縞状鉄鉱層と金鉱床: ブラジル, サンフランシスコ クラトンの場合

石原舜三1)

1. まえがき

我が国のような若い火山活動が見られる島弧で はエピサーマル(浅熱水性)金鉱床がよく知られて いるが,大陸地域の古い堆積-変成岩地域には,古 くはメソサーマル(中熱水性)ゴールド,最近ではオ ロジェニックゴールド(orogenic gold, Groves et al., 1998)と呼ばれている一群の金鉱床がある.こ れには,以前に紹介したカリフォルニアのマザーロ ード(石原, 1986)のような金石英脈から,ウズベキ スタンのムルンタウ鉱床(石原, 2000)のような堆積 岩地帯の破砕岩石中に鉱染するもの,ここに紹介す る先カンブリア紀の縞状鉄鉱層(BIF: Banded Iron Formation)に胚胎するものなど,幅広い性格のもの が含まれている。一般にエピサーマルよりも高温生 成と考えられており,古い地質時代に多く産出する。

地質時代の金産出量には新生代と先カンブリア 時代に2つのピークがあり,日本列島は前者に属す る.他方,先カンブリア時代の金はオロジェニック 金鉱床から得られている.この時代の金鉱床は縞 状鉄鉱層や超苦鉄質~苦鉄質火山岩類と密接に 関連して産出することが多く,金はこれらの岩石と の成因な関係が推定されている.

かつて南アフリカに滞在中に,私のホストであっ たウィットウォータースランド大学のカール・アンホイ ザー教授は「バーバトン地域では金鉱床の近傍に

写真1 山間に広がるオウロプレトの全景. 教会が23ある.

キーワード:ブラジル,始生代,縞状鉄鉱層(BIF),金鉱床,As含 有黄鉄鉱,磁硫鉄鉱,硫砒鉄鉱

写真2 オウロプレトの中心街.

写真3 オウロプレト,坂道に面する民家.

常に縞状鉄鉱層が現れるので,自分は縞状鉄鉱層 に一次濃集していた金が後生的な熱水循環で破砕 帯などに二次濃集をして金鉱床を形成したと考え る」と話しておられた.1993年の有志による南ア巡 検(本誌479号参照)で私達は一部の金鉱床を見学 したが(渡辺・林,1994),縞状鉄鉱層との関係は よくわからなかった.

第31回万国地質学会議(IGC)は2000年8月6日 ~17日にブラジルのリオデジャネイロで開かれた が,その付属巡検に縞状鉄鉱層と非常に密接に関 連した産状を示す金鉱床をみせるという案内が出 された.出発点はリオデジャネイロからジェット機で 約1時間北に飛んだベロオリゾンテであり,便利な 所であったので,早速参加することにした.偶然に も東京大学の正路徹也教授と一緒であった.この 小文は8月18日~8月23日にガイドブック(Lobato et al., 2000; Pereira et al., 2000)および配布資料 (Ribeiro-Rodrigues, 1998)に従って現地で見聞し たものの記録である.なおこの巡検用に用意され

写真4 オウロプレト,石の彫刻品が多いお土産店.

写真5 オウロプレト,街で会った元気な高校生旅行団.

た研究と資料は, 後にLobato *et al.* (2001a, b)で 正式に公表されている.

2. 黒い金の街, オウロ プレト

巡検地域はミナス ジェイラス州中央南部に位置 し、"鉄のコードラングル"(Quadrilatero Ferrifero, 以下QFと略称する)と呼ばれる縞状鉄鉱層の濃集 地帯である.私達は初日にオウロ プレト(Ouro Preto,黒い金)を訪れた.ミナス ジェイラス州の首 都,ベロオリゾンテ(人口200万人)から約100km, 車で2時間の距離にある.この町はその名の通り 1698年の砂金の発見で人々が集まり、後に山金を 発見して金鉱業で栄えた町である.当地の砂金は パラジウム(Pd)が含まれるために黒ずんで見え, オウロ プレトと呼ばれたと聞く(L. M. Lobato,私 信).1711年~1895年にミナス ジェイラス州の首都 が置かれた.家々は山間の谷間に広がり、斜面に 適合した家屋を造っている(写真1-5).ポルトガル

第1図 ブラジルの年代別金生産量 (Ribeiro-Rodrigues, 1998).

