対馬海峡(壱岐・対馬南方)における底生有孔虫群集の産状

有元 純 1,*

ARIMOTO Jun (2025) Preliminary report on the occurrence of benthic foraminifera in the area south of Ikishima and Tsushima islands, Tsushima Strait. *Bulletin of the Geological Survey of Japan*, vol. 76 (4/5), p. 277–283, 3 figs. and 1 table.

Abstract: Benthic foraminifera in surface sediments of the Tsushima Strait, collected during the GB23 cruise, were subjected to a preliminary examination. Benthic foraminiferal assemblage compositions at multiple sites are consistent with those of shallow-water (sublittoral) bathymetric zones around southwestern Japan. Spatial variations in the assemblage composition, planktonic-to-total foraminiferal ratio, and preservation (e.g., filled by green marine clay) might reflect the ambient environment and sedimentary processes in the region of the strait.

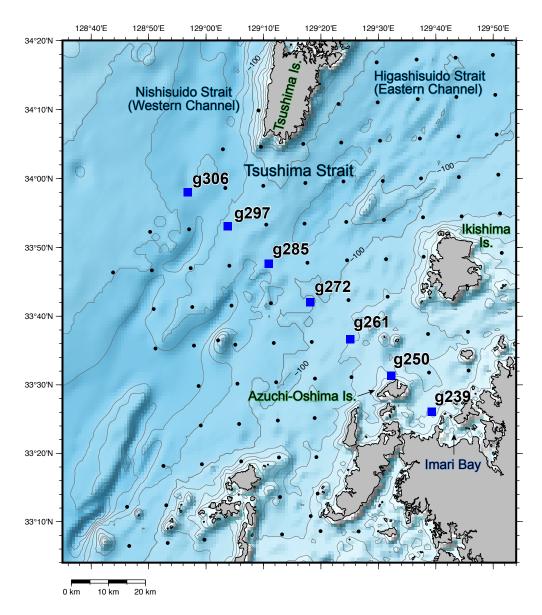
Keywords: benthic foraminifera, northwestern Kyushu, Japan Sea, East China Sea, Tsushima Strait, recent, Holocene

要 旨

GB23 航海において採取された対馬海峡の表層堆積物中に含まれる底生有孔虫群集について、予察的にその産状を検討した。属レベルでの群集組成は、西南日本周辺における浅海帯を特徴付ける種群と調和的である。群集組成や浮遊性種の存在比、そして緑色海成粘土の充填など保存状態の空間変化は、海峡部周辺における海洋環境や堆積作用を反映していると考えられる。

1. はじめに

底生有孔虫は汽水域から深海まで現在の海洋に広く分布する単細胞真核生物であり、水深・水温・塩分・底質・溶存酸素等の物理・化学的要素や、餌・共生生物等の生物的要素といった様々な環境要素に依存して、顕著な棲み分けを行うことが知られている(秋元・長谷川、1989)、例えば日本周辺海域では、現生底生有孔虫遺骸群集の検討から、水塊構造に対応する複数の群集帯と水深の関係が検討されてきた(秋元・長谷川、1989;Inoue、1989)、一方で、表層堆積物における有孔虫遺骸群集の分布は、その場の生体群集組成に加え、底層流による堆積物再移動や、殻を構成する物質の特性に応じた選択的濃集・破壊プロセス等の影響も受けていると考えられる(Murray、1991;Hayward et al., 1999).


以上をふまえ,海洋環境や堆積作用の代替指標として の可能性を探る目的で群集組成の研究を実施するため, 2023年度に九州北西海域において産業技術総合研究所により実施された海洋地質図航海 (井上ほか, 2025)で得られた,表層採泥試料中の底生有孔虫遺骸の検討を行った.本稿では,堆積物中の存在量や,殻構造・材質の異なる(石灰質,膠着質など)種群の構成比,また浮遊性種の存在比などについて,対馬海峡における予察的な検討結果を報告する.

