謝辞:斎藤文紀と七山 太のインドネシア渡航に際 しては、地質調査情報センター国際担当(当時)の渡 辺真人氏にお世話になった. 地質情報研究部門の高 田 亮氏には、インドネシアの地形地質に関する情報 を渡航前にご教示頂いた。活断層研究センターの粟 田泰夫氏には、ジョグジャカルタ特別州周辺の活断層 についての情報を教えて頂いた. 現地調査を遂行す るにあたり、インドネシア地質調査センターのIr. Diadjang Sukarna氏ならびに関係各位にはお世話頂いた. 西ジャワ州チアミス県内の調査ではSvarif Hidavat氏 (西ジャワ州チアミス県鉱床および地下水資源管理事 務所)、ジョグジャカルタ特別州内の調査にあたっては Danisworo, C.教授 (University of Pembangunan Nasional)にお世話になった.丸山 正編集委員に は粗稿をご校閲いただき、有益なご助言を頂いた、 以上の皆様に心から感謝申し上げたい.

参考文献

- Ammon, C. J., Kanamori, H., Lay, T. and A. A. Velasco, A. A. (2006) : The 17 July 2006 Java tsunami earthquake, Geophys. Res. Lett., 33, L24308.
- 土木学会・日本建築学会合同復興支援団先遣隊(2006):インドネシ ア・ジャワ島中部地震(速報). 土木学会誌, 91, 44-47.
- Fujii, Y. and K. Satake (2006) : Source of the July 2006 West Java tsunami estimated from tide gauge records, Geophys. Res. Lett., 33, L24317.

- ジャワ島南西沖地震・津波災害現地調査団 (2006): インドネシアジャ ワ島南西沖地震・津波(速報).土木学会誌,91,54-55.
- 加藤照之・伊藤武男・Hasanudin Z. Abidin・BPPT Agustan (2006): 2006年7月17日インドネシアジャワ島南西沖地震に伴う地殻変 動・津波調査概要.

http://www.eri.u-tokyo.ac.jp/topics/kato717.pdf

- 辰巳大介 (2006): 2006年ジャワ島沖地震・津波現地報告. なゐふる, no. 58, 2-3.
- 都司嘉宣・韓世燮・Fachrizal・Indra Gunawan (2006): 2006年7月 17日発生のインドネシア国Java島沿岸における津波浸水高調査. http://www.eri.u-tokyo.ac.jp/tsunami/javasurvey/index_j.htm
- USGS (2006) : Magnitude 7.7 SOUTH OF JAVA, INDONESIA. http://earthquake.usgs.gov/eqcenter/eqinthenews/2006/ usqgaf/
- 渡辺偉夫(1998):日本被害津波総覧[第2版].東京大学出版社, 238p.
- Widjo Kongko, Suranto, Chaeroni, Aprijanto, Zikra and Sujantoko (2006) : Rapid survey on tsunami Java 17 July 2006. http://nctr.pmel.noaa.gov/java20060717/tsunami-java 170706_e.pdf
- 八木勇治(2006):津波地震, 地震のホヘト第2回, なゐふる, no. 58, 4.
- 山中佳子 (2006):7月17日ジャワ島の地震 (M7.7). EIC地震学ノート, no.181,

http://www.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/2006/ EIC181.html

NANAYAMA Futoshi, SAITO Yoshiki, Said Aziz and Jamal, ST (2007) : Preliminary reports about tsunami traces and disasters of the 17th July, 2006 Java tsunami.

<受付:2007年1月5日>

私の砂漠砂コレクションから

齊藤隆1)

はじめに

2006年7~9月の地質標本館特別展「美しい砂の世 界」における砂写真の展示を,興味深く,また特別な 関心をもって拝見した.そこでは「霞ヶ浦の砂」,「利 根川水系の砂」および「川の砂・海の砂」として各11 標本,「日本の砂」および「世界の砂」として各38標本, 合計109標本の写真が大型のパネルで展示され,そ れらは会場で配布された冊子「美しい砂の世界」に縮 小して掲載されていた.説明によると,旧地質調査所 には約400の砂標本の画像がファイルされているとい う.

