概報 - Report

北上山地中西部、盛岡市薮川地域の外山高原で見出されたチバニアン期後半のテフラ

内野 隆之^{1,*}·工藤 崇¹·古澤 明²·岩野 英樹³·檀原 徹³·小松原 琢¹

UCHINO Takayuki, KUDO Takashi, FURUSAWA Akira, IWANO Hideki, DANHARA Toru and KOMATSUBARA Taku (2022) Late Chibanian tephra recognized in the Sotoyama Plateau of Yabukawa area in Morioka City, Iwate Prefecture, mid-western Kitakami Massif. *Bulletin of the Geological Survey of Japan*, vol. 73 (2), p. 67–85, 12 figs, 4 tables and 1 appendix.

Abstract: The Sotoyama Plateau on the mid-western Kitakami Massif, Northeast Japan, displays a low-relief surface with an altitude of 650-1000 m. This topography is considered to have been formed by periglacial phenomena. We discovered the 80-cm-thick pyroclastic fall deposit, named Yabukawa Tephra in this study, from the Quaternary valley floor deposits along the Sotoyama River on the plateau. This tephra is subdivided into four subunits on the basis of their lithofacies. The tephra contains characteristically large amounts of vesiculated pumice and minor lithic fragments: andesite, dacite, rhyolite, tuffaceous mudstone, tonalite, chert, etc. It also contains grains of beta-quartz, feldspar, hornblende, orthopyroxene, ilmenite, biotite, etc. A geochemical composition of volcanic glasses from the tephra shows relatively high SiO₂ and K₂O, and low CaO, MgO and TiO₂. Their refraction indexes are 1.495–1.498.

The Yabukawa Tephra is thought to deposit in the late Chibanian on the basis of the 0.24 ± 0.04 Ma fission-track age from zircon in its pumice. Furthermore, the tephra is possibly correlated with the Odai White Volcanic Ash, which occurs in the eastern foot of Mt. Iwate, based on its petrography, refraction indexes of volcanic glasses and the zircon age.

Keywords: Chibanian, Yabukawa Tephra, zircon, fission-track age, stratigraphy, correlation, Morioka, Kitakami Massif

要 旨

盛岡市薮川地域,外山川沿いの谷底低地を埋める第四 紀堆積物から80 cm厚の降下火砕堆積物を発見し, 薮川 テフラと命名した.本テフラは発泡した軽石を多く含み, 中性~珪長質火山岩,トーナル岩,チャートなどの石質 岩片を少量伴う.また,テフラ中には高温型石英・長 石・普通角閃石・直方輝石・チタン鉄鉱・黒雲母が含ま れる.テフラに含まれる火山ガラスの組成は比較的高い SiO₂・K₂Oと低いCaO・MgO・TiO₂で特徴づけられ,ま たその屈折率は1.495-1.498である.軽石中のジルコン からは0.24±0.04 Maのフィッション・トラック年代が 得られ,本テフラはチバニアン期後半に堆積したと判断 される.そして,記載岩石学的特徴,火山ガラスの屈折 率,ジルコン年代などから,岩手山東麓に分布する大台 白色火山灰に対比できる可能性がある.

1. はじめに

岩手県盛岡市の北東部に広がる外山高原は、北上山地 中西部に位置し、650~1,000 mの標高で緩やかな起伏 を呈している.この小起伏地形は周氷河作用によって形 成されたと考えられており、その時期は堆積物中に挟在 する炭質層やテフラの年代から概ね5万年前以降と推定 されている(例えば、井上ほか、1981;檜垣、1987).し かし、炭質物を対象とした¹⁴C年代測定法は約5万年前以 前の地層には適用できないこともあり、北上山地及び北 上川流域における特に後期更新世よりも前のテフラ層序 の編年はあまり進んでいない.このことが、最終間氷期 より前にも起こっていたとされる古い周氷河作用(例え ば、井上ほか、1981;檜垣、1987)の実態をつかみにく くしている.また,外山高原内で認められる高位段丘(例 えば、磯、1973)についても同様にその形成年代が良く 分かっておらず、北上山地における隆起や傾動などの構

¹産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

²株式会社古澤地質 (Furusawa Geological Survey Co., Ltd., Okazaki, Aichi 444-0840, Japan)

³株式会社京都フィッション・トラック(Kyoto Fission-Track Co., Ltd, Kita-ku, Kyoto 603-8832, Japan)

^{*} Corresponding author: UCHINO, T., Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email: t-uchino@aist.go.jp

- 第1図 北上山地中西部における地質図. 20万分の1日本シームレス地質図V2 (産総研地質調査総合セン ター, 2019)を使用 (基図は地理院地図).外山高原の河岸段丘堆積物の分布は本研究での調査による. O.M.:奥羽山脈; K.M.:北上山地; VG:火山群; V.:火山.
- Fig. 1 Geological map in the mid-western Kitakami Massif, Iwate Prefecture. The map was referred from the Seamless Digital Geological Map of Japan (1:200,000) V2 (Geological Survey of Japan, AIST, 2019) on the GSI map of the Geospatial Information Authority of Japan. Distribution of the river terrace deposits within the Sotoyama Plateau is painted based on the geological survey for this study.

Abbreviations: O. M. (Ou Mountain Range); K. M. (Kitakami Massif); VG (volcanic group); V. (volcano).

造運動に関して未解明な点が多い.したがって,後期更 新世より前に堆積したテフラの詳細な層序の確立,とり わけ年代情報の充実が望まれている.これは,氷期-間 氷期サイクルを含めた気候・環境変動のみならず,噴火 の発生時期や規模,テクトニクスなどの解明にも寄与する.

このたび、盛岡市薮川地域の外山高原内を流れる外山 川沿いにおいて、谷底低地を埋積する第四紀堆積物から 層厚1 m弱の厚いテフラを見出した.このテフラはアク セスしやすい場所にありながら、これまで全く報告され ていない.本研究では、このテフラの性状を明らかにす るため、層序学的・岩石学的記載を行うとともに、ジル コンの年代測定,火山ガラスの化学分析,含有鉱物の屈 折率測定などを実施した.年代測定の結果,このテフラ がチバニアン期後半を示すことが分かった.また,その 他の特徴も併せ,北上川流域で認識されている鍵テフラ との対比を試みた.

2. 地形·地質概説

外山高原は、岩手県盛岡市東部(旧玉山村)に位置して ためり、外山ダム、姫神山、岩洞湖の間に広がっている(第 1図). 岩泉町との境界に位置する東方の早坂高原と併せ た一帯は「外山早坂県立自然公園」に指定されており、旧 御料牧場 (外山牧場) をはじめとする多くの牧草地のほか, シラカバやシナノキなど冷温帯の植生で特徴付けられる. 外山高原内にある盛岡市の薮川地域は標高660 ~ 690 m ではあるが,1945年には氷点下35 ℃を記録したことも ある本州一寒い集落として知られる.また,澤口(2005) が示した北上山地を対象とした積算寒度図によると,薮 川地域は700-750 ℃/日と特に寒冷で積雪量も少なく,最 終氷期には永久凍土が存在した可能性も指摘されている.

河川については、外山川が標高700 m地点の分水嶺か ら西方の外山ダムに向かって緩やかに流れ、しかし外山 ダムからは滝ノ内沢と名称を変えて、険しい侵食谷を形 成しながら南西に流れる。外山川の源流部では、南方か ら緩やかに流れてくる大石川が合流する。一方、分水嶺 より東側では湿地上に蓄えられた岩洞湖(第1図)が広が り、堰堤から西北西に向かって辞藤川が緩やかに流れ出 ている。

外山高原は、定高性の良い稜線、山頂・山麓に発達す る緩斜面、湿地、河岸段丘から構成されるなだらかな小 起伏山地である。耕作地としての沖積低地は、外山川、 大石川,丹藤川上流沿いのみに僅かに認められる.外 山高原における緩斜面堆積物については、阪野(1971)、 Higaki (1980), 井上ほか (1981), 澤口 (1984), 檜垣 (1987) などで記載があり、本高原の小起伏地形は、表層部の凍 結融解による岩屑生産とソリフラクションによる斜面の 削剥, すなわち周氷河作用に起因すると考えられている. また,緩斜面堆積物中に生出黒色火山灰(OBA, 50-30) kyr BP: 土井, 2000), 小岩井浮石(KP, 13.5-12 kyr BP:和知ほか, 1997)及び柳沢浮石 (YP, 11.9-11.6 kyr BP:和知ほか, 1997)など年代が判明している鍵テフラ の挟在も確認されている(例えば, Higaki, 1980; 井上 ほか、1981). このことから、本地域の周氷河堆積物は 少なくとも後期更新世以降に形成されたと考えられてい る.