2. 試料と方法

2023年10月から11月にかけて東海大学望星丸を用い て実施されたGB23航海では、日本海南部から東シナ海 北部に至る九州北西海域の20万分の1表層堆積図作成を 目的として、木下式グラブ採泥器 (Kグラブ)を用いて海 底表層堆積物の採取が行われた(清家ほか, 2025). 底生 有孔虫群集検討用試料は、全てのKグラブ採泥実施点の うち十分量の未固結堆積物が回収された188地点におい て分取された. 本研究ではこのうち予察的検討地点と して、壱岐及び対馬南方の対馬海峡において北西-南東 方向に配列する7地点 (g239, g250, g261, g279, g285, g297, g306)を選定し、試料処理と分析を行った(第1図; 第1表). 地点g239 (水深48 m) は検討地点のうち最も南 東の伊万里湾湾口部付近に位置し、泥質の堆積物が得ら れた. その他の6地点については生砕物を顕著に含む砂 質堆積物が得られたが、特に的山大島の北部沿岸に位置 する地点g250 (水深69 m) の堆積物は比較的粗粒であっ た. 地点g250から対馬南方に向かって、北西方向に水深

[「]産業技術総合研究所 地質調査総合センター地質情報研究部門(AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

^{*} Corresponding author: ARIMOTO, J., AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email: j-arimoto@aist.go.jp

第1図 GB23 航海における底生有孔虫群集検討用試料採取地点 (黒点)と,本研究で検討した地点 (青四角). 地形データはGEBCO 2024 グリッド (GEBCO Compilation Group, 2024) にもとづく.

Fig. 1 Sampling locality for benthic foraminiferal study during GB23 cruise (black dot: all, blue square: this study). Bathymetric data are based on GEBCO 2024 grid (GEBCO Compilation Group, 2024).

が大きくなる傾向にあり、特に地点g285と地点g306(それぞれ水深120m及び132m)はそれぞれ対馬海峡東水道及び西水道の中軸部あるいはその南方延長に位置している。

堆積物表層0-2 cmの部分から採取された試料について、船上処理として有孔虫生体染色のため、40 %エタノール水溶液 (取り扱いの容易な保存液としてウォッカを使用; Schönfeld and Mendes, 2021)にローズベンガルを1 g/Lとなるよう添加したものを試料と同体積程度加え、優しく撹拌した後に冷蔵保管した。室内処理については、大井ほか(2009) や長谷川(2023) を参考とし、以下のよう

に行った. 10 mL前後の湿潤試料を,目開き63 μ mの篩上で常温あるいは40 $\mathbb C$ 以下の水道水を用いて洗浄した.その際に,篩を通過した泥サイズの粒子を含む洗浄水を回収し,よく撹拌した後にその100分の1量を取って乾燥させ,残留した泥サイズ粒子の重量 (Wt_m) を計測した.篩上に残った砂・礫サイズの粒子は,有孔虫殻に付着した余分なローズベンガルを可能な限り除去し,生体部の染色を確認しやすくするため,繰り返し洗浄した.検討試料の推計乾燥重量 (Wt_{est}) は,砂・礫サイズ残渣の乾燥重量 (Wt_{sg}) と泥サイズ粒子の重量 (Wt_m) をもとに,以下のように算出された(第1表):

第1表 検討試料中の有孔虫産出状況の概要. 各地点の位置情報,水深,検討試料の乾燥重量(g),底生有孔虫数(#/g),膠着質,磁器質石灰質,ガラス質石灰質殻の存在比(%),全有孔虫に占める浮遊性種の存在比(%),底生有孔虫に占める生体の存在比(%),及び海成緑色粘土に充填された底生有孔虫個体の,充填されていない個体に対する存在比を示す. 緯度経度と水深の情報は清家ほか(2025)に従う.

Table 1 General outline of occurrence of foraminifera in examined samples; locality; water depth (m); dry bulk sediment weight (g); benthic foraminiferal number (BFN; #/g); relative abundance of agglutinated, porcelaneous and hyaline calcareous benthic foraminiferal tests (%); planktic over total foraminifera (P/T) ratio (%); living over total benthic foraminifera (L/B) ratio (%); relative abundance of GMC-filled benthic foraminifera specimens over non-filled ones. Sample locality and water depth are based on Seike et al. (2025).