筆者も20年ほど前から砂コレクションを続け,これ までに海岸・河岸で採集した砂標本118個,砂漠で 採集した砂標本40個,計158個が集まっており,肉厚 の小瓶(10cc入り)に入れて保存している.それらの 多くは筆者自身が海外旅行などの際に採集したもの だが,一部は周囲の方々から頂戴したものもあり,特 に砂漠砂に関しては半数の20個が譲り受けたもので ある.本稿では,国内では見ることのできない砂漠の 砂について,22枚の実体顕微鏡写真を示し,それぞ れについて若干のコメントを行なう.

1. 砂漠の分布と砂コレクション

ケッペンの気候区分図における砂漠気候 (Bw)の 土地を砂漠 (desert), ステップ気候 (Bs)の土地を半 砂漠 (semi-desert)とすれば,「砂漠」はアフリカ大陸 北部と南西部,西アジア,中央アジア,中国北西部, オーストラリア大陸,北米大陸の南西部,南米大陸の 太平洋岸および南東部,マダガスカルの南部などに 分布し,半砂漠は砂漠をとりまいて帯状に分布する. また,地球上で最大の乾燥地帯(砂漠と半砂漠が連

1) 城西大学 理学部 非常勤講師

続して分布)は、アフリカ北部(サハラ砂漠),西アジ アのアラビア半島(アラビア砂漠など),イラン高原 (ルート砂漠,カビル砂漠),中央アジアのツラン低地 (カラクム砂漠,キジルクム砂漠),中国北西部のタリ ム盆地(タクラマカン砂漠),ジュンガル盆地(クアルパ ントンクド砂漠),中国中北部~モンゴル南部(ゴビ砂 漠),黄土・オルドス高原へと続く長さ1万2,000kmに 及ぶ地域である.

第1表 筆者の砂漠砂コレクション.

採集地	標本数
サハラ砂漠	
モロッコ	1
アルジェリア	1
チュニジア	1
リビア(リビア砂漠)	2
エジプト(西部砂漠)	2
エジプト(ヌビア砂漠)	1
アラビア砂漠	
サウジアラビア	1
バハレーン	1
アラブ首長国連邦(ルブアルハリ砂漠)	11
オマーン	2
中央アジア	
トルクメニスタン(カラクム砂漠)	2
南アジア	
パキスタン	1
中 国	
タリム盆地 (タクラマカン砂漠)	7
敦煌西方	1
ジュンガル盆地	1
オルドス高原(ムウス砂漠)	1
モンゴル	1
オーストラリア	
西オーストラリア州	2
米 国	
ホワイトサンズ国立公園	1

キーワード:砂漠砂, デザートサンド, サハラ砂漠, ルブアルハリ砂 漠, タクラマカン砂漠, タリム盆地, オルドス高原

筆者の砂漠砂コレクションの地理的分布は第1表の とおりである、それらのうち、サウジアラビアのアラビ ア湾 (ペルシャ湾)岸の石油基地で採集したとして譲 り受けた標本は、顕微鏡で観察すると砂漠砂ではな く海岸砂であったため本稿の記述からは除外する. 基地建設に当たって、整地用に大量の海岸砂が運び 込まれたものと推測される。同様に、バハレーンのア ワリ油田で採集したとして譲り受けた標本は、同油田 付近に露出する地層の砕屑岩片であったため除外す る.パキスタンの標本は、タール砂漠を縦断して流れ るインダス川流域で採集したとして譲り受けたものだ が、顕微鏡で観察すると川砂であったので除外する。 西オーストラリアの標本は海岸から遠くない半砂漠様 の場所で筆者が採集したものだが、これは海岸砂が 風で運ばれてたまったもののようでもあるので除外す る. 米国の標本はホワイトサンズ国立公園で採集した として譲り受けたものだが、この砂は分布が狭く、ま た米国南西部の砂漠を代表するものでもないので除 外する.以上より、ここで紹介する顕微鏡写真の対象 は、サハラ砂漠からオルドス高原(ムウス砂漠)にいた る地域で採集された22個の標本に限ることにする。 なお、砂の写真はいずれも左右の幅が4mmである。