外山川上流~中流域(薮川地域葉が周辺)及び大石川 中流~下流域では,標高665 m以上において谷底低地を 埋積する第四紀堆積物が分布し,少なくともその最上部 は礫層を主体とする河岸段丘堆積物からなる.この段丘 堆積物は岩洞湖以東を流れる丹藤川でも認められ,磯 (1973)によると上流部において高位段丘及び低位段丘 I ~Ⅲの4段が識別されている.本研究で報告するテフラ は,葉水付近を流れる外山川の一部でのみ露出しており, 下位に厚い泥炭層を伴っている.

外山高原に分布する先古第三紀の基盤岩は,主に北 部北上帯に属するジュラ紀の付加体である(内野,2019, 2021).本付加体は,泥質岩を主体として,砂岩・チャー ト・玄武岩と僅かの石灰岩をシート状・レンズ状に含む (第1図).地質構造は北西-南東走向及び南西傾斜であ り,高峰はしばしばチャートからなる.外山川では中流 部より下流側(大の平以西)でチャートや泥質岩が河床に 露出するほか,大石川でも下流部で第四紀堆積物に不整 合に覆われた泥質岩が確認できる.外山高原の北西部に おける基盤岩は,姫神山を形成する前期白亜紀の花崗岩 類(姫神岩体)である.

3. 地層の記載

薮川地域の谷底低地を埋積する第四紀堆積物は、礫 層,テフラ層,泥炭層などから構成される.今回,葉水 の外山川左岸(薮川郵便局から約400 m東)(第2図)で見 出された露頭は、下位よりA層(泥炭層)、B層(テフラ層)、 C層 (火山灰火山礫互層), D層 (礫層)の各ユニットから なり、それを表層の土壌が覆っている(第3図、第4図). テフラ層 (B層)は、層厚が約80 cmで、更に層相によっ てB1~B4層のサブユニットに細分される. このテフラ 層 (B層)については、本研究にて「薮川テフラ」と新称を 与える. 薮川テフラ (B層)の分布域は水平距離にして約 60 m程度である(第2図b). 礫層(D層)は薮川テフラ(B 層)の最上部及び火山灰火山礫互層 (C層)を一部削って 堆積している(第3図,第4図). このD層を含む一連の礫 層は、外山川や大石川では普遍的に見られ、これらは平 坦な段丘面を構成している.段丘面の高さは、本露頭付 近では河床面から約4mである.

以下に各ユニットについて下位から順に詳しく記載す る.構成粒子については、水洗・超音波洗浄して細粒懸 濁物を取り除いた後の試料(残渣)を実体顕微鏡にて観察 した結果による.粘土化した軽石は水洗・超音波洗浄の 際に分解されているため、軽石起源と周りの基質起源と の粒子の区別はつかない.したがって、観察結果は軽石 火山礫を含むテフラ層全体の特徴を反映したものとなっ ている.なお、火山ガラスの形態分類については町田・ 新井(1992, 2003)に従った.

3.1 A層(泥炭層)

数川テフラ (B層)の下位には層厚1.3 m以上の厚い黒

色~暗灰色の泥炭層が存在する(第3図,第4図).泥炭

層には材化石が大量に含まれ、大きいものでは太さが

30 cmに及ぶ(第5図a).この泥炭層は、数川テフラ同様、

外山川沿いに約100 mにわたってよく追跡できる(第2図

b).泥炭層の下限は現河床堆積物が埋積しているため確認できない。

第3図aの露頭の約30m下流側では、泥炭層の上面から約70cm下の層準に薄いテフラが認められ(第5図b)、 それは更に下流側に20m程追跡できる.このテフラを便 宜的にYT2iPテフラと呼ぶ.YT2iPテフラは、厚さが2~6 cmで、脱水作用の影響とみられる側方膨縮を呈する流動 変形の構造が特徴的である(第5図b,c).本テフラは、細 粒火山灰からなる薄ベージュ色の下部と、粗粒火山灰からなる灰色掛かったベージュ色の上部からなり、上方粗 粒化(逆級化)している(第5図c).残渣中の鉱物量比は、

第2図 盛岡市薮川地域, 薮川テフラ露頭周辺の地形図 (a) とルートマップ (b). 地形図は地理院地図を使用.

Fig. 2 Topographic map (a) and route map (b) around the outcrop of the Yabukawa Tephra, Yabukawa area in Morioka City. The topographic map is from the GSI map of the Geospatial Information Authority of Japan.

第3図 薮川テフラ (B層)の露頭写真. 中央の折尺の長さは1 m. Fig. 3 Outcrop of the Yabukawa Tephra (unit B). Straighten folding scale at the center of the outcrop is 1 m long.

下部・上部ともに、石英≫直方輝石≫チタン鉄鉱≒長石 ≫普通角閃石≒黒雲母≒単斜輝石である(第1表).石英 にはしばしば六方両錐形の高温型石英が認められる.本 テフラは、石英を主体とすること、直方輝石が多いこと、 普通角閃石が極めて少ないことが特徴的で、後述する薮 川テフラ中の残渣の内容とは異なる.

3.2 B層(テフラ層)

[テフラ名] 薮川テフラ (新称)

[模式地]盛岡市薮川外山葉水の外山川左岸 (39°47′ 04.53″ N, 141°20′03.66″ E)

[層厚] 80 cm前後

[分布]現状確認されている限りでは、模式地の露頭を含めた外山川沿いの東西約60mの区間

[層相]下位より,粘土化した中礫サイズの火山礫層(B1 層:10 cm厚),中礫サイズの火山礫層(B2層:19 cm厚), 細礫~中礫サイズの火山礫層(B3層:40 cm厚),粗粒砂 ~細礫サイズの火山灰-火山礫層(B4層:10 cm厚)の各 サブユニットからなる(第4図).

[層序関係]泥炭層 (A層)の上位に整合に堆積し, 薮川テ フラのリワーク堆積物と考えられる火山灰火山礫互層 (C層)に整合に覆われる.

[記載]

ユニット・サブユニットの特徴を第1表にまとめた. 以下にサブユニットごとの詳細を述べる. なお, 残渣中 の鉱物及びB層主部をなすB3層中の石質岩片については 次項で詳述する.

B1層は中礫サイズの火山礫からなり、薄ベージュ色 を呈する.火山礫の大部分は著しく粘土化した軽石から なり、石質岩片を少量伴う.軽石は粘土化のため、外形 が不明瞭となっているものが多いが、確認できるサイズ としては長径5 mm程度のものが多く、最大で2 cmに達 する.最上部には厚さ1~2 cmで緑灰色を呈する風化変 質した軽石の濃集層が認められる(第3図,第4図).こ の軽石もすべて粘土化しており外形は不明瞭であるが、 一部で5 mm~1 cm径のものが確認できる.B1層中にま ばらに含まれる石質岩片は、長径2~3 mmで多くが暗 緑色~暗灰色の火山岩である.

B2層は中礫サイズの火山礫からなり、ベージュ色を 呈する.この火山礫もB1層同様、風化変質した軽石を 主体とする.軽石は長径1 cm程度であり、多くが粘土化 しているが、まれに粘土化が軽度で発泡組織が残されて いるものも認められる.石質岩片は長径数mmで、最大 1 cmに及ぶ.緑灰色を呈する火山岩が多いが、赤紫色を 呈するものも少量認められる.石質岩片の含有率は1割

第4図 薮川テフラを含む地層の柱状図.

Fig. 4 Columnar section of the strata containing the Yabukawa Tephra.