Site	Latitude	Longitude	W.D. (m)	Dry bulk sediment (g)	BFN (#/g)	Agglutinated (%)	Porcelaneous (%)	Hyaline (%)	P/T ratio (%)	L/B ratio (%)	GMC-filled/ non-filled BF ratio
g239	33° 26.0639′	129° 39.2800′	48	7.0	3344	14.6	14.0	71.4	9.5	0.5	0.07
g250	33° 31.3395′	129° 32.2822′	69	14.0	257	22.9	5.7	71.4	1.8	5.4	0.07
g261	33° 36.6485′	129° 25.0743′	91	13.5	453	16.8	6.7	76.5	11.9	0.4	0.29
g272	33° 42.0554′	129° 18.1701′	104	10.4	861	20.7	7.2	72.1	27.0	1.0	0.52
g285	33° 47.6098′	129° 10.8942′	120	7.1	1007	18.4	8.5	73.1	45.6	0.4	0.26
g297	33° 53.1073′	129° 3.7768′	118	8.3	462	25.9	5.9	68.2	23.2	0.4	0.70
g306	33° 58.0533′	128° 56.8452′	132	8.0	1477	20.5	10.4	69.1	45.3	0.4	0.20

$$Wt_{est} = Wt_{sg} + (Wt_m * 100)$$

乾燥試料のうち粒径125-2000 μmの残渣について, 分 割器を用いて適宜分割し、破片化の著しくない個体を 対象として200-400個体程度の底生有孔虫殻を拾い出し た. このうち充填物のないものについて、個体数とそれ が含まれていた画分(分割数),及び試料の推計乾燥重 量から、単位乾燥重量 (1 g) あたりの個体数 (以下, 底 生有孔虫数;Benthic foraminifera number;BFN)を算出 した。また底生有孔虫殻を拾い出す際に、浮遊性有孔虫 殻も同時に計数し、全有孔虫殻に占める浮遊性種の割合 (Planktic/total foraminifera ratio: P/T比)を算出した. 全底 生有孔虫殻に占めるローズベンガル染色個体の割合をL/ B比 (Living/total BF ratio)として算出した. ローズベンガ ル染色された個体 (第2図a, b)は、採取された時点でタ ンパク質が完全に分解されていない遺骸を含む可能性が ある (Bernhard, 1988) が、本研究では便宜的に「生体」と 表現する. 一方, 拾い出した底生有孔虫殻には, 緑色海 成粘土 (green marine clay; 吉村, 2003; Rubio and López-Pérez, 2024) に内部が充填された個体 (第2図c) が認めら れた. これらは充填物のない個体とは別個に計数し, 充 填物のない個体に対する存在比 (GMC-filled/non-filled BF ratio)を算出した.

3. 結果

粒径125-2000 μ mの底生有孔虫殻の産出状況について、代表的なパラメータの概要を第3図に示す。底生有孔虫数 (BFN;第3図a) は、地点g239で~3.3×10³個体/g と特に大きく、その他の地点では~2.6×10²個体/g (地点g250) から~1.4×10³個体/g (地点g306) までばらつきを示す。いずれの試料も、充填物のない個体の中に保存状態が比較的良いもの(破損がほぼなく、石灰質殻は透明~

半透明)と、良くないもの(部分的に破損し、石灰質殻 は不透明)が様々な程度で混在している.破片化や摩耗, 橙色の着色, 黒色鉱物粒子の付着などが著しい個体は, 拾い出しと計数からは除いたが、地点g261から北西の地 点で比較的多く認められた。底生有孔虫群集に占める膠 着質 (Agglutinated), 磁器質石灰質 (Porcelaneous) 及びガ ラス質石灰質 (Hyaline) の殻をもつ種群の存在率 (第3図 b) はそれぞれおおむね20 %前後, 10 %程度かそれ以下, 及び70%前後であり、地点間の大きなばらつきは認めら れない. 全有孔虫に占める浮遊性有孔虫の産出頻度 (P/ T比;第3図c)は、最も小さい地点g250で2%、最も大き い地点g285で46%と大きくばらつく. P/T比はおおむね 南東から北西の海峡部に向かって、水深の増加に伴って 増加する傾向を示す. L/B比は、ほとんどの検討地点で 群集の1%を下回ったが、地点g250のみ例外的に5%の 値を示した(第1表). 生体個体の中には, 生砕物や岩片 に付着した状態のものが認められた(第2図a, b). 一方, 海成緑色粘土に充填された個体の、充填されていない個 体に対する存在比率 (GMC-filled/non-filled BF ratio:第3 図c)は、0.1以下から0.7付近まで地点間で大きくばらつ くものの、P/T比と同様に北西の海峡部付近で大きい値 を取る傾向が見られ、特に大きい地点g272及びg297で は0.5を超えた.

