ連最 高会議幹部会が

「沿海域の水深 200 mに至る大陸棚に存在する鉱物定着性の 生物 資源等は領海外であってもソ連の主権に属する」

と その絶対的権利の主張を公布したことをつたえてい る. わが国においては 明治5年海軍水路寮が潮汐観 測や海図の出版をはじめてから 海洋に関連した各種・ 各分野に多くの調査研究が推進され われわれの生活に 直接的・間接的に多大の貢献を示してきた.

昭和20年以降 水産資源・海底鉱物資源の必要性が増 大するにつれ 改めて海洋開発の重要性が認識され 昭 丸山修司

和42年2月には 佐藤総理大臣がジョンソン米国大統領 との共同声明の一部に

「食糧源・鉱物源として海洋の重要性が高まりつつあることを 認識し 海洋資源利用のための調査および技術開発の分野で 日米両国の協力をいっそう拡大する手段を求めることに竜見 の一致を見た」

と明記し 改めて海洋開発・利用の重要性を明示した.

このような状勢のうちに 国内の各方面では盛んに海 洋開発に関する各種の検討が進められ 海底鉱物資源の 一つとして 深海底のマンガン塊の問題が大きく着目さ れるにいたった。 この機会に さらにより多くの方々 が海底マンガン塊について実状を理解し より高度の検 討を進められることを希望し『海底マンガン塊の概要』 を紹介する. なお 国内でもこれまでに 新野 弘(水 産大学)・奈須紀幸(東京大学海洋研究所)・佐藤任弘 (海上保安庁水路部)の諸氏をはじめ 多くの方々の海 底マンガン塊に関する貴重な研究結果が公表されており また現在も多くの検討が各方面でなされていることをと くに付記する。

分布環境

海底に鉄マンガン酸化物が種々の形態を示して存在す ることは チャレンジャー号 (2300以)の海洋探検隊 (1872~1876) によって発見され その後の多くの調査 で各海洋・海域に続々とその存在が確認されてきた.

鉄マンガン酸化物は海洋底上に粒状 瘤状 板状 岩 石上に被覆状 多孔質物に鉱染状 サンゴと有機体の崩 壊物に置換・充塡状等の状態を示して存在し その分布 は水深4000~5000mの間を最も普通の深度とし マリア

ばれているものの横断面である (大きさ61×61×32cm 重 核の白色の灰十字石(Phillipsite)からなる部分は6cm の厚さ

を有し四囲を取りまく 水マンガン鉱 (Manganite)の部分は 上面では厚さが16cm 下面部では約5mmあった The mineral resources of the sea L 9

ナ海溝では7700mの深海に 本州南東の島棚上では 114 mの浅海にも存在することが知られている.

これらの鉄マンガン酸化物の存在する地域は 一般に ゆるやかな堆積作用のもとに堆積すると考えられ 褐色 粘土あるいは珪質淤泥と その堆積範囲に関連をもつ露 出地域が主体となり 少数例として急速な堆積環境と考 えられる石灰質淤泥・緑泥・火山質泥あるいはサンゴ砂 上への存在も知られる. とくに浅海域での鉄マンガン 酸化物の存在する環境は たとえ平均的な降下・沈殿作 用が急速であっても 堆積作用がないか あるいは非常 にゆるやかな環境に限定されると考えられている.

形 能

これまでに知られた鉄マンガン酸化物(塊状)の大き さは フィリピン群島の東方約 500km の海底から 海底 電線敷設作業中に発見された重量 850 kgのものが最大と なっている. 一般には採取機器の性能上の影響もある が これまでに海底の岩石露頭からひきはがした鉄マン ガン酸化物の殻状外皮は 厚さが10cmを越えることはま れで 2cmが普通である. 厚板状のものは 東太平洋 の一定の地域に通常的に存在し 厚板状の火山灰あるい は固まった堆積物の表面を鉄マンガン酸化物の外皮がお おうもので その厚さ・大きさは一定でない.

瘤・粒状のものは 浮石や固結した堆積物のような他 の物質が部分的に変質した核として存在する場合が多く 外殻部の鉄マンガン酸化物中には核を取りかこむ重なり が認められる. その大きさは径 0.5~25cm の間である が 核がないもの あるいは核を持つが普通に大量に存 在するものを考えれば その大きさは径3㎝内外となる.

