地中鉛直ダイポール間のパルス地電流観測

白井 信正¹⁾·村上 裕¹⁾·榎本 祐嗣²⁾·橋本 寬³⁾

1. はじめに

大・中地震に先行して震央あるいはその周辺域 で電磁波放射や発光現象など各種の異常現象が発 生したといわれ,その報告も数多くなされている (力武,1986).一方,室内実験では岩石変形・破 壊時にいくつかの手法で電磁場変動や発光現象が 発生することが確かめられている(Nitsan,1977; Brady *et al.*,1986).このことは,地震に先行した 電磁気異常現象が観測される可能性を示すものと いえる.

このような観点から地震前兆現象を捉えるための 観測が国内外で数多く行われている。たとえば電気 通信大学の芳野らは、1980年からアンテナを空中 に張り、関東近辺の7ヵ所において36Hz, 1525Hz, 82kHzの電磁放射の継続計測を行い、1985年から 1990年にかけての間の地震に関連したとみられる 29例の電磁波放射を記録している(Yoshino et al., 1993).また、ギリシャ・アテネ大学のVarotsos教授 らは,1980年頃から数十mから数kmの長・短基線 電極間の地電位の計測を行っている。 ギリシャの約 20ヵ所に測線を張り地電位を計測して地震発生の 20日以内に前兆異常とみられる信号を記録してい る. 彼らはこの信号をもとに, マグニチュード=5以 上の地震の発生を確率約60%,震源誤差約100km 以内,マグニチュード誤差約0.5以内の精度で予知 に成功したとされている(Varotsos and Lazaridou, 1991; Varotsos et al., 1993). さらに防災科学技術研 究所の藤縄らは、地下に埋設した300~800mのパ イプをアンテナとして、関東近辺でULF、VLF帯の 電磁波の観測を行っている. これまでの観測の結 果,Ms>6以上の地震に対して異常な前兆現象を

検出している(Fujinawa et al., 1993). このほかに もこのような現象に着目して地震の短期予知への応 用を目指して多くの研究がなされているものの地震 との因果関係は明らかにされていない.

地震発生に関連する電磁気現象発現メカニズム として多くの仮説が提唱されている.主なものとし ては,破壊領域における流体(液相,気相)の移動 に起因するもの,岩石中の石英結晶の圧電効果に その一次的な原因を求めるもの,岩石に微少なク ラックが生じるときに固体表面から発生する電子放 出仮説に基づくもの,岩石破壊に伴う内部摩擦・接 触帯電などの双極子変動,あるいはそれらの複合 効果などが挙げられているが異常電磁気現象の特 徴を説明できる定説となるものは確立していない.

筆者らは旧機械技術研究所において,破壊に伴う電荷放射(フラクトエミッション)や破壊誘起過渡 電流の計測を試みてきた.これらの電気信号の負 の勾配が1μ秒よりも早い変動であることから,放 射線計測などに利用されているのと同様な方式に よる電荷の高速変動成分を検出する電荷検出器を 用いて岩石の押し込み破壊試験,剪断破壊試験, 圧縮破壊試験を行い,顕著な電荷変動を確認した (Enomoto *et al.*, 1989).

この種の現象を野外において捉え地震前兆過程 における電磁気異常現象を明らかにすることを目 的に,1994年より(株)コムテック,北海道大学, (株)日立製作所などと協力して,電荷検出システム の野外展開を図り,地電流のネットワーク観測を開 始,継続してきた(Enomoto et al., 1997).このシ ステムは,襟裳観測点で有珠山の噴火に関連する 可能性のある地電流変動を捉えることに成功する など,地震・噴火予測のための有用な手段になり

キーワード:パルス地電流,地震,火山

¹⁾ 産総研 地球科学情報研究部門

²⁾ 信州大学 繊維学部

³⁾ 株式会社 コムテック

第1図 稼働中の地電流観測ステーション.

うる可能性を示した(Hashimoto *et al.*, 2002).本 観測システムは2003年より,旧地質調査所におい て長年行われてきた地震研究との連携を強めるた め,地球科学情報研究部門に引き継がれ観測を継 続している.観測を継続しているステーションは第 1図に示すように北から,襟裳(1998年2月~),つ くば中央(1994年8月~),茅ヶ崎(1997年1月~), 鋸南(1999年1月~),富士川(1999年1月~), 諸南(1999年1月~),広阪府池田市(2000年11月 ~)の合計7ヵ所である.このほか,日立大甕に設 置したステーションは1997年1月から稼働を開始し 5年あまりデータ収集を継続したが都合により2002 年10月に撤収した.