2. サハラ砂漠 (モロッコ)の砂

写真1の砂(標本番号SD-32)は、サハラ砂漠の西 縁部に近いモロッコ国マラケシュ市郊外の砂漠で 2002年3月に採集されたもので、肉眼では濃い赤褐色 に見え,希塩酸による発泡反応はない.実体顕微鏡 で観察したところでは,粒子のサイズは0.3mm前後で 分級度は高く,円磨度はsubrounded~roundedで比 較的良くそろっている.砂粒の組成はほぼ100%が表 面を酸化鉄によって被覆された石英である.

3. サハラ砂漠 (アルジェリア)の砂

写真2の砂(標本番号SD-35)は、サハラ砂漠の中 央部に近いアルジェリア国東部のウルウド油田で2002 年12月に採集されたもので、肉眼では赤褐色がかっ た淡い褐色に見え、希塩酸による発泡反応はない. 粒子のサイズが0.2mm前後のフラクションと0.6mm前 後のフラクションとがあり、前者がかなり角張っている (subangular)のに対して後者は円磨度が高く(subrounded~rounded)、バイモーダルな分布を示すよ うに見受けられる、組成はほぼ100%が表面を酸化 鉄で弱く被覆された石英である。

4. サハラ砂漠 (チュニジア)の砂

写真3の砂(標本番号SD-40)は, チュニジアの首都 チュニス南西方のアルジェリア国境に近い町トズール で2005年に採集されたもので, 肉眼ではやや淡い褐 色に見え, 希塩酸により弱い発泡反応を示す. 粒子 のサイズは0.1~0.4mmで分級度がやや低く, 円磨度 は中程度 (subangular~subrounded) である. 組成 はほぼ全部が石英 (酸化鉄による弱い被覆)で, 顕微

写真1 (標本番号SD-32)モロッコ中部,マラケシュ市郊 外(画像左右幅は全て4mm).

写真2 (標本番号SD-35)アルジェリア東部, ウルウド油 田.

写真3 (標本番号SD-40, 未撮影)チュニジア西部, トズ ール近郊.

写真5 (標本番号SD-30)リビア中部,ワハ油田.

写真4 (標本番号SD-29)リビア中部,デファ油田.

鏡下では判然としないがごく少量の石灰岩があるも ののようである.

5. サハラ砂漠 (リビア)の砂

写真4の砂 (標本番号SD-29)は、サハラ砂漠の中 央やや東寄りのリビア国東部 (このあたりの砂漠はリ ビア砂漠と呼ばれる) デファ油田で2001年7月に筆者 が採集したもので、肉眼では灰色の中に黒点が散在 するゴマ塩のように見え、希塩酸による発泡反応は ない.アルジェリアの砂と同様、0.2mm前後 (subangular)と0.5mm前後 (subrounded ~ rounded)のフ ラクションからなり、大部分が石英で構成されるが、 表面の被覆はない.ゴマ粒状のものは、光沢のある 断口をもつ黒いガラス様の破片 (angular) だが正体は 不詳である.

写真5の砂(標本番号SD-30)は,同時期にデファ 油田の南隣のワハ油田で採集したものであり,肉眼 で見ると灰色で大粒の粒子に淡いピンクの粒子が混 ざるのが特徴的である.希塩酸による発泡反応はな い.粒子のサイズは1.0~1.4mmと大きく,円磨度は 非常に高い(rounded).組成はピンクのものを含めて すべて石英である.

6. サハラ砂漠 (エジプト)の砂

いずれもサハラ砂漠の一部であるが,エジプトでは ナイル川より西の砂漠(リビア砂漠の延長部)が西部 砂漠,南部の砂漠はヌビア砂漠(スーダンのヌビア砂 漠の延長部)と呼ばれる.