由来のバロック風の見事な教会(口絵2)が多く、その数は23にも達するとの説明であった。

QF地域の金は最初砂金から採取され,その量 は400トン以上と推定されている.その他ラテライ ト中の金粒も若干採集されている.それが1750年 頃にブラジルの産金量の最初のピークをもたらした (第1図).

第2のピークは"山金"から得られる現代であり, その供給源は始生代の破砕帯型鉱床からの571ト ン,原生代の同種鉱床からの92トンである.QF地 域の歴代の総産金量は1,000トンを超え,ブラジル 全体の約40%を占める.QF地域の主力はノヴァリ マ層群の鉱床であり,最大はモロヴェロ鉱山で(第 2図のI),総生産量は470トン,採掘深度2,500mに 達している.ついでクイアバ鉱山が大きく,総金量 は予想鉱量を含めると300トン級と言われている.

3. 地質概況

南アメリカ大陸には北部に最も古いアマゾン地塊 があり、これはCA(中央アマゾン)、MI(マロニーイ タカイウナス)、VT(ヴェンツリータパジョス)、RNJ(リ オ ネグロージュレナ)、RO(ロンドニアーサンイグナシ オ)、SS(スンサス)などの地質構造区に分けられて いる(Cordani *et al.*, 2000). このほか小地塊として サン ルイス、サン フランシスコ、ルイズ アルヴェス、リ オ デ ラプラタなどがある(第2図).

QF地域はその名のごとく,ブラジルにおける最 大の鉄鉱産地でもある.この地域の構成岩類は古 い方から始生代の片麻状トナル岩類,始生代のリ

第2図 南アメリカの構造区分 (Cordani *et al.*, 2000).
Ⅰ 南アメリカ プラットフォーム
Ⅱ パタゴニア マッシーフ
Ⅲ アンデス帯と先カンブリア基盤 (黒色部)
Ⅳ 前陸盆地

オ ダス ヴェルハス累層群, そして原生代の諸岩石 からなる(第3図).

3.1 始生代片麻状トナル岩と同質片麻岩類 (>29億年)

これらはQF地域の基盤の大部分を構成する. そのジルコン年代は33.8-29.0億年である.サンフ ランシスコ地塊の南域に付加した火成岩類と考え られ,関連する花崗岩活動の最末期はカムポベロ 複合体(2,920-2,900Ma)の形成である.この片麻 岩類地域には金鉱床は知られていない.

3.2 始生代リオ ダス ヴェルハス累層群 (27.8億年-26.6億年)

この地層は鉱物資源探査の見地からは最も重要 なものである.この地層はQF地域に広く分布し、

第3図 QF地域の地質図と金鉱床の分布 (Ribeiro-Rodrigues, 1998). 19がクイアバ鉱床, 59がサンベント鉱床.

始生代と原生代初期と中期の変形作用を蒙ってい る.この始生代の地層は更に次の下位ノヴァリマ 層群と上位のマキーネ層群に大別される.

(イ)ノヴァ リマ層群

これは最下位から, (a) 超苦鉄質-苦鉄質火山岩 類(写真6), (b)火山岩類と砕屑岩~化学沈殿堆 積岩類, (c)火山砕屑岩類, (d)再生堆積岩類に分 けられる.火山岩類は主にコマチアイト,ソレアイト 溶岩流,これに少量の斑れい岩,アノーソサイト,か んらん岩も附随する.変成縞状鉄鉱層,含鉄チャ ート,火山砕屑岩,炭酸塩片岩なども伴われる.か んらん岩質コマチアイトは塊状,枕状(写真7),角 礫状などで,スピニフェックス組織(写真8)などの 急冷組織を持つ.