(YT2iP tephra)

- 第5図 (a) 薮川テフラ直下の泥炭層 (A層) 中の材化石. (b) 泥炭層中のテフラ (YT2iPテフラ). (c) 脱水による膨縮構造を示すYT2iPテフラの拡大写真.
- Fig. 5 (a) Wood fossil in the peat layer (unit A) underlying the Yabukawa Tephra. Hammer is 30 cm long. (b) YT2iP tephra interbedded in the peat layer. (c) Expanded photograph of the YT2iP tephra showing a pinch-and-swell structure by dewatering.
- 第1表 薮川テフラ及び上下層の各ユニットの特徴.残渣に含まれる鉱物量については多い順に「+++」,「++」,「+」,「*」,「tr」と記してある.
 β:高温型石英の存在,Bt:黒雲母,Cpx:単斜輝石,Ep:緑れん石,Fld:長石,Hbl:普通角閃石, Ilm:チタン鉄鉱,Opx:直方輝石,Qz:石英,L:下部,U:上部.
- Table 1 Lithologic features of each unit of the Yabukawa Tephra and its lower and upper units. Symbols of "+++", "++", "+", "*" and "tr (trace)" are written in descending order of mineral content in residues.
 Abbreviations: β (presence of beta-quartz); Bt (biotite); Cpx (clinopyroxene); Ep (epidote); Fld (feldspar); Hbl (hornblende); Ilm (ilmenite); Opx (orthopyroxene); Qz (quartz); L (lower part); U (upper part).

Unit		Grain	Color	Thickness			Remark						
0	ш	size	00101	(cm)	Qz	Fld	Hbl	Орх	Срх	llm	Bt	Ep	Temark
с		Coarse sand to granule	Grayish green to pale green	25	+++ β	+++	+	*		tr	tr	tr	Laminated /abundant spherulites
В	4	Coarse sand to granule	Pale greenish gray	10	+++ β	++	+	*		tr	*	tr	Fine/greenish
D 2	U	Granule Grayish	40	+++ β	+++	+	*	tr	tr	*	tr	Abundant	
83	L	Pebble	beige		+++ β	+++	+	*	tr	tr	*	tr	pumice
В	2	Pebble	Beige	19	+++ β	++	+	+	tr	*	tr	*	Abundant lithic fragments
В	1	Pebble	Pale beige	10	+++ β	++	+	+	*	*	tr	tr	High argillation
ן (YT	Ą 2iP)	Silt to coarse sand	Pale to grayish beige	2–6	+++ β	*	tr	++	tr	*	tr	tr	Reverse grading /dewatering structure

第6図 (a) 薮川テフラのB3 層中のYbt1 層準から得られた軽石. (b) 軽石の拡大写真. (c) 軽石の薄片写真 (単ポーラー). (d) B3 層上部のYbt2 層準から得られた火山ガラスを含む残渣の写真.

Fig. 6 (a) Photograph of pumice samples from the horizon Ybt1 in the subunit B3 of the Yabukawa Tephra.(b) Photomicrograph of the pumice. (c) Thin section image of the pumice, under open-polarized light. (d) Volcanic glasses in residues from the upper part (horizon Ybt2) of the subunit B3.

弱でありB層中で最も高い.

B3層は薮川テフラの主部をなす。大部分が薄橙色で、 一部で灰色掛かったベージュ色を呈する(第3図).全体 的に級化しており、粒度によって下部と上部に分けられ る. 下部は主に中礫サイズの比較的淘汰の良い火山礫か らなり、礫支持である.火山礫はほとんどが軽石で、石 質岩片が少量認められる. 軽石は、薄ベージュ色で繊維 状発泡のため短柱状の形態を示し、最大長径は3 cmに及 ぶ(第6図a). この軽石は、著しく発泡した繊維状の火山 ガラスを主体とするが、しばしば繊維状ガラス間に楕円 形のバブル状ガラスを挟有する(第6図b, c). これらの火 山ガラスの内部には、火山ガラスが変質したものと思わ れる白色粘土が充填することが多い(第6図b). 軽石は 無斑晶状ではあるが、長径0.5 mm以下の石英(高温型を 含む),長石,有色鉱物(普通角閃石,直方輝石,単斜輝 石,黒雲母),不透明鉱物(鉄鉱の集合体,チタン鉄鉱) 及びジルコンなどが僅かに認められる. 石質岩片は少量 であり,長径は数mm~1 cm程度である. B3層上部は 主に細礫サイズの火山礫からなり淘汰は良い。火山礫は 下部同様にほとんど軽石で、石質岩片が少量認められる. 軽石は下部に比べ粘土化が進んでいる.石質岩片は、最 大長径1 cm未満で、全体的に下部より小さい.

B4層は粗粒砂〜細礫サイズの火山灰〜火山礫からな り、正級化している.薄い緑灰色を呈するが、橙色掛 かったベージュ色の部分もある(第3図).火山礫の多く は軽石であるが、ほぼ粘土化している.石質岩片は長径 が5 mm以下で、B3層のものより小さいが、含有率はB3 層より高い.これらの石質岩片や軽石は変質・粘土化に よって淡緑色になっており、それがB4層の色として反 映されている.

[残渣の特徴]

B1~B4層を水洗して得られた残渣中の鉱物の量比は,

どのサブユニットも大差はない.石英・長石が多く,そ の次に普通角閃石,直方輝石が,そして僅かにチタン鉄 鉱,単斜輝石,黒雲母,緑れん石などが含まれる(第1表). また,すべてのサブユニットで六方両錐型の高温型石英 が認められる.

B1層の残渣は中粒砂を主体とし、含有鉱物の量比は、 石英≫長石>直方輝石>普通角閃石>単斜輝石>チタン 鉄鉱>黒雲母≒緑れん石である.B1層の火山ガラスは 粘土化のためほとんど失われているが、残存している火 山ガラスの形状の多くは平板状である.残渣中での石質 岩片の割合は、長石と同程度である.

B2層の残渣は中粒~粗粒砂を主体とし,含有鉱物の 量比は,石英>長石≫普通角閃石≒直方輝石≫チタン鉄 鉱>緑れん石>単斜輝石≒黒雲母である.残渣中には軽 石由来の火山ガラスが含まれており,そのほとんどが繊 維状である.普通角閃石や緑れん石は長石を付随させて いることがある.残渣中の石質岩片の割合は長石と同程 度である.

B3層下部の残渣は粗粒砂を主体とし,含有鉱物の量 比は,石英>長石≫普通角閃石>直方輝石>黒雲母>単 斜輝石≒チタン鉄鉱≒緑れん石である.残渣中には火山 ガラスが極めて大量に含まれており,そのほとんどが 繊維状である.黒雲母はしばしば長石を付随させている. 残渣中の石質岩片の割合は黒雲母と同程度である.B3 層上部の残渣も粗粒砂を主体とし,含有鉱物の量比は, 石英>長石≫普通角閃石>直方輝石≒黒雲母>チタン鉄 鉱≒緑れん石≒単斜輝石である.下部同様,残渣中には 火山ガラスが極めて大量に含まれており,そのほとんど が繊維状である(第6図d).残渣中の石質岩片の割合は 長石と同程度である.

B4層の残渣は中粒砂を主体とし、含有鉱物の量比は、 石英>長石≫普通角閃石>直方輝石>黒雲母>緑れん石

第7図 薮川テフラ中の石質岩片の薄片写真. (a)角閃石安山岩, (b)玄武岩質安山岩, (c)スフェルリティック(球顆状) 組織を示すデイサイト, (d)デイサイト, (e)流紋岩, (f)凝灰質砂岩, (g)凝灰質泥岩, (h)トーナル岩, (i)チャー ト. (g)のみ単ポーラーでその他は直交ポーラー.

Bt:黒雲母,Hbl:普通角閃石,Gn:海緑石,Mf:球状微化石仮像,Mm:緑泥石に置換された苦鉄質鉱物.

Fig. 7 Thin section images of rock fragments from the Yabukawa Tephra: (a) hornblende andesite; (b) basaltic andesite; (c) dacite showing a spherulitic texture; (d) dacite; (e) rhyolite; (f) tuffaceous sandstone; (g) tuffaceous mudstone; (h) tonalite, and (i) chert.

Only Fig. 7g is under open polarized light, while the others under cross polarized light. Abbreviations: Bt (biotite); Hbl (hornblende); Gn (glauconite); Mf (pseudomorph of spherical microfossil); Mm (mafic mineral replaced by chlorite).

>チタン鉄鉱で,B3層上部とほぼ同様である.火山ガ ラスも石英と同程度に多く含まれており,そのほとんど が繊維状である.残渣中の岩片の割合は長石と同程度で ある.