これまでに太陽活動,電離層に 由来する長期変動,気象変化によ る季節変動による信号のほか1996 年末から1997年4月頃までのつく ば中央観測点や2000年2月から 2001年3月頃までの襟裳観測点に おける顕著な地電流の異常を観測 した(Murakami *et al.*, 2003).

2. 観測システムの概要

観測システムの構成を第2図に 示す.このシステムは、地下に埋設 したダイポール系、地上の電荷検 出機器系と通信系からなる.観測

場所の電磁気環境条件によって、深度約5mの電極 と深度約100mまたは約50mの電極とでダイポール を構成した.地下水が豊富な地層で地表の商用周 波数50Hzの電磁気信号が地下に浸透する深さ(表 皮深さ)は50m程度と見積もられる.そこで地表の 商用周波数帯の電磁気擾乱を避けるために,一方 の電極を表皮深さよりも深い50m以深に埋設して いるものである。また、このダイポール間に誘起さ れる地電流の早い変動成分を観測するために、放 射線計測などで使用されているパルス電荷の検出 法を採用した. すなわちダイポール間に誘導される 電荷をカップリングコンデンサまたはパルストランス を介して負帰環増幅器に導き、コンデンサ(数pF程 度)にため込む. さらに増幅して1ms毎に積分した 信号をホストコンピュータに取り込み、さらに2秒間 隔で積算しデータとして記録する.電話回線で接 続されたターミナルコンピュータでデータの監視と 転送,観測機器の制御を行っている.

信号表示の方法として次の3つの種類がある.

- (1) データとしてホストコンピュータに取り込まれて いるオリジナル信号,
- (2) 2秒毎の差分をとり微弱信号の変化に対する感 度を上げるDifferential信号,
- (3) 雷放電などランダムで不連続に変化する信号を 抽出するフィルター(ホストコンピュータに備え 付けで常備モニターに使っているのでDefault フィルターと呼んでいる)は異常変化の識別を 容易にする.

第2図 パルス地電流観測システム.

第3図 各ステーションのパルス地電流の長期変動(オリジナル信号),縦軸の信号強度は任意目盛.(a)襟裳,(b)大甕,
(c)つくば,(d)鋸南,(e)茅ヶ崎,(f)富士川,(g)清水,(h)池田,(i)太陽黒点活動(黒点数データセンター:ベルギー ブルッセルによる),(j)国分寺における電離層の電波特性周波数(通信総合研究所).

3. 長期・短期の周期的変動

第3図(a)-(h)に8ヵ所の観測ステーションすべ ての長期信号記録を示した.比較のため太陽黒点 活動ならびに電離層による電波の特性周波数 (foF2:通信総合研究所のデータによる)を示している.

各観測ステーションのオリジナル信号は季節変化 を示し、つくば、鋸南では冬期に顕著な極大を示 す一方、襟裳や清水では夏場に顕著な極大を示 し, 観測点により同位相であったり逆位相であっ たりする. このことは, 領域間で地電流回路が形成 されている可能性を示唆する.

最も長期間の観測が行われているつくば (M4) のオリジナル信号の冬期の極大は1994年以降漸減 してきている(第3図c).また襟裳や大甕でも類似 の傾向が見られる(第3図a,b).これに対して太陽 黒点の活動は1996年より漸次増加している(第3図 i).すなわち,黒点の活動期に冬期の地電流信号 は抑制される傾向にある.

また,電離圏の電波特性周波数変動データ(第3 図j)は太陽活動に連動した長周期変動を示してい るが,仔細には冬期の極大に2つの山が見られ,富 士川での変動はそのような変化に連動しているよ うにも見える.

次に日周期の変動をみるため,第4図に1997年1 月9-12日と同じ年の8月9-12日の大甕,つくば, 鋸南のオリジナル信号を比較したものを示す.大 甕の信号は冬期には昼間のバックグラウンドが極大 を示し,夏期には反転して昼間が極小になる.また 冬期にはつくばと鋸南の信号の極大極小は大甕の 信号変動と逆位相の関係にある.しかし夏期にな ると,大甕と鋸南とが同相になり,つくばはそれと 逆相の変動になる.これらの地域間に地電流の循 環があり,またそれは季節により循環路に変化があ ることを示唆している.

4. 気象の影響-とくに落雷-

われわれの採用した観測法は,降雨の影響を受 けにくい構成となっている(Enomoto et al., 1997). 一方オリジナル信号は落雷の影響を受けている. その感度は、落雷の発生地域により異なる(Tsutsumi et al., 1999). 落雷の影響を抽出するための 手法がDefaultフィルター処理である。第5図に 2003年3月の落雷(フランクリンジャパンによる), Default フィルター処理信号,オリジナル信号を比 較した。第5図上と中とは比較的よく一致しており、 Defaultフィルター処理により落雷による信号を抽 出することができていることがわかる。一方同図下 には, 落雷による信号以外の信号ピーク(第5図中 のa-e)が記録されている. これらの信号のあとに 茨城県南西部地震(M=5.1)が発生しているが、地 震との関わりを論じるには、現時点ではデータが 不十分である.