写真6の砂(標本番号SD-36,西部砂漠)は,カイロ 西方のギザにあるクフ王のピラミッド付近で採集され た(2004年入手,採集時期不詳)もので,肉眼では褐 色に見え,希塩酸により僅かな発泡反応を示す.粒 子のサイズは0.1mm前後と細粒で分級度は高く,円 磨度は中程度(subangular~subrounded)である.組 成はほぼ全部が石英(酸化鉄による被覆)で,顕微鏡 下では判然としないがごく少量の石灰岩があるもの のようである.なお,ピラミッドはブロック状の石灰岩 が積み上げられたもので,その足下の砂の中にはそ の石材から抜け落ちた有孔虫化石(ヌンムライト)が無 数に含まれることから,本標本中の発泡性の粒子は 石材の細破片である可能性がある.

写真7の砂(標本番号SD-28)は、アスワンハイ・ダム

写真6 (標本番号SD-36)エジプト,カイロ西方のギザ.

写真8 (標本番号SD-24)アラブ首長国連邦アブダビ首 長国南部, リワ・オアシス.

写真7 (標本番号SD-28)エジプト南東部, アスワンハ イ・ダム付近.

付近(周囲はヌビア砂漠)で1997年9月に採集された もので、肉眼では淡い褐色に見え、希塩酸による発 泡反応はない、大粒(0.6mm前後)の良く円磨された (rounded)粒子と小粒(0.3mm前後)の円磨度の低 い(angular~subangular)粒子とが混ざっており、い ずれもが石英である、大粒の粒子の表面は酸化鉄に よって僅かに被覆されているのに対し、小粒の粒子 には被覆は見られない。

7. アラビア砂漠 (アラブ首長国連邦)の砂

アラビア砂漠はアラビア半島の各所に広がる砂漠 の総称で,ルブアルハリ砂漠,ダハナ砂漠,ネフド砂 漠,シリア砂漠,ワヒバ砂漠などを含む.最大のもの

写真9 (標本番号SD-22)アラブ首長国連邦アブダビ首 長国,アルアイン市内.

はルブアルハリ砂漠であり,これはサウジアラビアの 南部から,アラブ首長国連邦アブダビ首長国の大部 分,オマーンの西部,イエメンの北部にかけて広がる 砂量の豊富な砂漠で,その名称はアラビア語で「何も ない土地」を意味するという.

写真8の砂(標本番号SD-24)は、連邦の首都アブ ダビ南南西のサウジアラビアとの国境近くにあるリ ワ・オアシス(厳密にはオアシス東南東方の大砂丘地 帯)で2000年10月に筆者が採集したもので、ここはル ブアルハリ砂漠の中心に近いことから、この標本はル ブアルハリ砂漠の典型的なものとみなすことができよ う.肉眼では褐色に見え、希塩酸による発泡反応は きわめて弱い.粒子のサイズは0.3mm前後で分級度 が高く、円磨度は中程度(subangular~subrounded)

-56-

写真10 (標本番号SD-3)アラブ首長国連邦アブダビ首 長国,アルアイン市北方.

写真12 (標本番号SD-19)アラブ首長国連邦アブダビ首 長国, スワイハン.

写真11 (標本番号SD-20)アラブ首長国連邦アブダビ首 長国, シュワイブ.

である.ほぼ100%が石英であるが,わずかに白色の 石灰岩粒子(rounded)が含まれる.地表の石灰岩露 頭から遠く離れた砂漠に,このような石灰岩粒子があ るのは不思議である.

写真9の砂(標本番号SD-22)は、アブダビの東のオ マーン国境にあるオアシス都市アルアイン市内にある アラブ首長国連邦大学のキャンパスで2000年1月に 採集されたもので、肉眼では濃い赤褐色に見え、希 塩酸による発泡反応が見られる。粒子のサイズは0.3 mm前後で分級度が比較的高く、組成は石英(subangular~subrounded,酸化鉄による被覆)が約90%, 石灰岩(rounded,白色,これが発泡)が約5%,その 他(岩片など)が約5%である。 写真10の砂(標本番号SD-3)は, アルアイン~ドバ イ間のアルアイン寄りで1992年11月に筆者が採集し たもので,肉眼では濃い赤褐色に見え,希塩酸に対 して強い発泡反応を示す.粒子のサイズは0.2~0.5 mmで,組成は石英(subangular~subrounded,酸 化鉄による被覆)が約80%,石灰岩(rounded,白色, これが発泡)が約15%,その他の粒子が約5%であ る.