[B3層の石質岩片の特徴]

数川テフラの主部をなすB3層に含まれる石質岩片を 鏡下観察したところ、玄武岩質安山岩、安山岩、デイサ イト、流紋岩、凝灰質砂岩、凝灰質泥岩、トーナル岩、 チャートが認められた(第7図).量比としては安山岩と デイサイトが多くを占める。安山岩は灰色で、斜長石を 斑晶とし、岩片によっては普通角閃石や石英も斑晶とし て認められる(第7図a).斑晶の斜長石はときに顕著な累 帯構造を示す(第7図a).なかには石基部分がやや粗粒 な鉱物で占められ、半深成岩様のものもある(第7図b). デイサイトは灰色〜灰白色で、斜長石と石英を斑晶とす るが、緑泥石に置換された有色鉱物の仮像を含むことも ある.まれにスフェルリティック(球顆状)組織を示す (第7図c).また、しばしば無斑晶状のものも認められる. 斑状、無斑晶状に関わらず、デイサイトの石基中に産す る斜長石は長柱状あるいは針状を呈する場合が多い(第 7図d).玄武岩質安山岩は、暗灰色で、安山岩に比べ石 英が少なくかつ有色鉱物のモード比が高い.流紋岩は白 色で、デイサイト同様、斜長石と石英を斑晶とし、まれ に緑泥石に置換された有色鉱物の仮像を含む.流紋岩は フェルシティック組織を示す無斑晶状のものも認められ る.岩片によっては、石基の石英・長石がやや粗い半深 成岩様のものがある(第7図e).なお、ほとんどの流紋岩 において、長径0.2 mm以下の長柱状〜粒状黒雲母が散在 し、デカッセイト組織を呈している(第7図e).凝灰質砂 岩は淡黄灰色~灰色を呈し、シリカ鉱物等に置換された 火山ガラス、石英、長石のほか、針状の黒雲母粒子を含 み、岩片によっては白雲母、単斜輝石、緑れん石、不透 明鉱物などの粒子が認められる。中にはやや粗粒な石英 や長石の粒子を含むものもある(第7図f).凝灰質泥岩は 淡黄灰色で、火山ガラスと円磨度の低い砕屑粒子を含む. また、しばしば、海緑石や球形の微化石仮像が認められ る(第7図g).トーナル岩は白色で、斜長石及び石英と 少量の黒雲母からなり(第7図h)、岩片によっては普通 角閃石や直方輝石を含んでいたり、やや粗粒な緑れん石 を含むものもある。チャートは微細な石英からなり、い くつかの岩片では細粒の黒雲母が発達している(第7図i).

全体的に,ほとんどの石質岩片が多かれ少なかれ変質 を受けており,それが著しいものでは,斜長石はソーシュ ライト化し,有色鉱物は緑泥石に置換されている.また 細粒な緑れん石もしばしば産する.これらの緑色の変質 鉱物が多産する場合,岩石全体が緑掛かり,それは特に 火山岩において顕著である.また,微細な赤鉄鉱が多産 する場合は全体に赤紫色を呈する.

3.3 C層(火山灰火山礫互層)

詳細については後述するが、C層は薮川テフラを主な 母材とするリワーク堆積物と考えられる.本層は淡緑色 ~灰緑色を呈し、厚さは25 cmである。細粒~粗粒火山 灰と変質した火山礫とが厚さ約2 cm以下で互層したもの から構成される.特に、最下部では細粒火山灰層が、ま た上部では軽石からなる火山礫層が挟在している.場所 によっては斜交葉理が確認できる. 軽石は無斑晶状で長 径最大1 cmに及び、その多くが変質によって粘土化し、 ベージュ色あるいは灰緑色を呈する. 変質は著しいもの の,一部で繊維状の発泡組織が残存している.石質岩片 は流紋岩、デイサイト、安山岩のほか、粗粒な安山岩や 珪長質火山岩も認められ、それらは緑れん石や緑泥石 などの変質鉱物の発達によって緑色を呈するものが多い. 残渣中の鉱物の量比は、石英>長石≫普通角閃石>直 方輝石>黒雲母≒緑れん石≒チタン鉄鉱である(第1表). 軽石に由来する繊維状もしくは平板状の火山ガラスもし ばしば認められ、特に上部で量が多い. 石英はまれに六 方両錐形の高温型のものが認められる. 残渣中の石質岩 片の含有割合は長石と同程度である.

C層で特筆すべき点として、下部でも上部でも径1 mm 以下の白色で魚卵状を呈するスフェルライトが多産する ことが挙げられる. 鏡下では中心から外側にかけて繊維 状結晶が放射状に発達した構造が認められ、また粒子の リムは隠微晶質な鉱物の晶出によって汚濁している(第8 図). スフェルライトはしばしば複数個の粒子同士が融 合していることがある.

なお、C層が呈する淡緑色~灰緑色の色調は、緑れん

第8図 C層から得られたスフェルライトの薄片写真(直交 ポーラー).

Fig. 8 Thin section image of spherulite grains from the unit C, under cross-polarized light.

石や緑泥石などの変質鉱物が発達する石質岩片が多く含 まれることに起因すると考えられる.

3.4 D層(礫層)

C層の直上には主に細礫と中礫とが不均質に混ざり合 う淘汰の悪い礫層が約1.8 mの厚さで堆積している.角 礫~亜角礫を主体として,礫支持である.礫の長径は3 cm前後のものが多いが,ときに10 cm程度の大礫も認め られる.礫種はチャートがほとんどで,そのほか,ジュ ラ紀付加体起源の泥岩や砂岩の礫も僅かに認められる. チャートの色調は多様で,灰色,暗灰色,白色が多く, それ以外では黒色,赤紫色,淡緑色がある.礫層は一部 でB層(数川テフラ)とC層を深さ20 cmほど削り込んで堆 積しており(第3図),この凹面を埋積した礫の直上には 厚さ2 cm程度の炭質層が挟在する(第4図のLtd1).なお, 確認できた礫層の上限から段丘面までは,途中の露出が 不明瞭ではあるが高さ約1.6 mである.

4. 火山ガラスの主成分分析

4.1 試料層準と分析手法

数川テフラのB3層とB4層の2層準(第4図のYbt2 とYbt3)に含まれる火山ガラス(試料番号はそれぞれ 20181113 L1-2a, 20181113 L1-2b)について,エネルギー 分散型X線マイクロアナライザー(EDX)を用いて主成分 分析を行った.走査型電子顕微鏡,EDX,検出器は,そ れぞれHITACHI製 SU1510, HORIBA製EMAX Evolution EX-270,液体窒素レス検出器X-Max(80 mm²)であり,加 速電圧は15 kV,試料電流は0.3 nA,ビーム径は約90 nm (4 μ m 四方を走査),ライブタイムは50秒である.主成 分組成計算方法にはファイローゼット(ϕ (ρ Z)補正)を 適用した.スタンダードには高純度人工酸化物結晶(純 度 99.99%以上のSiO₂,Al₂O₃, TiO₂, MnO, MgO),純 度 99.99 %以上の単結晶NaCl, KCl, CaF₂を用いた.また, 測定終了時ごとに、ヨーロッパで二次標準物質となって いるMPI-DING のATHO-G (Jochum *et al.*, 2000, 2006)及 びガラスの主成分がほぼ均質なATテフラの火山ガラス を用い、測定値をチェックした.

4.2 分析結果

測定した2試料の主成分分析結果を付表1に,ハー カー図を第9図に示す.両試料は主成分元素組成がほぼ 一致する.B3層(Ybt2)の各主成分の平均含有率(wt.%) は,SiO₂:78.3,TiO₂:0.07,Al₂O₃:12.7,FeO*(全鉄 を2価で計算):1.02,MnO:0.12,MgO:0.06,CaO: 0.67,Na₂O:4.34,K₂O:2.79,B4層(Ybt3)は,SiO₂: 78.4,TiO₂:0.11,Al₂O₃:12.7,FeO*:0.90,MnO:0.09, MgO:0.07,CaO:0.66,Na₂O:4.30,K₂O:2.77である. 両者とも特に,SiO₂,K₂Oの平均含有率がそれぞれ78%, 2.8%と高く,一方でCaOが0.7%弱,MgOが0.07%程度, TiO₂が0.1%程度と低い特徴を示す.FeO*-SiO₂図では SiO₂の含有率が高くなるにつれFeO*の含有率が低下す る負の相関を示す.