ノヴァリマ層の縞状鉄鉱層は鉄に富むチャートを 薄く挟み,厚さ50m以下,その鉄鉱物は菱鉄鉱と 磁鉄鉱である.全鉄含有量はラポソス鉱床で8.5-29.0重量%,サンベントス鉱床で25-51重量%,ク

写真6 苦鉄質火山岩起源変成岩で作った城壁.

イアバ鉱床で6.5-23.0重量%である.これら縞状鉄 鉱層が硫化鉱物化したり,珪酸塩鉱物化することが あるが,これらは鉱化・変質作用の結果である.

(ロ)マキーネ層群

これは下部が沿岸堆積岩類で,現在はリップル マークを伴う雲母珪質片岩類,斜層理を伴う珪質

写真7 枕状構造を持つ玄武岩.

写真8 コマチアイトのスピニフェックス組織.

写真9 砂漠の堆積物起源と思われる斜層理の化石. ラポソス付近.

片岩類(写真9)などの変成岩類に変化している. 上位層は陸成の礫岩,珪質砂岩類である.以上を 不整合に覆って原生代の諸岩石が分布する.

3.3 原生界 (<26.6億年)と構造運動

ミナス累層群は原生代前期と推定されている.

写真10 地形的に突出した縞状鉄鉱層(BIF). 右に緩く 傾斜する層理面に注目.

写真11 ラポソス鉱山の露天ピット.

これは大陸縁堆積物起源と思われ,スペリオル湖 型の縞状鉄鉱層を伴うことで著名であり,イタビラ イトとして私達の学生時代に教わったものである. 縞状鉄鉱層は地形的にも現れている(写真10).現 地での説明ではFe45%,チャート55%の低品位鉱 で二次富化部分が稼行されるとのことであった.こ れは更に基底部の砕屑岩からなるカラシャ統,その 上位の化学沈殿岩類からなるイタビラ統,上部の砕 屑岩類からなるピラシカバ統,最上位の泥質岩,凝 灰岩からなるサバラ統に分けられる.

ミナス累層群の上位には大陸性堆積物からなる 原生代のイタコロミ層群,海成堆積物からなるエス ピナシオ累層群が分布する.

この地域の構造運動の最古のものは基盤のトナ ル岩類とリオダスヴェルハス累層群が受けた圧縮 応力である.これは北から南または南西への圧縮 により,東北東-南南西走向の褶曲構造をもたらし た.金鉱化作用は熱水変質作用と共に,この変形 期のブリトル-ダクタイル構造に沿ってみられ,次の

写真12 イタビライト鉄鉱石. ラポソス鉱山.

写真13 露頭見学中, リーダーの足に付いたダニをとる 参加者達.

5種類に分類される.(1)ミロナイト化断層面と破砕 面,(2)褶曲軸に沿った劈開面か非対称褶曲の片 理面,(3)褶曲ヒンヂ間の内部割れ目,(4)広間隔 割れ目内の劈開,(5)角礫化部分など.これらは QF地域の褶曲運動の最初の時期に形成されたも のと思われている.

4. モロ ヴェロ鉱床

モロ ヴェロ鉱山はベロ オリゾンテ南東10km, ノ ヴァ リマの町にあって, 1810年から生産されてお り, 古くて大きいブラジル最大の金山である. 1997 年には坑内堀りが深度2,450m (27レベル)に達し, 閉山に至った. Vieira *et al.* (1991)によると鉱量 5,706,160トン(9.35g/tAu), 金量53.4トンが残存 している.

この鉱床は "lapa seca"を母岩とすることで有名 である(Vieira *et al.*, 1991). Lapa secaなる用語

写真14 山間のガラシャ修道院. ここに一泊した.

は最初鉱夫によって使われ,文字通りには"乾いた下盤"を意味する.外観は灰~ベージュ色ないしは白色,細~粗粒,片状~塊状の熱水変質岩で, 主に炭酸塩鉱物(鉄ドロマイト±アンケライト,菱鉄 鉱,ドロマイト,稀に方解石),石英,アルバイト,少 量の白雲母を含む.この岩石は,一時期,化学沈 澱堆積岩と考えられたこともあったが,現在では熱 水変質岩としての証拠が固まっている(Lobato et al., 2001a).