写真11の砂(標本番号SD-20)は、ドバイ南東のオ マーン国境の町シュワイブで1999年5月に筆者が採集 したもので、肉眼では濃い赤褐色に見え、希塩酸と 反応して激しく発泡する.粒子のサイズは0.2~0.3 mmで、組成は石英(subangular~subrounded,酸 化鉄による被覆)が約70%,石灰岩(rounded,白色, これが発泡)が約30%で、その他の粒子が僅かに含 まれる.

写真12の砂(標本番号SD-19)は, アブダビーアル アイン間のアブダビ寄りにある町スワイハンで1996年 10月に筆者が採集したもので, 肉眼では灰色がかっ た褐色に見え, 希塩酸による発泡反応が見られる. 粒子のサイズは0.1mm前後と細かく, 組成は石英 (subangular, 酸化鉄によるきわめて弱い被覆)が約 95%, 石灰岩(subangular, 白色)が5%で, その他の 粒子がわずかに含まれる.

8. アラビア砂漠 (オマーン)の砂

写真13の砂(標本番号SD-1)は,オマーンの首都マ

写真13 (標本番号SD-1)オマーン北西部, ダリール油 田.

写真15 (標本番号SD-14)トルクメニスタン, カラクム砂 漠.

写真14 (標本番号SD-2)オマーン, ワヒバ砂漠.

スカットの西南西でオマーン山脈の南西側にあるダリ ール油田(オマーン,アラブ首長国連邦,サウジアラ ビア3国の国境交点に近い)で1990年に採集された もので,肉眼では褐色に見え,希塩酸による発泡反 応が見られる.粒子のサイズは0.4mm前後で,分級 度が高い.組成は大部分が石英(subrounded,酸化 鉄による被覆)で,石灰岩粒子およびその他の粒子 を僅かに含む.この砂の採集地点はルブアルハリ砂 漠の東縁に相当する.

首都マスカットから真南方向,オマーン山脈をへだ ててその南にはルブアルハリとは別の砂漠が広がっ ており,これはワヒバ砂漠と呼ばれる.写真14の砂 (標本番号SD-2)は、そのワヒバ砂漠で1984年に採集 されたもので、肉眼では赤褐色に見え、希塩酸により 強い発泡反応を示す. 粒子のサイズは0.2~0.5mm で、分級度は比較的高い. 組成は石英(subrounded, 酸化鉄による被覆)が約80%,石灰岩(rounded,白 色)が約15%,その他の粒子が約5%である.

9. 中央アジア(トルクメニスタン)の砂

中央アジアは東のカザフ高地から西に向かって地 形的に低くなり,海抜高度マイナス28mのカスピ海が その西限である.この中央アジア中西部の低地(一 大乾燥地帯)はツラン低地と呼ばれ,流入河川の過 剰取水のため干上がりつつあるアラル海はここにあ る.アラル海の南東(主にウズベキスタン)に広がる砂 漠がキジルクム砂漠,さらにその南西側(トルクメニス タン)に広がるのがカラクム砂漠である.

写真15の砂(標本番号SD-14)は、トルクメニスタン の首都アシガバード市街地の北にあるカラクム運河を 渡ったところ(カラクム砂漠南部)で1995年3月に筆者 が採集したもので、肉眼では灰色がかった褐色に見 え、希塩酸により強い発泡反応を示す.粒子のサイズ は0.2~0.3mmで分級度が比較的高く、円磨度はsubangularである.組成は石英+長石が約50%、石灰 岩粒子が約30%、その他の粒子(濃緑色と褐色のも のが多い)が約20%である.石英粒子の表面に、酸 化鉄の被覆は見られない.

写真16 (標本番号SD-13)中国新疆ウイグル自治区,タリム盆地南西部.