5. 屈折率測定

5.1 試料層準と分析手法

主成分分析を行った薮川テフラのB3層とB4層の2 層準(第4図のYbt2, Ybt3)(試料番号:20181113 L1-2a, 20181113 L1-2b)について,火山ガラス,直方輝石及び普 通角閃石の屈折率を測定した.また,薮川テフラ下位の 泥炭層中のYT2iP テフラについても火山ガラスと直方輝 石の屈折率を測定した.普通角閃石はほとんど含まれて いないため,測定を行っていない.

屈折率測定には,浸液の温度を直接測って屈折率を求 める温度変化型測定装置「MAIOT」(古澤,1995)を使用 した.

5.2 分析結果

5.2.1 薮川テフラ

20181113L1-2a (B3層のYbt2)に含まれる火山ガラスの 屈折率は1.495-1.498 (中央値:1.497,測定数:30)であ る(第10図d). 普通角閃石の屈折率(n₂)は1.673-1.685 (中央値:1.679,測定数:35)で,1.677-1.680付近にピー クが見られる(第10図f). 少量含まれる直方輝石の屈折 率(γ)は1.706-1.711及び1.724-1.731(測定数:35)で双 峰型の分布を示す(第10図e).

20181113L1-2b (B4層のYbt3)に含まれる火山ガラスの 屈折率は1.495-1.497 (中央値:1.496,測定数:30)であ る(第10図a). 普通角閃石の屈折率(n₂)は1.674-1.691 (測定数:40)で,1.679-1.682 と1.690-1.691 付近に2つ のピークをもつ双峰型の分布を示す(第10図c). 直方輝 石の屈折率(γ)は1.702-1.740 (測定数:35)と幅広い分 布を示す(第10図b).

両試料を比較すると火山ガラスはほぼ同様の値を示す. 直方輝石は屈折率の分布パターンに違いがあるものの幅 広い分布を示す特徴は類似している.普通角閃石につい ては, B3層, B4層の試料はそれぞれ単峰型, 双峰型と 異なるが,前者のピークと後者の屈折率が低い方のピー クは近接する.

5.2.2 YT2iPテフラ

火山ガラスの屈折率は1.498-1.503 (中央値:1.501,測 定数:30)で比較的よくまとまっている(第10図g).直 方輝石の屈折率(γ)は1.720-1.725 (中央値:1.722,測 定数:30)とこちらもよくまとまる(第10図h).

数川テフラと比較すると、火山ガラスの値は両者で明 らかに異なる. 直方輝石は薮川テフラB4層中の値の範 囲内に収まるものの、全く異なる幅を示しており、B3 層中の値とも重複しない. すなわち、直方輝石に関して もYT2iP テフラと薮川テフラは明確に識別可能である.

6. フィッション・トラック年代測定

6.1 試料層準と手法

薮川テフラの主部をなすB3層下部(第4図のYbt1層 準)の軽石から抽出したジルコンについて、フィッショ ン・トラック年代 (FT年代)を測定した. ジルコンは 63粒子得られ、すべて透明かつ自形である、測定に際 し、まずジルコンをPFAテフロンシートに埋め込み、ダ イアモンドペーストで研磨した. その後, 水酸化カリウ ムと水酸化ナトリウム各1 mol共融液 (225 ℃) で40 時間 かけ結晶外部面の自発トラックをトラックの方位分布が 等方的になるまでエッチングした.光学顕微鏡 (Nikon ECLIPSE E1000) とデジタルカメラ (浜松フォトニクス C9440-05G)を通して、モニター画面 (タッチパネルシス テムズ17モニター:観察倍率は2550倍)上で自発トラッ ク密度を計測した. FT年代測定に必要なウラン濃度につ いては、レーザーアブレーション誘導結合プラズマ質量 分析装置で測るLA-ICP-MS-FT法を用いて測定した。使 用機器は東京大学大学院理学研究科地殻化学実験施設の 四重極型誘導結合プラズマ質量分析装置で、本装置は フェムト秒レーザーシステムを搭載している (Yokoyama et al., 2011; Sakata et al., 2014). 測定条件を第 2表に示 す. ウラン濃度の標準物質としてNancy 91500スタンダー ド (Wiedenbeck et al., 1995)のジルコンを, またFT年代較 正の一次標準試料としてFish Canyon Tuff (28.4±0.2 Ma: Danhara and Iwano, 2013) のジルコンを使用した. 年代算 出の際のゼータ値は44.9±1.8である. なお, FT年代値 の計算法については細井ほか(2018)に詳しい.

6.2 測定結果

軽石から抽出された63粒子すべての値がX²検定に合格

第9図 薮川テフラのB3層上部及びB4層から得られた火山ガラスの主成分を示したハーカー図.

Fig. 9 Harker diagrams showing the chemical composition of major elements of volcanic glasses from the upper part of the subunit B3 and the subunit B4 in the Yabukawa Tephra.

第10図 薮川テフラのB3層上部及びB4層ならびに泥炭層中のYT2iPテフラから得られた火山ガラス・直方輝石・ 普通角閃石の屈折率.

し (P (χ^2) 値:95 %), 0.24 ± 0.04 Ma (1 σ) のFT年代 (pooled age) が得られた (第3表).

7.¹⁴C 年代測定

7.1 試料層準と手法

薮川テフラ下位の泥炭層 (A層) に含まれる材化石 (第
 4図のYp2,第5図a,試料番号:20181113L1-1)とYT2iP
 テフラ直上の泥炭(第4図のYp1,第5図b,試料番号:
 20190903L4-1),そして薮川テフラ上位の礫層 (D層) 最
 下部に厚さ2 cmで挟在する炭質層中から採取された泥炭
 (第4図のLtd1,試料番号:20190903L3-1)について¹⁴C年
 代の測定(AMS測定)を行った。

試料の前処理は以下の通りである. 材化石について は1 mol/ℓ(1 M)の塩酸に浸し,次に水酸化ナトリウム水 溶液で0.001 Mから1 Mまで徐々に濃度を上げながら酸 処理を行う. 泥炭については1 mol/ℓ(1 M)の塩酸のみを 用いて酸処理する.これらの処理によって不純物を化学 的に取り除いた後,超純水で中性になるまで希釈し乾 燥させる.乾燥試料を燃焼させ,二酸化炭素を発生させ る.真空ラインで精製した二酸化炭素を,鉄を触媒とし て水素で還元し,グラファイトを生成させる.このグラ ファイトについて,加速器をベースとした¹⁴C-AMS専用 装置(NEC社製)で¹⁴Cの計数,¹³C濃度(¹³C/¹²C)及び¹⁴C濃 度(¹⁴C/¹²C)の測定を行った.標準試料は米国国立標準局 (NIST)から提供されたシュウ酸(HOx II)であり,この 標準試料とバックグラウンド試料の測定も同時に実施し た.なお,¹⁴C年代の測定は株式会社加速器分析研究所 に依頼した.

7.2 年代測定結果

7.2.1 泥炭層 (A層) 中の炭質層の¹⁴C年代

材化石は>53,840 yr BP, 泥炭は>53,940 yr BPの年代

Fig. 10 Refractive indices of volcanic glasses, orthopyroxene and hornblende from the upper part of the subunit B3 and the subunit B4 in the Yabukawa Tephra and the YT2iP tephra in the unit A (peat layer).

第2表 フィッション・トラック年代測定における四重極 型誘導結合プラズマ質量分析装置の測定条件.

Table 2Measurement condition of the instrumentation using
a quadrupole inductively coupled plasma mass
spectrometry for fission-track dating.

Laser ablation	
Model	CARBIDE (Light Conversion)
Laser type	Femtosecond laser
Pulse duration	224 fs
Wave length	260 nm
Energy density	1.6 J/cm ²
Laser power	40 %
Spot size	10 μm
Repetition rate	100 Hz
Duration of laser ablation	10 s
Carrier gas (He)	0.6 L/min
ICP-MS	
Model	iCAP-TQ ICP-MS (Thermo Fisher Scientific)
ICP-MS type	Quadrupole
Forward power	1550 W
Make-up gas (Ar)	0.9 L/min
ThO ⁺ /Th (oxide ratio)	<1 %
Data acquisition protocol	Time-resolved analysis
Data acquisition	25 s (15 s gas blank, 10 s ablation)
Monitor isotopes	$^{29}\text{Si}, {}^{202}\text{Hg}, {}^{204}\text{Pb}, {}^{206}\text{Pb}, {}^{207}\text{Pb}, {}^{208}\text{Pb}, {}^{232}\text{Th}, {}^{238}\text{U}$
Dwell time	0.2 s for ²⁰⁶ Pb, ²⁰⁷ Pb; 0.1 s for others
Standards	
Primary standard (U content)	Nancy 91500 (Wiedenbeck et al., 1995)
Primary standard (FT age)	Fish Canyon Tuff (Danhara and Iwano, 2013)

値 (ともにδ¹³C補正済み)が得られた(第4表).