外 観

これら 海底の鉄マンガン酸化物は一般に土黒色を呈

するが 鉄を多量に含む場合には赤褐色 マンガンを多 量に含む場合には青黒色となる.

9

その光沢は多くは薄暗く 鈍いが タヒチ北東方約400 km付近および合衆国東海岸 Blake Plateau 沖から産出 したものはガラスに似た光沢を示すものもあった.

硬さは一定でなく カルシウム炭酸塩の多いものは比 較的に硬く 破砕することがむずかしく カルシウム炭 酸塩が2~3%より低いものは一般にもろく 容易に破 砕できる. 硬度を示す Mohs scale では1~4の範囲 となり 平均すると3ぐらいになる. これらの鉄マン ガン酸化物は 海底堆積物の柱状試料として採取した岩 芯中に含まれた鉄マンガン酸化物の比重を測定した結果 は2.4となった.

構成鉱物

海底に沈積し 賦存する鉄マンガン酸化物は非常に微 細な物質からなるため その構成鉱物の決定は顕微鏡下 では困難で ほとんどがX線回折によって決定されてい る.

一般に 鉄マンガン酸化物中の鉄含有量が Mn のそれ より高い場合には goethite (針鉄鉱) が存在し 鉄分が 少なく Mn 分が高い場合には σ MnO₂(ビルネサイト) がおもな鉱物として存在する. 現在 鉄マンガン酸化 物は 少なくとも3種類のマンガン酸化物の共生でなり たち opal (蛋白石) goethite (針鉄鉱) rutile(金紅 石) anatase (鋭錐石) barite (重晶石) nontronite (ノントロナイト)等の珪酸とアルミナ鉱物の砕屑物か らなる といわれる.

マンガン鉱物の内部構造については Buser・Grutter 等が研究しており 鉄マンガン酸化物の主要構成物とな る3種の酸化マンガン鉱物については それぞれ酸化度 が異なり その一つは σ MnO₂ (ビルネサイト) 他の

海底に径 2~6cm のマンガン塊が残され 細粒石灰質堆積物の表面には 流紋が認められる(The mineral resources of the sea より)

 第1図 太平洋の海底面上での鉄マンガン酸化物分布概況
 鉄マンガン酸化物の表面濃集度を海底写真により その地区を おお5%として表現した
 (Menard: Marine geology of the pacific から引用)

2つは人工的な manganite (水マンガン鉱)の内部構造 に似た二層構造を持つ新鉱物と考えている. この2新 鉱物は MnO_2 の規則層と $Co \cdot Cu \cdot Ni$ やその他の金属 イオン・水などを含む不規則層とか交互に重なり合う点 を共通点とし 基底面の格子間隔がそれぞれ異なるとし ている.

賦 存 概 況

海底の鉄マンガン酸化物の賦存状況を調べる方法の一 つに深海カメラがあり その運用により海底表面部の nodule や slab の分布・濃集状態を的確に把握するこ とができる. 海底表面部の写真によれば nodule や slab の濃集度は せまい範囲内でも局部的に細かい変 化があり また地域的には大きく明瞭な密度差が認めら れる. これまでの海底写真結果から太平洋海域には 鉄マンガン酸化物が表面濃集する地域として 広大な2 地域が知られている(第1図).

その1つは北緯18~20度を中心とする緯度帯で その 中の一地区・48×10⁶km²の範囲では10~100%の比率で nodule や slab が海底をおおっている. この濃集帯の 分布形態は非常に系列的で 中央地帯にとくに分布密度 の高い濃集帯が連り 地帯を両側にはずれると nodule や slab の存在は全く認められなくなる. この濃集地 帯はメキシコ西岸沖合から 中部太平洋海山・北部マー シャル群島周辺へと連なり その西方延長部はフィリピ ン海を横切って延びることも考えられる. さらにもう1つの地域としては南西太平洋があげられ る. その東端地区では noduleの分布密度が26~46% を示し ニュージーランドの南方深海底にも高濃集地が 存在する. この南西太平洋の濃集地域は 1.3×10⁷km² の広がりを持つと見積もってもよい.

海底の試料を採取する方法のおもなものに曳航式試料 採取法 (dredge sampling) と柱状試料採取法 (core sampling) とがある.