写真18 (標本番号SD-7)中国新疆ウイグル自治区,タリ ム盆地北部.

写真17 (標本番号SD-31)中国新疆ウイグル自治区, タ リム盆地南部.

写真19 (標本番号SD-6)中国新疆ウイグル自治区,タリム盆地北縁部.

10. 中国の砂漠 (タクラマカン砂漠)の砂

中国北西部の新疆ウイグル自治区の南半分は, 天 山山脈, パミール高地, 崑崙山脈, アルジン(阿爾金) 山脈によって囲まれた盆地(タリム盆地)で, 盆地内 はほぼ全面的に砂量豊かな砂漠(タクラマカン)に覆 われている. 崑崙山脈からのホータン川, パミール高 地からのヤルカント川, 天山山脈からのトシカン川な どがまとまってタリム川となり, この川は盆地北部を 東流してコルラ市南方の砂漠中に姿を消す.

写真16の砂(標本番号SD-13)は、砂漠南西部のホ ータン川沿いで1995年に採集されたもので、肉眼で は黒斑をともなう灰色に見え、希塩酸に発泡反応を 示す. 粒子のサイズは0.2~0.3mmで分級度が比較 的高く, 円磨度は中程度 (subangular) である. 組成 は石英+長石が約80%, 石灰岩が僅か, その他の粒 子 (大部分が濃緑色の岩片)が約20%である.

写真17の砂(標本番号SD-31)は,砂漠のほぼ中央 部(北部の町クチャと南部の町民豊の中間)で1998 年に採集されたもので,肉眼では灰色に見え,希塩 酸に発泡反応を示す.粒子のサイズは0.1~0.8mm で分級度が低く,円磨度はangular~subangularであ る.組成は石英+長石が約80%,石灰岩が僅か,そ の他の粒子(緑色および褐色の岩片)が約20%であ る.

写真18の砂(標本番号SD-7)は,砂漠北部の町ク チャの南東方,クチャ市街とタリム川との中間で1985 年8月に筆者が採集したもので,肉眼では灰褐色に見

(標本番号SD-39)中国甘粛省西部,敦煌西方, 写直20

(標本番号SD-9)中国新疆ウイグル自治区、ジュ 写真21 ンガル盆地西部。

え,希塩酸に強い発泡反応を示す.粒子のサイズは 0.2~0.5mmで分級度が低く、円磨度はangular~ subangularである.組成は石英十長石が約70%,石 灰岩が約20%,その他の粒子(緑色および褐色の岩 片)が約10%である.

写真19の砂(標本番号SD-6)は、砂漠北部の輪台 とクチャの間の国道沿いで、1985年8月に筆者が採集 したもので、肉眼では淡灰色(有色の岩片を含む)に 見え、希塩酸による発泡反応はない。 粒子のサイズ は0.4~1.2mmで分級度が低く、円磨度はangularか ら subrounded まで様々である。組成は95%以上が 石英+長石で、これに緑色の岩片, 暗灰色の頁岩, 未固結の泥などが含まれる.

写真20の砂(標本番号SD-39)は、甘粛省西端の敦 煌西方(新疆ウイグル自治区との境界近く)で、2005 年に採集されたもので、肉眼では灰色に見え、希塩 酸による発泡反応はない. この地点をタクラマカン砂 漠に含めるべきかどうかは微妙なところだが、中国で 出版された詳細な地図においても特定の砂漠名がな いので、ここでは同砂漠の北東端ということにする. 粒子のサイズは0.2~0.5mmだが大部分は0.3~0.4 mmで分級度が比較的高く、円磨度は中程度 (subangular~subrounded)である。組成は石英十長石が約 90%. 濃緑色の岩片が約10%である.

11. 中国の砂漠 (クアルパントンクド砂漠)の砂

新疆ウイグル自治区の北部は、南を天山山脈、北 2007年8月号

東(モンゴルとの国境部)をアルタイ山脈,北西(カザ フスタンとの国境部)を低山で囲まれた盆地(ジュンガ ル盆地)で、盆地内は半砂漠状のところが多いが、部 分的に砂が集中して集積しており、それらをまとめて 中国ではクアルバントンクド砂漠と呼んでいる.