Lapa secaはモロ ヴェロ(金量450トン以上), ビ カ ルホ(金量2トン以下), ベラ ファマ(金量0.5ト ン以上)などの金山で重要な母岩を形成する. Lapa secaの地表露頭は, 幅3~100m, 平均30m で, 走向方向に14km追跡できる.

モロ ヴェロ鉱床付近の構成岩類はlapa secaを 挟んで、スピライト化ソレアイト質玄武岩類、珪長質 凝灰岩類、千枚岩類などが分布する.鉱体はlapa secaに挟まれ白色雲母-緑泥石-炭酸塩鉱物-石 英片岩および塊状-縞状-鉱染状-硫化物層との パッケイジとして産出する.

これら母岩は著しく褶曲しており, その活動は D₁, D₂, D₃の3時期に分けられる. D₁期は東西走 向の等斜褶曲で, 急角度の傾斜を持つ. D₂期は同 じく等斜褶曲であるが, 東北東系の褶曲軸を持ち, D₁期褶曲に重複して, これを消滅させる. 両者の 交差部には主鉱体, 南鉱体, 北西鉱体などの主要 鉱体が胚胎する(第4図). D₃期の褶曲はN-S走 行, E傾斜で, 小規模なものである(Vieira *et al.*, 1991).

金富鉱部はlapa seca中の硫化鉱物層と密接で ある. Lapa secaはここでは層厚0.5~5m,褶曲で

第4図 モロ ヴェロ鉱山, ミナ グランデ鉱床の25レベル地質図 (Lobato et al., 2001b).

第5図 クイアバ鉱床付近のノヴァ リマ層群の模式断面図 (Ribeiro-Rodrigues, 1998).

折り畳まれた部分では10mに拡大する.硫化物鉱 体の60-75容量%は磁硫鉄鉱である.ついで硫砒 鉄鉱が多い.黄鉄鉱は3-12容量%に過ぎないが, 金冨鉱部と密接である.磁硫鉄鉱/黄鉄鉱比は深 部へ向かうにつれて上昇する.自然金は粒径1~ 10μm,磁硫鉄鉱の鉱物境界沿いに産するか,黄 鉄鉱,硫砒鉄鉱に包有される.Au/Agは5と低い. 硫化物鉱体のほか,金は炭酸塩鉱物+黒雲母>緑 泥石変質岩にも含まれるが,この産状の金量は全 体の20%以下である.

5. クイアバ鉱床

この鉱床付近には, リオ ダス ヴェラス累層群に 属するノヴァ リマ層群が分布し, 著しい褶曲を受 ける. この層群は3層に分けられ, 下部層は主に安 山岩類, その上に縞状鉄鉱層, チャートなどの化学 沈殿岩と玄武岩からなる中部層, その上位は泥質 岩に中性~珪質火砕岩が混在する上部層である (第5図).

第6図 クイアバ鉱山, 3坑レベルの地質図 (Ribeiro-Rodrigues, 1998).

鉱床はノヴァリマ鉱床層群の諸岩石が南東に急 斜する鞘袋状に落ち込む褶曲が著しい部分に発達 する(第6図).この楕円筒状の鉱筒は3,000m下部 まで追跡でき、3レベルでは直径600mであるが、 17レベルでは800mと、下部で大きくなる.

鉱床の母岩は安山岩類,玄武岩類,縞状鉄鉱層 とチャート,石灰質泥岩類,泥岩類,凝灰岩類の互 層であり,これらが緑色片岩相の変成作用を受け, 局部的にはミロナイト化も見られる.熱水変質作用 としては原岩が苦鉄質岩の場合に緑泥石化が顕著 で,さらに絹雲母化・炭酸塩化が認められる.一部 に石英脈が見られる(第6図).

金鉱化作用は,(1) 縞状鉄鉱層中か, 縞状鉄鉱 層の硫化物に富む層準に見られ,(2) 一部が苦鉄 火山岩類や堆積岩中の破砕帯に沿って見られる. また,(3) 一部に含金石英脈がある(例Viana鉱体) が,その規模は小さい.稼行鉱体は12であり,その 厚さは数cmから15mに及ぶ.最大の鉱体はクイア バ褶曲の南東末端部にある.