5. 1996年12月から1997年4月にかけてのつ くばにおける異常信号

第6図に示すように, 1996年12月頃から1997年4

第4図 日周期の変動特性. 1997年1月(左)と1997年8月(右)の9-12日の大甕(上), つくば(中), 鋸南(下)のオリジナル 信号.

第5図 つくばにおける2003年3月の(上)落雷(フランクリンジャパンによる),(中)デフォルトフィルター処理,(下)オリジナ ル信号.

月頃にかけてつくばにおけるオリジナル信号が異常 に増加した.その強度は,冬期に現れる極大値の最 大で28倍になる.またこの異常は約4ヵ月続いた.

これに同期した異常信号は,つくばの観測ステ ーションから2km離れた同じつくばにある別の観測 ステーション(現在は使用していない)でも記録され ていた(Hashimoto *et al.*, 2002). このオリジナル 信号の異常変動は, default フィルター処理を施す と消尽する.従って落雷による異常ではない.また,太陽活動,電離層の異常によるものとする情報もない.

この電磁気異常の原因について考察してみる. この時期は茨城県南部,南西部付近で地震活動が 活発であった.例えば1997年3月23日から29日に かけての1週間の間にM=5.0,4.0,4.1,3.9の4つ 地震が続いた.つくば観測点から震央までの距離

第6図 つくばにおける長期観測データ. 図中の矢印・番号は, 観測点から震央が50km圏内にあるM5クラスの地震を示す.

第7図 つくば近辺における1995年から2003年までの M=5クラスの地震震央(図中の番号は第6図の地 震の番号に対応).

は10km程度である.しかし観測点付近 (50km圏 内)をみるとM=5以上の地震は,第6図ならびに第 7図の地図上に示すように,異常変動の見られなか った1995年1月と1995年7月に2回,さらに最近で は2001年3月から2003年5月までに4回,合計6回 起きている.

とくに観測点から震央が近く,ほぼ同程度の規模 の④と⑦の2つの地震に着目すると,震源の深さは ⑦の方が浅い.そして観測点から震源距離は④の 地震で68km,一方⑦の地震で54kmである.後者 の震源距離が短いにも関わらず異常はこのときに は記録されていない.従って地震のマグニチュード と震源までの距離だけで,1997年前半の異常を説 明することはできない.

今後この地域における地電流の異常変動と地震 との関連を明らかにするためには、たとえば地震 の発震機構などの震源位置やマグニチュード以外 のパラメータとの関連や地下の電気的な構造の違 いなどについて慎重に検討していかなければなら ないと考えている.

6. 2000年2月から2001年3月頃までの襟裳に おける異常信号

有珠山は2000年3月27日から地震活動が活発化 しはじめ、3月31日に噴火した.1977~1982年の

第8図 有珠山と襟裳観測点との位置関係.

噴火活動以来23年ぶりの活動であった.火山活動 は4月頃から消長を伴いつつも沈静化の方向に向 かった.7月10日には「深部からのマグマ供給はほ ぼ停止,一連のマグマ活動終息へ」(臨時火山情報 第21号),11月1日には「一連のマグマ活動終息 へ,火口から500m程度範囲で警戒必要」(同第23 号)との火山噴火予知連の統一見解が示され,翌 年5月には「マグマ活動が終息した」との発表がな された(気象庁,2002).

有珠山で活発な火山活動が見られている頃,有 珠山から約200km離れた襟裳の観測ステーション で異常な地電流変動を観測した.第3図(a)から分 かるように,襟裳の地電流信号は2000年2月16日頃 から2001年3月頃まで明らかに異常な増加を示し ている.第9図に,この時期におけるオリジナル, differentialフィルター処理,ならびにdefaultフィル ター処理した信号を示す.第8図に有珠山と襟裳 の観測点との位置関係も合わせて示した.なお, 2001年2月末前後の急激な信号低下は欠測による.

この異常が出始めてから11日後に有珠山におい て地震活動が活発化した.またこの異常変動は 2001年3月20日過ぎにはほぼ平常値に戻ったが, これは2000年11月1日に臨時火山情報第23号にお いて「一連のマグマ活動終息へ」との予知連統一 見解が出されてから約5ヵ月後である.

7. その他の異常信号

第3図に示した8観測点での長・短周期変動から

第9図 2000年3月28日から4月4日までの襟裳ステーションの地電流変化,上:オリジナル信号,中:differential フィルタ ー処理信号,下:default フィルター処理信号.