写真21の砂(標本番号SD-9)は、砂漠西部の油田 の町カラマイで、1985年8月に筆者が採集したもので、 肉眼では暗灰色に見え、 希塩酸に弱い発泡反応を示 す. 粒子のサイズは0.1~0.5mmで分級度は低く. 円 磨度はsubangularである。 組成は石英十長石が約 80%, 石灰岩が僅か, その他の粒子(濃緑色の岩片 など)が約20%である。

12. 中国の砂漠 (ムウス砂漠)の砂

黄河はその中流部で南側に開いた長方形状の流 路をなし、長方形部分の南半分(陝西省と寧夏回族 自治区)は黄土高原,北半分(内蒙古自治区)はオル ドス高原と呼ばれる. 黄土高原が細かく浸食された 複雑な地形を示すのに対して、オルドス高原は一部は 砂に覆われ、また一部は地層の岩石がむき出しにな った.比較的緩やかな起伏の乾燥高地(海抜高度は 500~2,000m)で、中国ではこれをムウス砂漠と呼ん でいる.

写真22の砂(標本番号SD-10A)は、ムウス砂漠西 部、銀川の北東方約50kmの地点で1986年に採集さ れたもので、肉眼では褐色に見え、希塩酸による発 泡反応はない。粒子のサイズは0.2mm前後で分級度

写真22 (標本番号SD-10A)中国内蒙古自治区, オルド ス高原西部.

が比較的高く, 円磨度は中程度 (subangular ~ subrounded) である. 組成は大部分が石英 (表面が酸化 鉄によって被覆されている) で, 有色の粒子を僅かに 含む.

13.考察

サハラ砂漠で採集された砂の標本は、大部分が石 英の粒子からなり、その表面が酸化鉄によって被覆さ れているものが多い.モロッコ(写真1)、アルジェリア (写真2)、チュニジア(写真3)、エジプトのギザ(写真 6)の標本がその例である.サハラ砂漠東部のリビア 中部およびエジプト南部の砂は、円磨度の高い粒度 の粗い石英の粒子(またはそれらが破砕した粒子)の みからなり、リビアのデファ油田(写真4)、同じくワハ 油田(写真5)、エジプトのアスワンハイ・ダム(写真7) の標本がその例である.この丸い石英粒子は、アフリ カ北東部に分布するヌビア砂岩(石炭紀~白亜紀の 陸成砂岩)に由来すると想定される.

アラビア砂漠を構成する主要砂漠であるルブアル ハリ砂漠で採集された砂の標本は,80%以上が石英 の粒子(酸化鉄によって被覆されている)からなり,残 りは主に石灰岩(炭酸塩岩)の粒子である.石灰岩は ハジャール山脈(オマーン山脈)の西麓側に分布する 第三紀の炭酸塩岩層に由来すると想定される.アラ ブ首長国連邦アブダビ首長国の標本(写真8~10)お よびオマーンのダリール油田の標本(写真13)がその 例である.写真11の砂は石灰岩の粒子が30%に達 するが,これは炭酸塩岩露頭からの距離が近いため であろう.写真14に示すオマーンのワヒバ砂漠の砂 は,透明な石英,ピンク色の石英,円磨度の高い白 い石灰岩,濃緑色の粒子(その一部はオフィオライト の岩片と想定される)などが混ざり合って,美しさを 際立たせている.

中央アジアおよび中国で採集された砂の標本は, 石英+長石(両鉱物の区分が不鮮明であるため一括 した)の構成比が相対的に小さく,岩石破片がかなり 多く混ざっており,分級度および円磨度が低い.この 特徴はタリム盆地の標本(写真16~18など)において 特に著しい.すなわち,タクラマカン砂漠の砂は、サ ハラ砂漠やアラビア砂漠の砂に比べて,砂漠砂として の成熟度が低いと言える.タリム盆地北部では,夏季 に氷河を水源とする河川が天山山脈から南へかなり の水量で流れ,盆地南部では同様に崑崙山脈からホ ータン川その他の河川が北へ流れており,それら河川 が恒常的に新たな砂粒をタクラマカン砂漠へと供給 していることが,低い成熟度の原因と考えられる.