曳航式試料採取法は試料採取器(bucket)を 海底上 のある距離をひきずり 海底面の露岩・堆積物等の表面 部を試料として引きはがし 採取する方法である.

この方法で採取した鉄マンガン酸化物の量から換算し た分布密度と その付近の海底写真から算出した海底面 上の鉄マンガン酸化物の分布密度との関連性は 写真か らのものが実際の採取量からのものの50%内外となるの 常がである. この両者間の相異のおもな原因としては 曳航する bucket が海底凸部の 鉄マンガン酸化物の分 布密度の高い場所を選択的に採取することも考えられる が 他方 海底写真にあらわれない鉄マンガン酸化物の 存在 つまり 微細なもの あるいは埋もれた鉄マンガ ン酸化物の存在も無視することはできない.

鉄マンガン酸化物が海底沈積物におおわれて存在する ことを立証する方法には 柱状試料採取法 が適切である.

スクリップス (Scripps) 海洋研究所は鉄マンガン酸 化物の立体的の賦存状態を検討するために直径約5 cm・ 長さ約1 mの試料採取管を着けた重錐式柱状試料採取器 (gravity core sampler)を使い 太平洋中の46地点で調 査を実施したが その調査実験結果は 下記のようにな った.

◎表面に存在する nodule(マンガン瘤) のために貫入し	なか
った地点	12
●貫入した地点(中計)	34
●nodule が表面に存在した地点 (小計)	27
・nodule が表面にだけ存在した地点	20
・nodule が表面と表面下の両者に存在した地点	7
●nodule が表面に存在せず 表面下だけに存在した地占	7
●nodule が表面下に存在した地点(小計)	14

上記の結果から鉄マンガン酸化物が海沈沈積物中に包 蔵された形態で存在することも明らかとなり その存在 確率も 上記の実験結果によれば海底表面に鉄マンガン 酸化物を発見する機会の約½の確率を期待できる.

海底沈積物に埋もれた鉄マンガン酸化物の賦存地域を これまでに実施された多数の地点の 海底写真・曳航式 試料採取・柱状試料採取等の調査結果から考えると 北

第1表	太平洋・	・大西洋におけるマ	ンガン瘤中の27元素含有率	(最高・最低	・平均)
-----	------	-----------	---------------	--------	------

		1	Í.	量			
元 素 名	太 3	平 洋 (54詞	(料平均)	大「	西 洋(4 計	式料平均)	
	最 高	最 低	平均	最 高	最 低	平 均	
В	0.06	0.007	0.029	0.05	0.009	0.03	
Na	4.7	1.5	2.6	3.5	1.4	2.3	
Mg	2.4	1.0	1.7	2.4	1.4	7.1	
Al	6.9	0.8	2.9	5.8	1.4	3.1	
Si	20.1	1.3	9.4	19.6	2.8	11.0	
к	3.1	0.3	0.8	0.8	0.6	0.7	
Ca	4.4	0.8	1.9	3.4	1.5	2.7	
Sc	0.003	0.001	0.001	0.003	0.002	0.002	
Ti	1.7	0.11	0.67	1.3	0.3	0.8	
v	0.11	0.021	0.054	0.11	0.02	0.07	
Cr	0.007	0.001	0.001	0.003	0.001	0.002	
Mn	41.1	41.1 8.2 24.2		21.5 12.0		16.3	
Fe	26.6	2.4	14.0	25.9	9.1	17.5	
Co	2.3	0.014	0.35	0.68	0.06	0.31	
Ni	2.0	0.16	0.99	0.54	0.31	0.42	
Cu	1.6	0.028	0.53	0.41	0.05	0.20	
Zn	0.08	0.04	0.047		_	-	
Ca	0.003	0.0002	0.001	-	-		
Sr	0.16	0.024	0.081	0.14	0.04	0.09	
Y	0.045	0.016	0.033	0.024	0.008	0.018	
Zr	0.12	0.009	0.063	0.064	0.044	0.054	
Mo	0.15	0.01	0.052	0.056	0.013	0.035	
Ag	0.0006	-	0.0003^{2}		-	-	
Ba	0.64	0.08	0.18	0.36	0.10	0.17	
La	0.024	0.009	0.016	—		-	
Yb	0.0066	0.0013	0.0031	0.007	0.002	0.004	
Pb	0.36	0.02	0.09	0.14	0.08	0.10	
L.O.I. ⁸	39.0	15.5	25.8	30.0	17.5	23.8	

(1) 本結果はX線発光分析法による

(2) 銀(平均)は5試料から発見されたものの平均

・ L.O.I. (強熱減量) は1時間1100°F

(Mero:The mineral resources of the sea より引用)

西太平洋および南東太平洋の2海域をあげることができる.