鉱体に近づくとグラファイト含有菱鉄鉱(±アン ケライト) 縞状鉄鉱層が炭酸塩化変質により白色化 し,多量のアンケライトや鉄ドロマイト,少量の方解 石を含むようになる.白色化はグラファイトの消滅 と炭酸塩化によるためである.鉱体に富化された 成分はS,Au,As,CaO,Cuなどである(Ribeiro-Rodrigues,1998).黄鉄鉱が含鉄炭酸塩鉱物を交 代し,黄鉄鉱薄層・透明暗色の石英-炭酸塩鉱物 薄層・チャート薄層の互層からなる典型的な縞状 鉱石を形成する.

金は硫化物層に含まれており,硫化物化と密接で ある.硫化物層の厚さは数mmから1m(写真15), 母岩の片理面と一般には平行し,斜交することもあ

写真15 クイアバ鉱山9レベルの高品位硫化鉱.

写真16 サンベント鉱山全景. 鉱山資料より.

る(口絵5参照).この鉱体は石英脈や方解石脈に切 られる.高品位の塊状硫化物鉱体は変形や破砕が 著しい部分に見られる.等斜褶曲の蝶番部分は探 査上要注意である.塊状鉱体の中心には磁硫鉄鉱 が産出する.

金は粒径3-60 μ m,割目中の独立包有物,構成 鉱物の粒間,黄鉄鉱の外核として産出する. Au/Ag比は6である.金を伴う黄鉄鉱はAsを含む ことが多く(平均1.9重量%As),また金は硫砒鉄鉱 (1-3容量%)にも伴われる.硫砒鉄鉱温度計によ って,金の生成温度は270-300℃と見積もられて いる.時期的には最早期の微粒黄鉄鉱と最末期の 磁硫鉄鉱のステージでは金は晶出していない.

6. サン ベント鉱床

この鉱床はQF地域の北東部にあり, サンタバー バラに近い(第3図, 写真16).確定鉱量は300万 トン, 平均金品位9g/t, 金量にして27トンである.

第7図 サン ベント鉱床の北西-南東地質断面図 (Pereira *et al.*, 2000).

本鉱床付近には砕屑性と化学沈殿堆積岩類の発 達が著しい.これら堆積岩類は下位から上位に, 下部鉄鉱層,基底炭質層,サンベント鉄鉱層,カ ラパト層に分類される(第7図).

サン ベント鉄鉱層は, 黄鉄鉱 ノジュールを含む グラファイトに富む緑泥石-炭酸塩片岩を覆う. 鉱 床母岩はこの鉄鉱層のみと言ってよく, 他にはグラ ファイト片岩が局部的に金を含むことがある.

サンベント鉄鉱層は暗色の硫化物(±グラファイ ト)を含む磁鉄鉱薄層と緑色の緑泥石-スティルプ ロメレーン薄層,クリームピンクの菱鉄鉱-石英(± 網雲母)薄層の互層からなる.鉱石としては,(1) 硫化物含有石英脈と(2)鉄鉱層中の細粒硫化物ラ ミナ鉱石,の2種類がある.前者は鉄鉱層の縞状 構造と平行であるか,または斜交する.鉱化はリニ エーションの規制を受けていることから,走向横ず れ運動に伴って生じたものと考えられる.