底生有孔虫群集組成については、科あるいは属レベル(一部は種レベル)までの概略のみ記述する。全ての検討地点に共通して、膠着質有孔虫はTextularia属あるいはSpiroplectinella属を主とし、Gaudryina属、Sahulia属などを伴う。磁器質石灰質有孔虫は、Hauerinidae科(Quinqueloculina属、Miliolinella属など)の個体が大部分であり、水深100 m以浅の地点ではSpiroloculina属及びCornuspira属をわずかに伴う。ガラス質石灰質有孔虫に

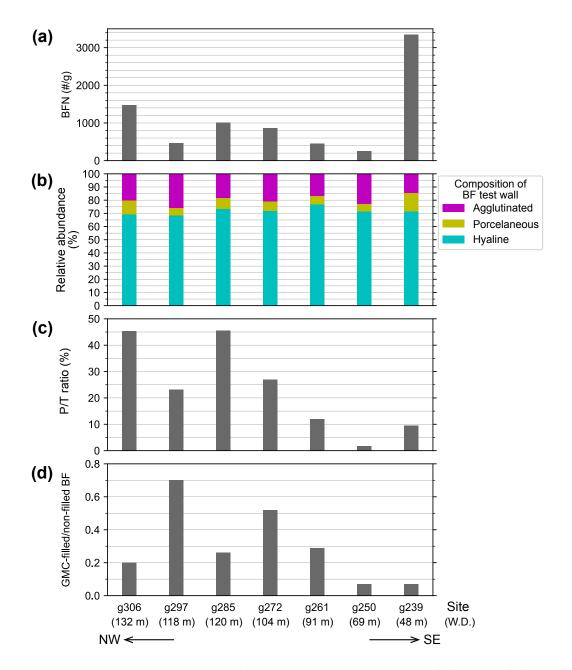

第2図 ローズベンガル染色された底生有孔虫個体 (a, b)及び海成緑色粘土に充填された個体 (c)の例. スケールバーは100 μm. (a) Cibicididae科のガラス質石灰質個体. 軟体動物殻に付着している. 地点g250. (b) Trochamminidae科の膠着質個体. 岩片に付着している. 地点g250. (c) Hauerinidae科の磁器質石灰質個体. 部分的に破片化し、房室内を充填して固結した海成緑色粘土が露出している. 地点g297.

Fig. 2 Examples of benthic foraminifera specimens which are stained with rose bengal (a, b) and filled with green marine clay (GMC) (c). Scale bars are 100 µm. (a) Hyaline calcareous specimen of Cibicididae attached to a molluscan shell fragment. Site g250. (b) Agglutinated specimen of Trochamminidae attached to a lithic fragment. Site g250. (c) Porcelaneous calcareous specimen of Hauerinidae, being partially (naturally) fragmented to expose internal molds of GMC. Site g297.

ついては、Cibicididae科 (主にCibicides属、Cibicidoides 属及びHeterolepa属)が全地点に目立って含まれる. そ の他には、Elphidium属、Rosalinidae科 (Rosalina属及び Gavelinopsis属), Bolivina属, Hanzawaia nipponica Asano などが、頻度にばらつきはあるもののほとんどの地点 で有意に認められる. Rosalinidae科は水深100 m以浅の 地点g239及びg261で比較的多く産出する. Bolivina属は 水深100 m前後の地点g261及びg272で多い. Elphidium 属は地点g261から北西の沖合地点で比較的多い傾向に あり、水深100 m以深の地点g285及びg297で特に多産 する. その他, Astrononion属は地点g239で, Eponides 属及びAmphistegina属は地点g250でそれぞれ有意に産出 するが、その他の地点では非常に少ないか産出しない. Globocassidulina属は地点g272及びg285で、Pararotalia属 は地点g297で突出して多く産出する. その他, 地点g250 では付着性有孔虫であるMiniacina miniacea (Pallas)の破 片が認められたが、基質から分離した状態で1個体を識 別するのが困難であるため、定量的な計数からは除いた. 緑色海成粘土に充填された底生有孔虫個体は、全地点

において、充填されていない群集に対して種数・個体数 共に少ない。各地点の充填がない群集における主要タク サは、充填された群集においてもおおむね主要タクサと なっている。一方で、地点g261から沖合では、緑色海成 粘土に充填された膠着質及び磁器質石灰質有孔虫の存在 率は、充填されていないその場の群集と比較して前者は 低く、後者は高い傾向を示した。また磁器質石灰質種群 とElphidium属は、地点g272及びg297において、緑色海 成粘土に充填された個体がそうでない個体の産出数と同 等かそれより多く産出した。Pararotalia属についても充 填のない群集組成の傾向と異なり、地点g297以外にも g250、g261、g272、g285に広く目立って産出した。