化学成分

第1表は 太平洋と大西洋の広域的な堆積環境の把握 を目的として 距離・間隔 500~1000km と 互いに遠く はなれた54地点から採取した鉄マンガン酸化物の27元素 について その最高・最低および平均含有(重量)パーセ ントを示したものである.

鉄マンガン酸化物中の重要な元素として 本表に記載 しなかったものに 酸素と炭素とがあり 酸素は鉄マン ガン酸化物中の約50% (重量)をしめることもあった.

本表によれば 一般的な性質として 海底の鉄マンガ ン酸化物は 鉄とマンガンの合計として約40% ニッケ ルが約1% コバルトと銅がそれぞれ0.5%内外 ふく まれ それぞれの構成比率が大きい数値範囲で変化する ことがわかる.

太平洋での鉄マンガン酸化物の分布概況

JOHN L. MELO は太平洋中の166地点 から採取した鉄マンガン酸化物について 16元素の含有状態を調べその地域的特性を 考察した(1960,1965)。 本項でその概要 を紹介する. 彼は上記検討を実施するに 当って 鉄マンガン酸化物の成分構成を均 質・公平な条件で対比するために 16元素 の分析結果の内 珪酸・アルミナ・水およ び炭酸カルシウムが それぞれ5%以上の 数値となったものは 混在した核または岩 層物から供給されたものと考え 除外した 上で 改めて Mn · Fe · Co · Ni · Cu · Pb の6成分の換算(含有)値を求め各種の検 討を行なった.

第2表は166地点の鉄マンガン酸化物の 16元素について なされた分析結果の中か ら とくに日本近海のものを記載したもの で 上記手法により 求めた換算値は下段 に記載してある.

第3表は これら換算値と換算値から求 めた構成比率を それらの特性上から区分 し それぞれについて統計的に示したもの である. 第2図は上記換算値から求めた 鉄マンガン酸化物の成分特性区分の太平洋 中での分布範囲を図示したものである. この成分特性とその分布概要について説明 すると下記となる.

A 地 域 (鉄 高 品 位 地 域)

第2図中のA地域は Mn/Fe 比が一般に1より低いこ とで格付けられるものでFe/Co比は平均して他の地域よ り高い. これらの性格に適合する地域は 一般に大陸 に沿って存在し 後記B・C地域にマンガン分を供給す る海水がその前の段階として これらの地域に鉄を主体 とした堆積物をもたらしたと想定している. 本地域の マンガン瘤の平均品位は換算数値上 鉄28.3%・マンガ ン 21.7%・コバルト 0.35%・ニッケル 0.46%・銅 0.32%・鉛 0.21%となる.

B 地 域 (マ ン ガ ン 高 品 位 地 域)

第2図中のB地域は Mn/Fe 比が12~60 平均30と非 常に高い地域で 南北両アメリカ大陸の西海岸近くに3 地域として存在する. 最も北に位置するのはカリフォ ルニア湾とその周辺で 南方の2地域は南緯10°と 30° を中心とする地域である.

B地域の鉄マンガン酸化物は換算数値として Mn 49.8

第2表 太平洋産鉄マンガン酸化物の分析結果と換算値(とくに日本近海のもの)(MERO:THE MINERAL RESOURCES OF THE SEA から引用)