鉱石及び代表的母岩の化学成分を第1表に示 す. 鉱石はAs, AuとSに富むことが明らかで, Au はAs, Sとの相関性が著しい. 硫化物では磁硫鉄 鉱が最も多く, かつ最早期の晶出鉱物で, 時に黄

	鉱体	BIF	グラファイト片岩
SiO ₂ %	50.64	42.24	58.10
TiO ₂	0.07	0.02	0.57
Al ₂ O ₃	1.06	0.64	14.80
Fe2O3	12.50	18.34	1.50
FeO	14.14	21.52	6.00
MnO	0.12	0.08	0.14
MgO	1.52	1.74	3.80
CaO	1.53	2.60	2.80
Na2O	0.28	0.02	2.40
K2O	0.16	0.03	1.90
P2O5	0.06	0.12	0.05
CO2	8.35	11.82	5.90
S	3.96	0.10	0.09
V ppm	22	L10	130
Cr	68	79	370
Co	16	21	33
Ni	30	26	196
Cu	23	9	28
Zn	92	89	289
As	34846	61	577
Se	1	1	2
Rb	10	8	69
Sr	34	31	120
Y	6	L5	19
Zr	30	27	120
Ba	35	L15	290
W	65	L3	L3
Au	19.92	0.26	< 0.05
Pb	62	53	32

第1表 サン ベント鉱床の母岩と鉱体の化学成分 (Pereira *et al.*, 2000).

鉄鉱の包有物を含む硫磁鉄鉱も多量に産する.こ れら硫化物は硫黄フェガシティ上昇時に原岩の磁 鉄鉱,菱鉄鉱を分解して生成したものである.

磁硫鉄鉱と黄鉄鉱とは負の相関性を持つ.磁硫 鉄鉱量は21レベル以下の深部,かつ褶曲作用が密 な部分で上昇する.肉眼的に見える金粒は磁硫鉄

写真17 サンベント鉱山24レベル. 最末期の黄鉄鉱-石 英プール.

第8図 QF地域の金鉱床の母岩の種類,上:金量,下: 鉱床数に基づく(Ribeiro-Rodrigues, 1998).

鉱に包有されるが, 硫砒鉄鉱/磁硫鉄鉱または硫 磁鉄鉱/脈石鉱物の境界でも認められる. 金結晶 は後期晶出の磁硫鉄鉱にも伴われるが, 脈石鉱物 と密接に産することは少ない.

7. 金鉱床の一般的特徴

以上の代表例に加えてその他のQF地域の金鉱 床を概観すると、次のような特徴が浮かび上がる。 母岩の種類:母岩は全て緑色片岩相-角閃石相の 変成作用を受けている縞状鉄鉱層-lapa seca, 縞 状鉄鉱層または鉄に富むチャート, 苦鉄-超苦鉄質 火山岩類と堆積岩類である. 鉱床数から見ると(第 8図上),一般の縞状鉄鉱層を母岩とするものが最 重要であり、第2図の鉱床の多くが縞状鉄鉱層準の 変質および硫化鉱物化鉱体として産出することを 示している,ついで苦鉄質火山岩類,珪長質火山 岩類の順である. 金量から見るとモロ ヴェロ鉱床 が大きいために変質縞状鉄鉱層, すなわち縞状鉄 鉱層-lapa secaが圧倒的に重要である(第8図下). これは, 灰~ベージュ色, 塊状, 一部片状組織を 持つ炭酸塩鉱物に富む鉱石である、少量の石英、 アルバイト, 絹雲母, グラファイト, 黄鉄鉱を含む. これが金鉱量の85%を占める。

第9図 QF地域の金鉱床の変成-交代性成因モデル (Lobato et al., 2001b).

金鉱床はノヴァリマ層群中の衝上断層とそのつ なぎ断層などに規制されている.その走向は北西 系で主に北東傾斜であるか,または北東系,南東 傾斜である.破砕構造は縞状鉄鉱層の縞状構造と 平行であるため,原岩の堆積構造と見誤られたこ ともある.鉱化を受ける破砕帯は,厚さ0.5~20m, 走向方向に10~300m,落とし方向に800~ 3,000m以上連続する.

鉱化作用:金鉱化作用は破砕活動と共に生じた熱 水活動によりもたらされた.その時期は変成作用後 期~後変成期であり,変質作用の種類は縞状鉄鉱 層の場合に硫化物化と珪化である.苦鉄質火山岩 の場合には絹雲母化,炭酸塩化,緑泥石化,硫化 物化であり,中心部で絹雲母化,周辺部で緑泥石 化のゾーニングが見られる.