7.2.2 礫層 (D層)中の炭質層の¹⁴C年代

礫層中の炭質層からは, 50,340±710 yr BP (δ¹³C補正 済み)の年代値が得られた(第4表).

8. 考察

8.1 外山川沿いの第四紀堆積物の層序

数川地域葉水の外山川沿いで確認された谷底低地を埋 積する第四紀堆積物の層序について改めて整理する.こ の第四紀堆積物は、下位より1.3 m以上の泥炭層(A層), 80 cmの薮川テフラ(B層),25 cmの火山灰火山礫互層(C 層)、そして約1.8 mの礫層(D層)の各ユニットからなる (第3図、第4図).泥炭層(A層)は大量の材化石を含み、 また、厚さ2~6 cmのYT2iPテフラを挟有する(第5図). 材化石及びYT2iPテフラ直上の泥炭の¹⁴C年代はともに約 4~5万年とされる年代測定限界より古い.

数川テフラ (B層)は、下位よりB1 ~ B4のサブユニットに細分され、いずれも軽石 (第6図a-c)を主体とし、
少量の石質岩片を含む、火山礫の長径は軽石が3 cm以下、

石質岩片が1 cm以下である. 軽石中に含まれるジルコ ンのFT年代は約0.24 Ma (チバニアン期後半)を示し、A 層中の炭質物が示す¹⁴C年代の結果と矛盾しない。石質 岩片は, 安山岩, デイサイト, 流紋岩, 凝灰質砂岩, 凝 灰質泥岩、トーナル岩、チャートなどが認められる(第 7図). 凝灰質泥岩は、非変形・非変成で、浅海成の海 緑石を含むものがあることから、海溝充填堆積物とは考 えにくく、非付加体由来のものと判断される. したがっ て、薮川テフラ中の石質岩片で先古第三紀基盤岩に由来 すると言えるものはトーナル岩(前期白亜紀花崗岩類)と チャートである.チャートは、北部北上帯のジュラ紀付 加体要素であり、多産する細粒黒雲母は前期白亜紀花崗 岩類の接触変成作用によるものと考えらえる.また,デッ カセイト組織を示す流紋岩も、この花崗岩類の熱的影響 を受けている、すなわち現在北上山地に多産する前期白 亜紀岩脈 (土谷ほか, 1999; 内野・羽地, 2021)を起源と する可能性がある. 薮川テフラの残渣には繊維状の火山 ガラスが大量に含まれるほか(第6図d),その他,高温型 石英、普通角閃石、直方輝石、チタン鉄鉱の産出で特徴 付けられる. 薮川テフラは全体的に淘汰が良く, 発泡し た軽石を主体とし礫支持であること、また本テフラ中に 認められる層理が基底面とほぼ平行であることから、本 テフラは降下火砕堆積物と判断できる.

火山灰火山礫互層 (C層)は、淡緑色~灰緑色を呈し、 細粒〜粗粒な火山灰と変質した火山礫とが細かく互層し たものから構成される.火山礫は、ほとんどが変質して 粘土化した軽石からなる. C層には細かい葉理が発達し, 一部ではそれが斜交する部分も認められることから(第 11図)、水流による影響下での堆積が示唆される.C層は、 繊維状に発泡した無斑晶状軽石や残渣中に石英・長石を はじめ普通角閃石・直方輝石・チタン鉄鉱を含むこと から(第1表), 薮川テフラ(B層)と共通した特徴を持つ. 一方で、スフェルライト粒子を大量に含むという特徴も 有している(第8図). 薮川テフラの残渣中にはスフェル ライトは確認されていないが、本テフラのデイサイト岩 片には一部でスフェルリティック組織が認められる(第7 図c). ただし、本組織を示すデイサイト岩片の量自体は 少ないため、C層のスフェルライトがこの岩片に由来す るのかどうかは不明である. もし岩片由来であったとす ると、スフェルライト粒子のC層への大量濃集は、堆積 時の水流による分級作用に起因する可能性がある.また その場合、C層は薮川テフラ (B層) を主な母材としたリ ワーク堆積物であり、B層の堆積後すぐにそれを整合的 に覆ったと考えられる. ちなみに、薮川テフラに続く火 山噴出物中に大量のスフェルライトが初生的に含まれて いたという可能性もあるが、その蓋然性については現状 では判断できない.

薮川テフラ (B層) 及び火山灰火山礫互層 (C層) の上位 には礫層 (D層) が堆積しており, D層はB層・C層を一部 第3表 薮川テフラの軽石に含まれるジルコンのフィッション・トラック年代.

Ns:自発トラック数, Nu-sp:未知試料における²³⁸Uの領域補正されたカウント数, Nu-std:標準試料のウランカウント数, ps:自発トラック密度, pu-sp:未知試料における²³⁸Uの領域補正されたカウント密度, pu-std:標準試料のウランのカウント密度, Utcp:ウラン濃度.

 Table 3
 Fission-track ages for the zircon from the pumice in the Yabukawa Tephra.

Abbreviations: N_s (number of spontaneous tracks); N_{u-sp} (area-corrected total count of ²³⁸U on unknown sample); N_{u-std} (number of counted uranium of standard); ρ_s (density of spontaneous tracks); ρ_{u-sp} (density of area-corrected total count of ²³⁸U on unknown sample); ρ_{u-std} (density of counted uranium of standard); U_{ICP} (uranium content).