Refer 音が Vit 32:00 Vit	a b dat		7 7 0	T D	T	TEDO F	τ	17:4 4970	17:+ 4969	37;+ 4351	LINK BH2	Vit 3729	Vit 3899	Vit 3631	Mp 43 D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	試料番号	Vit 3150	Jyn II-8	Japan B	Japan A	JEDS 5	Jyn II—21	VIL 43/0	NT 24004/	N 23°57'	N 13°37'	N 15°32'	N 17°00′	N 19°55′	N 11°57′
Weight P 100713 E 10703 E 10970 E 10970 <the 10970<="" th=""> <t< td=""><td>採取(緯度</td><td>N 44°28′</td><td>N 40°29'</td><td>N 34°23'</td><td>N 33°51'</td><td>IN 38°00'</td><td>N 36°29'</td><td>IN 20-12</td><td>IN 24 04</td><td>E 170°58'</td><td>F 126°27'</td><td>E 134°30'</td><td>E 141°43'</td><td>E 155°59′</td><td>E 164°59'</td></t<></the>	採取(緯度	N 44°28′	N 40°29'	N 34°23'	N 33°51'	IN 38°00'	N 36°29'	IN 20-12	IN 24 04	E 170°58'	F 126°27'	E 134°30'	E 141°43'	E 155°59′	E 164°59'
$\vec{x} \ \vec{x} \ \vec{n}$ 1.08 4.200 200 1.01 0.200 6.120 5.021 3.021 4.021 5.020 5.020 5.020 5.020 5.020 5.020 5.020 5.02	(経度	E 170°15'	E 172°33'	E 139°05,	E 138°41'	E 146°00'	E 146-43	E 153°44°	2 051	5 817	5 180	3.590	4,620	5,643	1500~2100
E Ø V, III a Met BAT With Hard Property	水深加	1,258	4,250	260	110	3,500	5,720	0,120 +a 2, xh 1	3,501	退品 壯 十	据在数十		褐色粘土	褐色粘土	 ,
\bar{x} \bar{x} \bar{y}	底 質	火山岩	褐色粘土	近海堆積物	近海堆積物		倘包枯土	简色粉工	主义派化	Mares And L	御託娘旅設		トロール	Spoon	ドレッジ
I is the second by t	採取法	トロール	柱 状	ドレツシ	ドレツジ	トロール	在 状		Spoon	Spoon 10.5	电台》水池区		1~2.5	1.5~6	5cm の 殻
出 雪 一 一 一 一 一 一 一 一 一 人 次 次 次 次 次 次 次 次 次 次 次 小 次 % 次 % 次 % 次 % 次 % 次 % 次 % 次 % 次 % 次 % 次 % 次 % 次 % 次 % 次 %<	直径cm	° −13	1cm			3cm の殻	$2.5 \times 1 \times 1$	1~5	1~0	1~5	9 66				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	比 重				2.89					м н	2.00		、	4cm の瘤	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	分析部分	外側 1cm	全体	横断面	横	横 附 面	全 体	全 14		2F B	7F/X 1011			<u>_</u>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	分析結果														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Al ₂ O ₃	1.04	6.6	2.27	0.6	1.17	11.9	7.2	3.65	4.98	5.7	4.09	8.54	5.23	0.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiO ₂	6.09	39.6	0.86	0.5	. 7.0	56.5	17.5	13.10	12.97	14.0	13.58	26.61	13.31	3.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P		_	-	-	_			-	0.17	0.164	-	0.21	0.17	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ĸ	1.27	_	0.5	0.6		_	0.5	0.84		0.38	0.66	-	-	0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ca	1,90	0.91	4.0	28.8	2.12	1.31	1.5	2.80	1.76	1.37	1.58	2.19	1.79	1.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ti	0.70	0.28	0.05	0.002	0.50	0.18	0.6	0.67	0.60	0.87	0.74	0.94	1.06	1.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn	33.9	7.8	37.0	12.6	19.8	1.9	12.2	22.5	20.2	14.9	14.2	5.05	17.2	19.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe	7.8	12.4	0.6	0.77	13.9	11.8	14.0	11.3	11.9	18.40	19.5	19.0	14.4	11.5