稿状鉄鉱層のAu含有量は40-300ppb, Ag含有 量は10-140ppbであり, それらが鉱体ではAuが1-110ppm, Agが0.5-16ppmに増加する. As, Sの 上昇も著しく, 黄鉄鉱, 磁硫鉄鉱, 硫砒鉄鉱が産 出し, 金を含有する.

流体包有物データは一般に3-3.5kb, 180-350℃,塩濃度NaC1等量3-5%,密度0.8-0.9 g/cm³, その化学成分はH₂O, CO₂, CH₄, HS⁻, N₂, H₂S, 塩類である. 炭素同位体データは ∂ ¹³C _{炭酸塩}=-4~-6‰, ∂ ¹³C _{有機物}=-16~-20‰, 酸素 同位体データは ∂ ¹⁸O _{石英}=+17‰, ∂ ¹⁸O _{炭酸塩}= -15‰, 硫黄同位体データは ∂ ³⁴S _{黄鉄鉱}=+1.5~ +5.4‰である.

構成硫化物の種類と低い塩濃度から金は還元硫 黄種と結合して運搬され,例えば次のような反応 式によって金が沈殿したものと思われる.

Au (HS) $_{2}^{-}$ + H⁺ + C + Fe₂O₃

 $= \mathrm{FeS}_2 + \mathrm{Au} + \mathrm{FeCO}_3 + 1/2\mathrm{H}_2$

 $3Au (HS)_2 + H^+ + 2 Fe_3 O_4$

 $=6FeS+3Au+3H_2O+5/2 O_2+1/2H_2$

8. 鉱床の成因:結びにかえて

以上のようにQF地域の始生代のオロジェニック 金鉱床は、その生成温度、深度ともにエピサーマル 鉱床(200℃,2kb)よりも大きく、300℃、3kb程度 のメソサーマル金鉱床と考えられる.これら金鉱床 は、大局的には層理面や片理面などの変成構造に 沿って胚胎している.従って母岩と同時期に生成 したとする同生説が提案されることは当然である. 一方、鉱床は変成、変形地域に産出するために、 褶曲, 断層などの構造規制を受けており, 従って 変成・変形後に鉱液が循環して鉱床が形成された とする後生説も提案されている.

同生説の最も単純なものは,(1)海洋底の噴気 活動によってAu,Sが深部や海水から供給され, それと海水との混合により,温度,pH,Ehが変化 し,Auや硫化物が沈殿するものである.一方,同 生説でも(2)複数回の濃集過程を経験した説,あ るいは(3)海洋底で濃集していたものが,変成時の 変成流体によって構造的弱線に濃集した説などが, これまでに提案されている.

後生説としては(1)近傍の火山岩として苦鉄質岩 脈があるので,鉱床はランプロフィアか,あるいは潜 在する珪長質貫入岩体からの鉱液によって変成岩 の弱部に生成したもので,金属元素の起源も熱源 も完全な後生的鉱床と考えるもの;(2)鉱床は後生 的に形成されたが,鉱液は構造・変成運動に伴い 生じた「変成水」であり,鉱石成分は周囲の母岩 (当地の場合は縞状鉄鉱層)から抽出された.それ が故に鉱床は著しい構造規制を受けている.熱源 としては,地温勾配によるもの,構造運動熱など; あるいは深成岩熱を考える.(3)繰り返し後生説と も言える後生的に発生した鉱液が複数回循環し鉱 床を形成した.

鉱石は、表紙や口絵で示したように"別子型銅鉱 石"と似ているほど硫化物に富んでいる.しかし鉱 床は銅でなく、金に濃集していること、砒素に富む などの特徴がある.鉱床近傍の火成岩類は別子型 よりもより苦鉄質なコマチアイトである.このような 超苦鉄質火山岩の噴出によって、S、As、Auを濃集 した海底噴気熱水鉱化作用があったのかもしれな いが、現在は後生的に金が濃集したと考える人が 多い.Lobato et al. (2001b)は第9図の模式図、す なわち変成鉱化流体が破砕帯に沿って上昇し、縞 状鉄鉱層がスポンジのように鉱液沈澱の場を提供 したモデルで、QF地域の金の成因を説明している.