外れる異常変動がいくつか注目される。 例えば、

①大甕における2000年,2001年の夏期の極大 が殆ど見られなかったこと、②清水における2002 年の夏からの信号が減衰したこと、③大阪におけ る2003年からの異常変動,などである。③の大阪 の変動は、観測ステーションの傍で、鉄筋の4階建 ての建屋が建設中であり、電気溶接などのノイズが 載っているものと思われる。①と②については、い ずれも日立製作所の工場敷地内にあるもので、工 場における活動などにも留意し、継続した観測か ら判断してゆく必要があると考えている。

8. まとめ

地中に埋設したダイポール間に誘起されるパル ス地電流を1994年から2003年にかけて襟裳,つ くばなど8ヵ所で継続観測を行ってきた.バックグ ランド信号は太陽活動や電離層活動,ならびに雷 活動により長周期・季節周期の変動を示した.そ れらの信号よりはるかに強い異常信号が1996年末 から1997年始めにかけてつくばで、また2000年始 めから約1年にわたって襟裳で観測された.これら の異常信号の発生時期はそれぞれ、つくばにおけ るM=5クラスの地震活動、有珠山の火山活動の活 動時期と一致し、その関連性が注目される.

地震・火山活動と電磁気異常の関連性は活動の 予測という点で関心がもたれる.その実証には, 同様の現象の繰り返し観測による検証が望ましく, そのためにはさらに長期にわたる観測の継続と体 制の整備が必要になる.

参考文献

- Brady, B.T. and G.A. Rowell (1986) : Laboratory investigation of the electrodynamics of rock fracture, Nature, 321, 488–492.
- Enomoto, Y. and H. Hashimoto (1989) : Fractoemission during indentation fracture of brittle solids, J.Mater Sci Lett, 8, 1107– 1190.
- Enomoto, Y., A. Tsutsumi, Y. Fujinawa, M. Kasahara and H. Hashimoto (1997) : Candidate precursor pulse-like geoelectric signals possibly related to recent seismic activity in Japan, Geophys. J.

Inter., 131, 485-494.

- Fujinawa, Y. and K. Takahashi (1993): Anomalous subsurface vertical electric field changes in VHF and UHF bands by use of borehole antennas, 防災科学技術研究所研究資料, 第157号, 109-117.
- Hashimoto, H., Y. Enomoto, A. Tsutsumi and M. Kasahara (2002) : Anomalous geo-electric signals associated with recent seismic activities in Tsukuba and volcanic activity at Mt. Usu in Hokkaido, in: Seismic Electromagnetics, Lothosphere-Atmosphere-Ionosphere Coupling, Ed. By M. Hayakawa & O. A.. Molchanov, Terra Sci. Pub., Tokyo, 77-80.
- 気象庁(2002):2000年有珠山噴火の活動経過-2000年3月~2001 年5月,火山噴火予知連絡会会報,第77号,11-24.
- Murakami, Y., H. Hashimoto, N. Shirai, T.Nakatsuka and Y. Enomoto (2003) : Considerations on the anomalous observation of the pulse geo-electric current during February 2000 and March 2001 supposedly associated with the eruption of Usu volcano, Abstracts Weel A, IUGG 2003, JSA10/30A/A10-008.
- Nitsan, U. (1977) : Electromagnetic Emission Accompanying Fracture of Quartz-Bearing Rocks, Geophys. Res, Lett., 4, 333-336.
- 力武常次(1986):地震前兆現象-予知のためのデータベース-,東京 大学出版会.

- Tsutsumi, A., Y. Enomoto and H. Hashimoto (1999) : Relationships between geo-electric charge signals and meteorological lightning, Atmospheric and Ionosheric Electromagentic Phenomena Associated with Earthquakes, Ed. M. Hayakawa, Terra Sci. Pub., Tokyo, 557–590.
- Varotsos, P., K. Alexopoulos and M. Lazaridou (1993) : Latest aspects of earthquake prediction in Greece based on seismic electric signals; II, Techtonophys., 224, 1–37.
- Varotsos, P. and M. Lazaridou (1991) : Latest aspects of earthquake prediction in Greece based on seismic electric signals, Techtonophys., 188, 321–347.
- Yoshino, T., I. Tomizawa and T. Sugimoto (1993) : Results of statistical analysis of low-frequency seismogenic EM emissions as precursors to earthquakes and volcanic eruptions, Phys. Earth Planet. Interiors, 77. 21–31.

SHIRAI Nobumasa, MURAKAMI Yutaka, ENOMOTO Yuji and HASHIMOTO Hiroshi (2004) : Observation of geo-electric pulse current from a vertical dipole buried underground.

<受付:2004年2月18日>