Ni 0.42 0.20 0.061 0.042 0.38 0.12 0.41 0.49 0.53 0.22 0.39 0.05 0.33 0.42 Cu 0.21 0.010 0.007 0.10 0.07 0.27 - - - 0.17 - - - 0.11 Zn - 0.056 0.03 0.007 0.057 0.041 - - - - - - 0.11 - - - 0.048 - - - 0.11 Mo - 0.000 0.022 0.007 0.048 0.000 0.03 - - 0.037 - - 0.11 Mo - 0.030 0.15 0.59 0.72 0.065 0.10 - - 0.037 - - 0.13 0.05 0.15 0.08 0.066 - - 0.13 0.15 0.15 0.15 0.08 0.06 <td>Co</td> <td>0.41</td> <td>0.48</td> <td>0.092</td> <td>0.006</td> <td>0.29</td> <td>0.01</td> <td>0.14</td> <td>0.47</td> <td>0.46</td> <td>0.29</td> <td>-</td> <td>0.08</td> <td>0.53</td> <td>1.05</td>	Co	0.41	0.48	0.092	0.006	0.29	0.01	0.14	0.47	0.46	0.29	-	0.08	0.53	1.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni	0.42	0.20	0.051	0.042	0.38	0.12	0.41	0.49	0.53	0.22	0.39	0.05	0.33	0.42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cu	-	0.21	0,010	0.007	0.10	0.07	0.27	_	_	0.17	-	-	- 1	0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn	_	0.056	0.03	0.007	0.057	0.041	- 1			0.048	-		_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr	_	0.11	0.16	0.35	0.13	0.057	0.06	·	-	0.11	-	. —		0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo	_	0.000	0.022	0.007	0.048	0.000	0.03	-		· 0.037	-	-	_	0.039
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba	0.92	0.30	1.5	0.59	0.72	0.05	0.10			0.58	-		-	0.15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ph		0.13	0.05	0.015	0.15	0.08	0.06	-	_	0.18		—	-	0.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H ₀	15 50	11.0		6.6	11.7	5.3			-	21.4	21.66	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		15.00		16				23.0	20.59	27.00	-		20.17	27.72	34.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	却	771177-		ゴルドパーグ	-			ゴルドバーグ	スコリヤコー	スコリヤコー		スコリヤコー	スコリヤコー	スコリヤコー	ゴルドバーグ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μu	7年(1962)		*+-5				メナード	ワ等(1962)	ワ等(1962)		ワ等(1962)	ワ等(1962)	ワ等(1962)	メナード
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9 🐺 (1502)		(1960)				(1960)							(1960)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	热 篇			(1000)											
Fe10.129.00.753.019.745.024.021.421.631.232.241.526.816.9Co0.531.120.110.0230.410.0040.240.890.830.49-0.180.981.54Ni0.540.470.0630.160.540.460.700.930.960.370.640.110.610.62Cu-0.490.0120.0280.110.270.460.290.16Cu-0.190.020.0280.110.270.460.310.22	Mn	43 7	18.2	46.3	49.8	28.2	7.2	21.0	42.7	36.7	25.3	23.4	11.3	32.0	28.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe	10.1	29.0	0.75	3.0	19.7	45.0	24.0	21.4	21.6	31.2	32.2	41.5	26.8	16.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co.	0.53	1.12	0.11	0.023	0.41	0.004	0.24	0.89	0.83	0.49		0.18	0.98	1.54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni	0.54	0.47	0.063	0.16	0.54	0.46	0,70	0.93	0.96	0.37	0.64	0.11	0.61	0.62
	Cn	0.04	0.49	0.012	0.028	0.11	0.27	0.46	-	-	0.29	-		—	0.16
$Pb \rightarrow 0.03 + 0.052 + 0.059 + 0.05 + 0.15 + 0.17 + 0.054 + 0.0$	Ph	_	0.13	0.062	0.059	0.08	0.15	0.10			0.31	-	-	—	0.22