Grain no.	Ns	ρ _s	N _{U-sp}	ρ _{u-sp}	UICP	Age (±1δ)
1	1	(cm ⁻)	11 110	2.002 × 40 ⁹	(ppm)	(IVIA)
2	1	1.042 × 10 6.250 × 10 ⁴	14,410	3.603×10^{-10}	589	0.41 ± 0.41 0.40 ± 0.40
3	3	0.250×10^{5}	75 //9	2.220 × 10 1.886 × 10 ¹⁰	503	1.51 ± 0.40
4	0	0.000	67 001	1.675×10^{10}	445	0.00
5	0	0.000	16,369	4.092 × 10 ⁹	109	0.00
6	0	0.000	65.328	1.633 × 10 ¹⁰	434	0.00
7	0	0.000	32,443	8.111 × 10 ⁹	215	0.00
8	1	5.000 × 10 ⁴	66,705	1.668 × 10 ¹⁰	443	0.43 ± 0.43
9	0	0.000	52,638	1.316 × 10 ¹⁰	349	0.00
10	0	0.000	10,153	2.538 × 10 ⁹	67	0.00
11	0	0.000	9,713	2.428 × 10 ⁹	64	0.00
12	0	0.000	50,706	1.268 × 10 ¹⁰	336	0.00
13	0	0.000	14,895	3.724 × 10 ⁹	99	0.00
14	2	6.250 × 10 ⁴	57,335	1.433 × 10 ¹⁰	380	0.62 ± 0.44
15	1	6.250 × 10 ⁴	55,309	1.383 × 10 ¹⁰	367	0.64 ± 0.64
16	0	0.000	84,971	2.124 × 10 ¹⁰	564	0.00
17	1	2.500 × 10*	44,776	1.119 × 10 ¹⁰	297	0.32 ± 0.32
18	2	8.000 × 10"	170,414	4.260 × 10 ¹⁰	752	0.27 ± 0.19
19	0	0.000	113,440	2.836 X 10 ¹¹	100	0.00
20	0	0.000	10,727	4.662 × 10	86	0.00
21	0	0.000	13,035	3.259×10^{9}	84	0.00
22	0	0.000	21.060	5.174 × 10 5.265 × 10 ⁹	140	0.00
24	0	0.000	32 481	8 120 X 10 ⁹	216	0.00
25	2	5 714 X 10 ⁴	81 635	2.041 X 10 ¹⁰	542	0.40 ± 0.28
26	2	8 333 X 10 ⁴	190 857	4 771 X 10 ¹⁰	1266	0.25 ± 0.18
27	2	1.000 × 10 ⁵	134.065	3.352 × 10 ¹⁰	890	0.42 ± 0.30
28	0	0.000	79,005	1.975 × 10 ¹⁰	524	0.00
29	0	0.000	42,271	1.057 × 10 ¹⁰	281	0.00
30	1	4.348 × 10 ⁴	92,254	2.306 × 10 ¹⁰	612	0.27 ± 0.27
31	2	4.762 × 10 ⁴	33,705	8.426 × 10 ⁹	224	0.80 ± 0.57
32	2	8.333 × 10 ⁴	184,273	4.607 × 10 ¹⁰	1223	0.26 ± 0.18
33	1	4.167 × 10 ⁴	109,782	2.745 × 10 ¹⁰	728	0.22 ± 0.22
34	1	6.250 × 10 ⁴	66,359	1.659 × 10 ¹⁰	440	0.54 ± 0.54
35	0	0.000	147,618	3.690 × 10 ¹⁰	980	0.00
36	2	1.111 × 10⁵	151,589	3.790 × 10 ¹⁰	1006	0.42 ± 0.29
37	0	0.000	9,417	2.354 × 10 ⁹	62	0.00
38	0	0.000	72,225	1.806 × 10 ¹⁰	479	0.00
39	1	0.000	8,706	2.177×10^{-10}	1932	0.00
40	0	1.111 × 10 ⁻	276,040	6.901×10^{10}	631	0.23 ± 0.23
47	1	1.111 x 10 ⁵	95,156 153 736	2.379×10^{10}	1020	0.00 0.41 + 0.41
43	0	0.000	154,416	3.860 x 10 ¹⁰	1025	0.00
44	1	5.556 X 10 ⁴	95 130	2.378 X 10 ¹⁰	631	0.33 ± 0.33
45	0	0.000	125,324	3.133 X 10 ¹⁰	832	0.00
46	0	0.000	95,128	2.378 × 10 ¹⁰	631	0.00
47	0	0.000	28,521	7.130 × 10 ⁹	189	0.00
48	0	0.000	20,321	5.080 × 10 ⁹	135	0.00
49	1	7.143 × 10 ⁴	105,121	2.628 × 10 ¹⁰	698	0.39 ± 0.39
50	1	4.167 × 10 ⁴	35,505	8.876 × 10 ⁹	236	0.67 ± 0.67
51	0	0.000	38,689	9.672 × 10 ⁹	257	0.00
52	0	0.000	11,531	2.883 × 10 ⁹	77	0.00
53	0	0.000	15,709	3.927 × 10 ⁹	104	0.00
54	0	0.000	91,188	2.280 × 10 ¹⁰	605	0.00
55 56	1	8.333 × 10"	43,905	1.098 × 10 ¹⁰	∠91 242	1.08 ± 1.08
00 57	0	0.000	32,131	8.033 X 10 ³	∠13 122	0.00
58	0	0.000	63,179	1.629 X 10 ¹⁰	400	0.00
50	0	0.000	J7,/14	1.445 × 10 ¹⁰	303	0.00
60	0	0.000	47,197	1.100×10^{10}	736	0.00
61	n	0.000	56 614	1.415×10^{10}	376	0.00
62	2	2 222 X 10 ⁵	121 525	3.038 × 10 ¹⁰	806	1.04 ± 0.74
63	2	3.333 × 10 ⁴	70.605	1.765 × 10 ¹⁰	469	0.27 ± 0.19
Total	37	2.578 × 10 ⁴	,			and the second second
Mean	0.6	3.036 × 10 ⁴	72063	1.802 x 10 ¹⁰	478	
Pooled age						0.24 ± 0.04
5						

 $Zeta \ value \ (cm^2/yr): 44.9 \pm 1.8. \ Correlation \ coefficient \ between \ \rho_s \ and \ \rho_{u-sp} \ (r): 0.512. \ N_{u-std}: 12,659, \ \rho_{u-std}: 3.165 \ x \ 109.$

- 第4表 泥炭層 (A層) 及び礫層 (D層) 中の炭質物の¹⁴C年代のリスト.層準名は第4図を要参照. pMC: 標準現代炭素に対する試料炭素の¹⁴C 濃度の割合.
- Table 4List of ¹⁴C ages measured for carbonaceous materials from the peat layer (unit A) and gravel layer (unit D). Horizon
names are referable to Fig. 4. pMC: percent modern carbon.

Horizon	Sample no.	Sample	δ^{13} C (‰)(AMS)	Libby age (yr BP)	pMC (%)
Ltd1	20190903L3-1	Peat	-28.63 ± 0.39	50,340 \pm 710	0.19 ± 0.02
Yp2	20181113L1-1	Wood fossil	-26.63 ± 0.36	>53,840	<0.13
Yp1	20190903L4-1	Peat	-29.50 ± 0.33	>53,940	<0.13

第11図 C層で見られる斜交葉理. Fig. 11 Cross lamina observed in the Unit C.

削っている(第3図,第4図). 礫層下部に薄く挟在する 炭質層の¹⁴C年代は約50,000 ~ 51,000 yr BP (後期更新世) であるが、¹⁴C年代の測定限界に近い値であるため、本 泥炭層も約4 ~ 5万年より古い年代を示すと考えておく. この礫層は外山川沿いや東方の大石川沿いで普遍的にみ られ、本地域の低位段丘面を形成している. なお、大石 川下流部(薮川テフラ露頭から約200 m東:第2図a)では、 礫層上部から漸移するシルト層中に厚さ10 cm程度のテ フラが挟在しており、それは約36 cal kyr BPの十和田– 大不動テフラに対比されている(工藤・内野, 2021).

以上を基に、本地域の谷底低地を埋積する地層の総合 柱状図を第12図に示した.まとめると、薮川地域の河 川沿いでは後期更新世の礫層を主体とする堆積物が低位 段丘を構成しており、外山川のごく限られた区間におい て礫層の基盤としてチバニアン期後半の泥炭層と薮川テ フラ及びリワーク堆積物が合わせて2.3 m以上の厚さを もって存在することが明らかになった.

8.2. テフラの対比

薮川テフラは,層厚が80 cmと厚い降下火砕堆積物で あり(第3図,第4図),また最大長径3 cmの軽石及び最 大長径1 cmの石質岩片を含むことから,比較的近傍の 火山から飛来したと判断される.盛岡周辺において,薮 川テフラのFT年代 (0.24±0.04 Ma) に近い30 ~ 20万年 前頃に活動した火山としては,西方に位置する網張火山 群,岩手火山 (西岩手),八幡平火山群,北西方に位置 する七時雨火山 (第1図) などが知られており (大場・梅 田,1999;土井,2000;伊藤・土井,2005;伊藤ほか, 2006;藤田ほか,2019),これらが給源の候補となり得 るであろう.

本調査地域の西方、岩手山山麓には、上記火山を含む 周辺火山を主な給源とする膨大な量の第四紀テフラが分 布している。そのテフラ層序については、これまでに中 川ほか(1963)を始めとして多くの研究が行われ、それら の成果は土井(2000)によって包括的にまとめられてい る. これらのテフラは、段丘との関連や不整合の存在を 基に、下位より寺林、玉山、岩手川口、江刈内、沼宮内、 山崎,松内,外山,渋民,分の10火山灰に区分されて いる(例えば、大上ほか、1980;土井、2000). なお、こ れらの「火山灰」は、顕著な鍵テフラとその間に介在する 小規模テフラや古土壌層を一括したものであり、それぞ れの「火山灰」は、複数回の噴火によるテフラと古土壌層 の互層からなる点に注意が必要である.このうち、外 山火山灰上部には、約10.9万年前の洞爺火山灰(町田ほ か, 1987;東宮・宮城, 2020)が挟在する. 洞爺火山灰 は、北海道の洞爺カルデラを給源とし、北日本に広く分 布する広域テフラで、盛岡周辺では層厚数mm~10 cm 程度の細粒火山灰層として産する(土井, 2000). この洞 爺火山灰より上位層では、複数枚の広域テフラが認めら れており、放射年代が測定されたテフラも多く、比較的 詳細な年代軸が入れられている(例えば、土井、2000). 一方、それより下位層の年代については、一部で層位上 の位置から推定年代が示されているものの(土井, 2000), これらは洞爺火山灰より上位層から求められた外挿年代 のため、不確実な点が多く残されている.いずれにし ろ、年代的に見ると薮川テフラの対比候補となり得るの は、少なくとも洞爺火山灰よりも下位の「外山火山灰」以 下の層準にあるテフラと判断される.ちなみに、外山高 原では緩斜面堆積物中からOBA, KP, YPなどの鍵テフ ラが報告されているが(例えば, Higaki, 1980;井上ほか, 1981), どれも後期更新世を示すものであり, 薮川テフ ラの対比対象となるテフラは見当たらない.