QF地域の主力鉱床は縞状鉄鉱層に伴われる. 鉱床付近で新鮮な縞状鉄鉱層を見ることは難しい が,変質が最も弱い縞状鉄鉱層は40~300ppbの 金含有量を持っている(Ribeiro-Rodrigues, 1998). もしそうであるならば金は一般岩石では1ppbオー ダーであるから,高金濃度変成鉱液を得るのに好 都合である.このように鉱床は,縞状鉄鉱層や火山 岩類に初生的にやや濃集した金が構造的な変形後 に熱水循環によって弱線沿いに再濃集して生成し たのではなかろうか,との印象を筆者は持った次 第である.

謝辞:巡検を用意され,また参加者の質問にも丁 寧に対応されたL. M. Lobato教授,草稿を読ま れて有益な助言を与えられた神谷雅晴さんに感謝 する.

文 献

- Cordani, U. G., Sato, K., Teixeira, W., Tassinari, C. C. G. and Basei, M. A. (2000) : Crustal evolution of the South American platform. *In* Tectonic Evolution of South America, Rio de Janeiro, 19–40.
- Groves, D. I., Goldfarb, R. J., Gebre-Mariam, H., Hagemann, S. G. and Robert, F. (1998) : Orogenic gold deposits - a proposed classification in the context of their crustal distribution and relationship to other gold deposit type. Ore Geol. Review, 13, 7–27.
- 石原舜三 (1986): カリフォルニアの金鉱床. 地質ニュース, no. 379, 6-21.
- 石原舜三 (2000): ウズベキスタンの金鉱床: 破砕帯型, 多金属型, そ してポーフィリー型, 地質ニュース, no.552, 7-22.
- Lobato, L. M., Ribeiro-Rodrigues, L. C. and Zucchetti, M. (2000) : Geology and gold mineralizations in the Rio Das Velhas greenstone belt, Quadrilatero Ferrifero (Minas Geirais State, Brazil). 31st IGC, Post-Congress Field Trip, Aft. 12, 34p.
- Lobato, L. M., Ribeiro-Rodrigues, L. C., Zucchetti, M., Noce, C. M., Baltazar, O.F., da Silva, L. C. and Pinto, C. P. (2001a) : Brazil's premier gold province. Part I: Geology and genesis of gold deposits in the Archean Rio das Velhas greenstone blet, Quadrilatero Ferrifero. Miner. Deposita, 36, 249–277.
- Lobato, L. M., Ribeiro-Rodrigues, L. C. and Vieira, F. W. R. (2001b) : Brazil's premier gold province. Part II: Geology and genesis of gold deposits in the Archean Rio das Velhas greenstone blet, Quadrilatero Ferrifero. Miner. Deposita, 36, 249–277.
- Pereira, S. L. M., Jardim, E. C. and Ferreira, J. E. (2000) : Sao Bento Mine. Eldorado Gold Corporation, Guidebook prepared for the 31st IGC Excursion, 46p.
- Ribeiro-Rodrigues, L. C. (1998) : Gold mineralization in Archean banded iron-formation of the Quadrilatero Ferrifero, Minas Gerais, Brazil - The Cuiaba Mine. Aacgeber Geowissensch. Beitrage, 27, 262p.
- Vieira, F. W. R., Biasi, E. E. and Lisboa, L. H. A. (1991) : Geology of and excursion to the Morro Velho and Cuiaba mines. *In* Field guidebook of Brazil Gold '91: The economics, geology, geochemistry and genesis of gold deposits. Depart. Nacional Prod. Mineral, 87–99.
- 渡辺公一郎・林 秀(1994):南アフリカ, バーバトン・グリーンストン帯の金鉱床-31億年前の鉱化作用-.地質ニュース, no. 479, 14-18.

ISHIHARA Shunso (2004) : Gold mineralizations and BIF: An example in the Sao Francisco craton, Brazilian shield.

<受付:2004年2月6日>