٩

(1) 化学分析もX線螢光分析も同じ状件に乾燥した試料を使用した 他の研究者に委託した分析は下

記の手法で行なわれた

ゴルドバーグとメナード(1960) X線発光分析法

スコリヤコーワ等(1962) 湿式分析法と比色法

燐分析は温式分析法で行なった

(2) ――印のものは分析しなかったもの

(3) H2Oは2時間200度の空気乾燥した試料から求めた

(4) L.O.I.強熱減量は1時間で1100°F空気乾燥して求めた

 (5) 換算値は SiO2・Al2O3・H2O・CaCO3の各項が5%以上となったものを岩屑物から供給されたと 考え除外して算出した - 12 -

tite tot				換	算	値	(2)			構	成	H	;
		14	Mn	Fe	Co	Ni	Cu	Pb	Mn/Fe	Mn/Ni	Mn/Pb	Ni/Cu	Fe/Co
	最	高	35.6	39.5	0.82	0,91	0.61	0.40	1.25	94.3	420	5.0	517
Α	最	低	7.6	19.7	0.06	0.08	0.07	0.047	0.22	30.0	21	0.46	· 37
	平	均	21.7	28.3	0.35	0.46	0.32	0.21	0.79	53.8	146	2.21	168
AD	最最	高(1) 低	22.3	26.4	0.69	0.30	0.43	0.28	0.85	74.4	80	0.68	38
	平	均]						
	最	高	57.1	3.5	0.20	0.83	0.43	0.089	61.8	870	9,500	5.7	318
в	最	低	40.6	1.1	0.008	0.06	0.013	0.006	11.6	69	540	1.0	7
	平	均	49.8	2.3	0.055	0.26	0.14	0.047	29.8	356	2, 200	3.0	106
	最	高	50.4	13.5	0.36	2.18	1.40	0.12	9.87	45.8	3, 360	1.92	185
BC	最	低	40.0	5.1	0.045	1.52	0.72	0.038	2.82	18.7	333	1.42	37
	平	均	43.6	10.7	0.15	1.67	0.04	0.070	4.94	28.2	1,178	1.61	103
	最	高	45.3	25.8	0.75	2.37	2.92	0.52	6.21	59.4	608	2.58	260
С	最	低	15.0	7.3	0.076	0.54	0.44	0.049	0.97	11.3	51	0.64	19
	平	均	33. 3	17.7	0.39	1.52	1.13	0.18	2.14	23.7	261	1.51	60
	最	离	38.3	24.4	1.22	1.94	1.46	0.54	3.41	45.5	860	1.74	38
CD	日最	低	2 3.4	10.1	0.47	0.59	0.34	0.04	1.09	15.9	43	0.97	8
	平	均	31.7	17.5	0.69	1.45	1.09	0.29	1.96	25.4	201	1.36	27
	最	高	33. 2	27.4	2.09	0.97	0.39	0.41	1.84	65.0	232	6.1	39
D	日最	低	20.2	16.6	0.70	0.37	0.13	0.10	0.90	27.7	60	1.4	8
	平	均	2 8.5	22.6	1.21	0.66	0.21	0.30	1.31	45.6	109	3.4	22
	最	高	57.1	39.5	2.09	2.37	2.92	0.54	61.8	870	9,500	6.1	517
全域結果	最	低	7.6	1.1	0.008	0.06	0.013	0.006	0.22	11.3	21	0.46	8
	平	均	32.4	18.5	0.47	1.14	0.80	0.19	4.11	60.0	431	1.95	74

第3表 太平洋におけるマンガン瘤の地域的特性としての金属含有換算値とその構成比率

(1) AD地域の試料採取点は1地点

(2) 換算値は166地点から採取した試料の16元素についての分析結果から珪酸・アルミナ・水および炭酸カルシウムがそれぞれ 5%を越した場合に そのものが含まれた核または岩屑物から供給されたものと考え それらを除去し 改めて各元素の構成数値を求めたもの

第2図 太平洋域における鉄マンガン酸化物の成

分特徴と分布範囲 この図は太平洋に賦存するマンガン瘤の 地域的性状分布を示した

・A地域のマンガン瘤は鉄分が高い

- ・B地域のマンガン瘤はマンガン分が高い
- C地域のマンガン瘤はニッケル分が高い
- ・ D地域のマンガン瘤はコバルト分が高

い また図上には分析したマンガン瘤の採取 地点を記入してある (Mero: The mineral resources of the sea より 引用) %・Fe 2.3%・Co 0.055%・Ni 0.26%・Cu 0.14%・Pb
 0.047%となる. 一般にマンガン分の高い地域の鉄マンガン酸化物はコバルト・ニッケル・銅等の含有率が低くその生成が非常に急速に形成されたものと考えられる.

日本近海は一応前記A地域となるが 新野 弘は1959 年に本州南東沖から高マンガン含有率を示すマンガン瘤 の存在を報告し 海底から湧き出すマンガン分の高い泉 からの急速な沈澱・形成と考察した. その場所は富士 火山帯に属すると思われる水深114mの浅海域であり 存在する鉄マンガン酸化物は炭酸カルシウム分が比較的 高率であり 珪酸とアルミニウム含量が異常に低いこと を除外して 他のB地区からの鉄マンガン酸化物の構成 と全く同様である.