写真20の敦煌西方の砂が,タリム盆地内の砂に比 べて分級度も円磨度も高く,泥粉による汚れもない ことは、この地域が常時風にさらされ、また河川流に よる砂の供給もないことを示すものと考えられる.

オルドス高原西部で採集された砂(写真22)は,大 部分が石英粒で構成され,その表面が酸化鉄で被覆 されている点で,ルブアルハリ砂漠の砂(例えば写真 8)と類似しているのは興味深い.タクラマカン砂漠や クアルバントンクド砂漠の砂とは異なる特徴をもつこ の標本の砂が,ムウス砂漠の砂の一般的な性状なの か或は限られた地域におけるだけの現象なのかにつ いては,なお検討すべきところである.

謝辞:本稿で記述しなかったものを含め,青木英明, 新井邦生,石井義郎,岡津弘明,兼清豊比古,佐々 木 力,佐藤世章,園部みづき,高野 仁,田辺芳 男,中村素子,藤原道世,矢口良一の各氏(五十音 順)から貴重な標本を提供していただいた.実体顕 微鏡による写真撮影は,田村芳彦,小原英範両氏の 協力を得て,ジャパン石油開発(株)において行なっ た.砂粒子の組成判定には小原友弘氏(同社)から助 言をいただいた.以上の方々に心から厚く御礼申し 上げる.

ウルウド(油田)	Our Ghourd
デファ(油田)	Defa
ワハ(油田)	Waha
ギザ	Giza
ヌビア(砂漠)	Nubia
ルブアルハリ(砂漠)	Rub Al Khali
ルート(砂漠)	Lut
カビル (砂漠)	Kavir
ダリール (油田)	Daleel
ツラン(低地)	Turan
キジルクム(砂漠)	Kyzylkum
カラクム(砂漠)	Karakum
タリム(盆地)	塔里木
タクラマカン(砂漠)	塔克拉瑪干
ホータン	和田
ヤルカント(川)	叶爾羌
トシカン (川)	托什干
チェルチェン	且末
クチャ	庫車
ジュンガル (盆地)	准噶爾
クアルバントンクド(砂漠)	古爾班通古特
カラマイ	克拉瑪依
ムウス(砂漠)	毛烏素

参考文献

赤木祥彦(1993):「沙漠ガイドブック」(理科年表読本), 丸善.

- A. S. Walker (1992) : "Deserts: Geology and Resources", U. S. Geological Survey.
- Graham Bateman and Victoria Egna (ed.) (1993): "The Encyclopedia of World Geography", Round House.
- Jane Walker (1995) : "Rocks and Minerals", Aladdin Books.
- John Cole (1996) : "Geography of the World's Major Regions", Routledge.
- 三輪茂雄(1989):「粉の秘密・砂の謎」,平凡社.
- 奈須紀幸 (訳) (1977):「Life Nature Library 砂漠」, タイムライフブックス.
- 齊藤 隆(2000):オマーン山脈西縁部の地質巡検記録,「城西大学 研究年報(自然科学編)」,第24巻, p.49-71.
- 須藤定久他(2006):「美しい砂の世界」(地質調査総合センター研究 資料集No.443), 産業技術総合研究所地質標本館.
- 鈴木祐一郎・徳橋秀一 (1997) : 内モンゴル自治区北部オルドス高原 の石炭・地質・自然 (第 I 部 概説),「地質ニュース」, 513号, p.56-61.
- 立石雅昭(訳)(1995):「砂の科学」,東京化学同人.
- 吉川 賢(1998):「砂漠化防止への挑戦・緑の再生にかける夢」(中 公新書),中央公論社.

SAITO Takashi (2007) : Desert sand specimens through microscope - from Sahara to Ordos.

<受付:2006年12月1日>