粒径2000 μm以上の粒子については、定量的な計数を 行っていないが、生砕物や岩片の礫に付着したCibicididae 科、Trochamminidae科及び膠着質のPlacopsilina属がわず かに認められた. 殻長自体が2000 μmを超える底生有孔 虫個体は、硬質の殻を作らないものや不明種を含む膠着 質殻の破片がわずかに産出した他は認められなかった.

第3図 検討試料中の有孔虫産出状況の概要. 図中各パネル内において, 北西 (左)から南東 (右) に調査地点を並べ, 括弧内に水深を併記している. (a) 乾燥堆積物単位重量あたりの底生有孔虫個体数 (Benthic foraminiferal number: BFN: #/g). (b) 底生有孔虫に占める膠着質 (Agglutinated), 磁器質石灰質 (Porcelaneous) 及びガラス質石灰質 (Hyaline) の殻をもつ個体の存在比(%). 積み上げ棒グラフで示してある. (c)全有孔虫個体に占める浮遊性種の割合 (P/T ratio:%). (d)海成緑色粘土に充填された底生有孔虫個体の, 充填されていない個体に対する存在比 (GMC-filled/non-filled BF ratio).

Fig. 3 General outline of occurrence of foraminifera in examined samples. Bar plots in each panel indicate analyzed data values for each site ordered from NW (left) to SE (right). Water depths (W.D.) together with each site name are given in parentheses. (a) Benthic foraminiferal number (BFN) per 1 g of dry bulk sediment. (b) Relative abundance of agglutinated, porcelaneous and hyaline calcareous tests in benthic foraminiferal assemblages. (c) Relative abundance of planktic taxa in total foraminifera (P/T ratio). (d) Relative abundance of GMC-filled benthic foraminifera specimens over non-filled ones.

4. 考察

有孔虫について検討した地点のうち、地点g239で特 に底生有孔虫数が高い値を示した(第3図a)のは、底質 の種類などに代表される堆積環境を反映している可能性 がある. 地点g239は伊万里湾湾口部に近く, やや陸側に 入り込んだ位置にある(第1図). そのため、地点g239の 水理環境や栄養環境は、海峡とその周縁部に位置し外海 に面する他地点と大きく異なる可能性があるが、これら は底生有孔虫の生産量及び群集組成に影響し得る. 検討 地点における底生有孔虫群集について、膠着質、磁器質 及びガラス質石灰質殻の構成比 (第3図b) は一般的な陸 棚の群集の特徴に整合的であり(Murray, 1991), この指 標からは検討地点間の差異を見出すことができなかった. 一方, 予察的に見出された群集組成は, Cibicididae科や Elphidium属, Pararotalia属, H. nipponicaなど, 秋元・長 谷川 (1989)の日本海あるいは西南日本沖における浅海 帯を特徴付ける種群と調和的である. 今後, 検討地点を 増やすとともに種レベルの同定を進めて群集組成の定量 的解析を行い、南西諸島や日本海南部の先行研究 (例え ばInoue, 1989など)と比較して、九州北西海域における 底生有孔虫群集と水塊構造や堆積環境との対応を明らか にすることで、(古)水深指標等の海洋環境代替指標開発 へとつながると期待される.

P/T比は一般に陸棚上から炭酸塩補償深度以浅の漸深海帯にかけて水深と正の相関があり(Hayward et al., 1999; Tapia et al., 2022), 外洋水の影響の強さの指標となることが知られる. 本研究での検討地点で得られたP/T比(第3図c)は, 陸棚環境で一般的な値の範囲(0-50%; Hayward et al., 1999, 2010)に整合的である. さらにP/T比が対馬海峡東西水道につながる谷筋にあたる地点(g285及びg306;第1図)で特に高い値を示すことから, 本研究海域におけるP/T比は, 底生有孔虫群集組成とは独立に, 両水道を通過する海流の影響の代替指標となる可能性がある.