℃ 地 域 (ニッケル・銅 高品 位 地域)

本地域に存在する鉄マンガン酸化物は Mn/Fe 比が 1 ~6の範囲で 平均は 2.1 と比較的に安定しており Ni/Cu比は他の地域のものより小さい数値となる. ま たその換算値から見た各成分の平均数値は Mn 33.3% ・Fe 17.7%・Co 0.39%・Ni 1.52%・Cu 1.13% Pb 0.18%となり Cu含有量は Ni 含有量より広い数値範囲 となる.

D 地 域(コバルト高品位地域)

本地域は 太平洋の中央部の地形的に高位の地帯に当 り 鉄マンガン酸化物は他の地域に比べて コバルトの 含有率が高く 鉛と銅の含有率がとくに低い.

本地域の鉄マンガン酸化物の分析結果から算出された 換算数値は Mn 28.5%・Fe 22.6%・Ni 0.66%・Cu 0.21%・Pb 0.30%となり Coは1.21%である.

変 移 帯

第2図のA・B・C・Dの各地域間の境界部には漸移 帯の存在が予想され 分析結果からも それと思われる ものも認めたが 今回はそのものをどちらからの地域に 含めて処理した.

以上 海底に賦存する鉄マンガン酸化物についての一 端を述べたが これらはおもに

JOHN L. MELO (1965) THE MINERAL RESOURCES OF THE SEA.

H.W.MENARD (1964) MARINE GEOLOGY OF THE PACIFIC

の2資料中から紹介したものである.

彼らは鉄マンガン酸化物の調査研究結果を述べたあと

にその賦存鉱量と金属含有量を試算し 共に現在の年間 使用金属量の1000倍以上の数値を算出している.

また MENARDはそのしめくくりとして 陸上の鉱 産資源に乏しく 海洋国の実力と 高度の工業水準を有 する日・英両国の内のどちらかが これら海洋鉱産資源 開発の先導者となることを予測し MERO は彼自身が 先導者となり 数種の採掘法を考案・発表し 採掘と採 掘法の現実性・可能性を力説している.

おわりに

これらの資料により 日本近海に賦存する鉄マンガン 酸化物は一応 鉄分の高い部類に属し マンガンと鉄の 含有品位が それぞれ15~20%内外となると示されたが しかし とくに日本近海の一部 水深 200m 内外の浅海 域に マンガン分40%内外と高品位のものが賦存すると 明記されていることは とくに注目にあたいするものと 考えられる. 今後 海底の鉄マンガン酸化物について は その実態把握のための調査研究を着実に実施すると 共に その賦存状態に適応した採掘技術と その鉱石に 適応した選鉱・精錬方法の検討と確立が必要である. これまでに 国内で海洋鉱産資源を取り扱ったものとし ては 製塩・砂鉄・砂ガーネット・骨材・石炭・石油・ 天然ガス等と 小数のものに限定され その規模も小さ いものが大半であった.

海水中に溶存する金属・非金属資源 海底新期堆積物 に賦存する砂鉱・泥質鉱物資源 海底基盤岩層中に存在 する金属・非金属および燃料資源等と 多くの海洋鉱産 資源の活用は 経済の発展・生活福祉の充実に大きく影 響を与えるものと考えられる. これらの状況から 海 洋鉱産資源調査研究およびその検討基礎となる海洋地質 部門の調査研究を早急に推進する必要があり その体制 の充実を期待してこの紹介を終る.

(筆者は鉱部床)

え	えびの地震予察調査速報(その2)正誤表										
頁	欄	行	誤	Æ							
3	左	図 2	昭和43年3月25日0時21分	昭和43年3月25日00時21分							
4	右	21	約10km	約40km							
6	右	20	吉町一	吉松一							
8	右	8	震度分布	腹源分布							
12	右	11	地震記録誌上	地震記録史上							
14	右	図12		(久野 久)を加える							
"	"	27	日向灘の強震に	日向灘の強震は							
16	左	32	それなくしては	それにしては							
17	左	4	温度勾配(aT/dm)	温度勾配(aT/am)							
"	"	9	熱伝導率には	熱伝導率は							
"	右	15	原田温泉	原口温泉							
18	右	3	酸化されて	分解されて							