緑色海成粘土は、逆風化プロセス (Mackenzie and Kump, 1995)により海洋環境で生成される、鉄・カリウムに富むある種の自生鉱物の総称である (Robert, 2008; Rubio and López-Pérez, 2024). 中でも続成の程度により化学組成の異なる2種であるverdine及びglauconite (海緑石)は、堆積物-水境界付近の酸化的環境で生成され、現世の陸棚上に様々な形状の堆積粒子として広く分布することが知られる (Rubio and López-Pérez, 2024). 緑色海成粘土粒子の濃集は、地質学的には海進期あるいは海退期における堆積速度の低下を示唆する (Rubio and López-Pérez, 2024) ほか、海底地形や流速など堆積場のローカルな環境にも影響を受けるとされる (Robert, 2008). 本研究では、特に対馬海峡付近において底生有孔虫殻が海成緑色粘土のリザーバーとなっていることが確認され

た. これらの有孔虫殻の保存状態は概して悪く(例えば 第2図c),緑色海成粘土の形成が少なくとも103年以上の 時間スケールで起こるとされる(Robert, 2008; Giresse, 2022) こととも整合的である. 海峡付近でGMC-filled/ non-filled比が大きいことは、対馬海流の日本海への流入 が活発化した 10-8 ka (Oba et al., 1991) 以降に,底層流に よる細粒物質の選択的除去などにより一部の底生有孔虫 殻が埋没を免れ、堆積物表層混合層に長期間滞留してき たことを反映しているのかもしれない. その際に、各地 点の充填されていない群集に対して、充填された膠着質 個体の割合は少なく, 逆に磁器質個体は多いという観察 結果は、 殻組成別にみた際のそれぞれのタクサの堆積物 中における保存ポテンシャルの違いを反映している可能 性がある. さらに、海峡部地点間のGMC-filled/non-filled 比のばらつきは、海底地形や海流の流速分布等を背景と した堆積場の違いによる可能性がある. これについては、 群集組成やPararotalia属など特異な産出傾向を示す要素 の分布に着目することにより、海成緑色粘土充填個体の 堆積粒子としての起源や集積プロセスをより詳細に明ら かにできる可能性がある. 以上より、北西九州沖に分布 する緑色海成粘土に充填された底生有孔虫殻は、完新世 の時間スケールで堆積場を特徴付ける重要な要素と位置 付けられ、群集解析や年代測定等から得られる情報と組 み合わせることにより, 広域堆積作用・物質循環の解明 への手掛かりになると期待される.

5. まとめ

九州北西海域における海洋環境や堆積作用の代替指標 としての可能性を探る目的で、壱岐・対馬南方の対馬海 峡に位置する水深48-132 mの7地点において, GB23 航 海で採取された表層堆積物中の底生有孔虫遺骸群集を検 討した. ローズベンガル染色により認定された生体の存 在比は低く、最大の地点でも5%であった、群集内にお ける膠着質, 磁器質石灰質及びガラス質石灰質殻の存在 比は地点間で大きな違いがなかった一方、属レベル以上 での群集組成は特に石灰質種に関して地点間でバリエー ションが認められた. 予察的ではあるものの、属レベル での群集組成は、西南日本周辺における浅海帯を特徴付 ける種群と調和的であり、今後検討地点を増やして種レ ベルの群集解析を進めることにより、対馬海峡周辺海域 における底生有孔虫群集組成と海洋環境との系統的な対 応付けが可能になると見込まれる. また、P/T比や、緑 色海成粘土に充填された個体の存在比などのパラメータ も沿岸から外洋にかけてバリエーションを示し、これら は海峡部周辺において堆積場を特徴付ける代替指標とし ての可能性を示唆する.

謝辞:産業技術総合研究所の鈴木克明研究員をはじめと するGB23 航海乗船研究者の皆様と、東海大学望星丸の 上河内信義船長をはじめとする乗組員の皆様には、試料採取に際しご尽力いただいた. 清家弘治主任研究員及び飯塚 睦研究員には、試料及び採泥点情報の提供に関してご協力いただいた. 東北大学総合学術博物館の長谷川四郎博士には、底生有孔虫の分類・同定に関してご指導をいただいた. また、本稿の査読を通じて有益なご指摘をいただいた. 以上の方々に深く感謝申し上げます.

文 献

- 秋元和實・長谷川四郎 (1989) 日本近海における現生底 生有孔虫の深度分布: 古水深尺度の確立に向けて. 地質学論集, no. 32, 229-240.
- Bernhard, J. M. (1988) Postmortem vital staining in benthic foraminifera: Duration and importance in population and distributional studies. *Journal of Foraminiferal Research*, **18**, 143–146.
- GEBCO Compilation Group (2024) GEBCO 2024 Grid. https://www.gebco.net/data-products/gridded-bathymetry-data (Accessed: 2024-08-27)
- Giresse, P. (2022) Quaternary glauconitization on Gulf of Guinea, glauconite factory: overview of and new data on tropical Atlantic continental shelves and deep slopes. *Minerals*, **12**, 908.
- 長谷川四郎 (2023)トカラ列島周辺海域における底生有 孔虫群集の概要 (予報). 地質調査研究報告, 74, 301-314.
- Hayward, B. W., Grenfell, H. R., Reid, C. M. and Hayward, K. A. (1999) Recent New Zealand shallow-water benthic foraminifera: Taxonomy, ecologic distribution, biogeography, and use in paleoenvironmental assessment. Institute of Geological and Nuclear Sciences Monograph 21 (New Zealand Geological Survey Paleontological Bulletin 75), 258p.
- Hayward, B. W., Grenfell, H. R., Sabaa, A. T., Neil, H. L. and Buzas, M. A. (2010) Recent New Zealand deep-water benthic foraminifera: taxonomy, ecologic distribution, biogeography, and use in paleoenvironmental assessment. GNS Science Monograph 26 (New Zealand Geological Survey Paleontological Bulletin 77), 363p.
- 井上卓彦・板木拓也・天野敦子 (2025) 巻頭言: 九州北 西方沖の海洋地質調査 —2023 年度調査航海結果—. 地質調査研究報告, **76**, 163-167.
- Inoue, Y. (1989) Northwest Pacific foraminifera as paleoenvironmental indicators. Science Reports of the

- *Institute of Geoscience, University of Tsukuba, Section B, Geological Sciences*, **10**, 57–162.
- Mackenzie, F. T. and Kump, L. R. (1995) Reverse weathering, clay mineral formation, and oceanic element cycles. *Science*, **270**, 586–587.
- Murray, J. W. (1991) Ecology and Paleoecology of Benthic Foraminifera. Longman Scientific and Technical, Avon, 397p.
- Oba, T., Kato, M., Kitazato, H., Koizumi, I., Omura, A., Sakai, T. and Takayama, T. (1991) Paleoenvironmental changes in the Japan Sea during the last 85,000 years. *Paleoceanography*, **6**(4), 499–518.
- 大井剛志・小柳満佐子・長谷川四郎 (2009) 沖縄本島周 辺海域の底生有孔虫群集 (予報). 荒井晃作編,「沖 縄周辺海域の海洋地質学的研究」平成20年度研究概 要報告書—沖縄島東方沖海域—, 地質調査総合セン ター速報, no. 46, 138-144.
- Robert, C. M. (2008) Global Sedimentology of the Ocean: An Interplay between Geodynamics and Paleoenvironment. Elsevier, 496p.
- Rubio, B. and López-Pérez, A. E. (2024) Exploring the genesis of glaucony and verdine facies for paleoenvironmental interpretation: A review. *Sedimentary Geology*, **461**, 106579.
- Schönfeld, J. and Mendes, I. (2021) Environmental triggers of faunal changes revealed by benthic foraminiferal monitoring. *Estuarine, Coastal and Shelf Science*, **253**, 107313.
- 清家弘治・飯塚 睦・鈴木克明・板木拓也・片山 肇・兼子尚知・石野沙季・石塚 治・喜瀬浩輝・桑野太輔・山﨑 誠(2025)東シナ海東北部及び日本海西部における海底堆積物採取調査の概要. 地質調査研究報告, 76, 217-233.
- Tapia, R., Le, S., Ho, S. L., Bassetti, M.-A., Lin, I.-T., Lin, H.-L., Chang, Y.-P., Jiann, K.-T., Wang, P.-L., Lin, J.-K., Babonneau, N., Ratzov, G., Hsu, S.-K. and Su, C.-C. (2022) Planktic-benthic foraminifera ratio (%P) as a tool for the reconstruction of paleobathymetry and geohazard: A case study from Taiwan. *Marine Geology*, 453, 106922.
- 吉村尚久 (2003) 続成作用と粘土鉱物. 粘土科学, **42**(3), 167–173.

(受付:2024年10月9日;受理:2025年9月2日)