岩手山山麓に分布するテフラのうち、洞爺火山灰より も下位層準において、薮川テフラと産状及び記載岩石学 的特徴が最も類似するテフラは、松内火山灰下部の大台 白色火山灰 (OdWA) (大上ほか、1980)と呼ばれる降下火 砕堆積物である.土井 (2000)によると、大台白色火山灰 は以下の特徴を有する.1)白色〜褐白色を呈する風化し た細粒火山灰からなり、新鮮な露頭では白色で著しく発 泡した軽石が認められる、2)軽石は最大径2.5 cmで、容 易につぶれ針状の細粉となる、3)軽石は、著しく斑晶 に乏しく、斜長石・石英のほか、苦鉄質鉱物として角閃 石、直方輝石及び鉄鉱を含む、4)火山ガラスの屈折率は 1.496-1.498 である、5) 岩片として、安山岩、角閃石黒 雲母花崗岩、粘板岩が認められる。

薮川テフラも, 白色~淡黄白色を呈すること, 著しく 繊維状に発泡した軽石(潰すと針状の細粉状となる)を含 むこと、岩片として安山岩やトーナル岩を含むこと、斜 長石、石英、普通角閃石、直方輝石、チタン鉄鉱の粒子 を含むこと、火山ガラスの屈折率が1.495-1.498である ことなど、大台白色火山灰との類似点が多い、相違点と しては、薮川テフラが粘板岩岩片を含んでいないことで ある. ただし、凝灰質ではあるが、泥質岩自体は薮川テ フラにも含まれている。その他の相違点としては、黒雲 母及び緑れん石が大台白色火山灰からは報告されていな いことが挙げられる.しかし、薮川テフラに含まれるそ れらの含有量は極微量で、特に緑れん石はサイズも小さ いため、その有無に関しては試料の処理方法や処理量に 依存している可能性もある.洞爺火山灰より下位のテフ ラにおいては、火山ガラスの屈折率測定が行われたテフ ラは数が限られているものの(土井, 2000), 今のところ 薮川テフラと屈折率が一致するのは大台白色火山灰のみ である.なお、火山ガラスの主成分化学組成については、 比較対象となり得る時代のテフラについて報告が皆無な 状況のため、現状では対比検討に用いることはできない.

今回,詳細な対比のために大台白色火山灰の採取を試 みたが,模式地付近における露出状況の悪化により,残 念ながら本火山灰を発見するに至らなかった.今後,両 者を正確に対比するために,本火山灰の露頭を確認し, 年代測定,火山ガラスの主成分化学組成分析,詳細な石 質岩片の比較などを実施することが必要である.よって 本論では,薮川テフラは大台白色火山灰に対比される可 能性があるという指摘に留めておく.

数川テフラは、当地における厚さからみて、太平洋沿 岸まで分布している可能性があり、三陸海岸北部の高位 段丘堆積物(及びその被覆層)や太平洋沖の海底コアなど から本テフラに対比されるものが検出されることは十分 にあり得る. Matsu'ura et al. (2014, 2018)は、東北地方 北部沿岸・太平洋沖の深海底コア(C9001C, ODP1150A, ODP1151C)に挟在するMIS 18以降のテフラについて、 火山ガラスの主成分化学組成を報告し、詳細な対比と編

- 第12図 薮川地域の外山川・大石川周辺に分布する第四紀 層の総合柱状図.上部更新統の情報は工藤・内野 (2021)による.
- Fig. 12 Comprehensive columnar section of the Quaternary strata around the Sotoyama and Oishi rivers in Yabukawa area. Date of the Upper Pleistocene was referred from Kudo and Uchino (2021).

年を行っている. これらのコア中のテフラと薮川テフラ の火山ガラス主成分化学組成を比較したところ, 薮川テ フラと組成が一致するものは見つからなかった. ちなみ に, 薮川テフラに最も類似した主成分化学組成を示すも のとしては, 洞爺火山灰があるが, 両者にはCaO量で有 意な差が認められ, 直方輝石の屈折率 (例えば, 町田ほ か(1987)では $\gamma = 1.756 - 1.761$)でも両者は明確に区別可 能である. 上記の深海底コア中には, 薮川テフラに相当 するテフラは今のところ見当たらない.

外山高原における薮川テフラを含むチバニアン期の地 層の分布は,現状では極めて限定的である.今後,調査 範囲を拡げ,本地層の垂直及び水平方向への追跡,複数 層準における花粉分析,YT2iPテフラの化学分析などを 行うことで,これまで良く分かっていない最終氷期より も前の氷期の気候・環境やチバニアン期の周氷河作用の イメージがより正確に捉えられていくと考えられる.加 えて,北上山地におけるテクトニクスや噴火に伴う影響 などの解明の手掛かりになる可能性がある.

9. まとめ

- ・盛岡市東部, 薮川地域の谷底低地を埋積する第四紀堆 積物から厚さ約80 cmのテフラを見出し,「薮川テフラ」 と新称定義した.
- ・ 薮川テフラは発泡した軽石を主体とし、テフラ層中には高温型石英・長石・普通角閃石・直方輝石などが認められる。また、少量含まれる石質岩片の種類は、安山岩・デイサイト・流紋岩・凝灰質泥岩・トーナル岩・チャートである。
- ・火山ガラスの組成は比較的高いSiO₂・K₂Oと低いCaO・ MgO・TiO₂で特徴づけられ、またその屈折率は1.495– 1.498である。
- ・軽石中のジルコンから0.24±0.04 MaのFT年代が得られ, 薮川テフラはチバニアン期後半に堆積したと判断され る.
- ・薮川テフラの産状,記載岩石学的特徴,火山ガラスの 屈折率,FT年代などから,松内火山灰層の鍵テフラで ある白色大台火山灰に対比できる可能性がある。

謝辞:株式会社加速器分析研究所には¹⁴C (AMS)年代を 測定いただいた.産業技術総合研究所地質標本館室地質 試料調製グループの諸氏には薄片を作製いただいた.岩 手大学地域防災研究センターの土井宣夫氏には、岩手山 山麓の第四紀テフラについて貴重な情報を提供いただい た.有限会社アルプス調査所の本郷美佐緒氏には本文の 内容についてご意見をいただいた.査読者の水野清秀氏 及び編集担当の納谷友規氏 (ともに地質情報研究部門)に は、原稿改善に当たり有益なご意見を賜った.記して感 謝の意を表する.

文 献

- Danhara, T. and Iwano, H. (2013) A review of the present state of the absolute calibration for zircon fission track geochronometry using the external detector method. *Island Arc*, **22**, 264–279.
- 土井宣夫 (2000) 岩手山の地質:火山灰が語る噴火史. 滝 沢村文化財調査報告書, **32**, 234p.
- 古澤 明 (1995) 火山ガラスの屈折率測定・形態分類とその統計的な解析. 地質学雑誌, 101, 123–133.
- 藤田浩司・和知 剛・土井宣夫・千葉達郎・岡田智幸・ 吉田桂治・越谷 信・林 信太郎・斎藤徳美 (2019) 八幡平火山群形成史:1mメッシュ DEMを用いた火 山地形判読とK-Ar年代測定にもとづく解析. 岩手 の地学, **49**, 4-25.
- Higaki, D. (1980) Tephrochronological study of slope deposits in the Northwestern Kitakami Mountains. Science Reports of the Tohoku University, 7th Series, 30, 147– 156.
- 檜垣大助 (1987) 北上山地中部の斜面物質移動期と斜面形 成. 第四紀研究. 26, 27-45.
- 細井 淳・中嶋 健・檀原 徹・岩野英樹・平田岳史・ 天野一男 (2018) 岩手県西和賀町に分布するグリー ンタフのジルコンFT 及びU-Pb 年代とその意味.地 質学雑誌, 124, 819-835.
- 井上克弘・金子和己・吉田 稔 (1981)北上川上流域にお ける後期更新世の周氷河現象と火山灰層序.第四紀 研究, 20, 61–73.
- 磯 望 (1973) 西北部北上山地における斜面発達. 日本地 理学会予稿集, no. 4, 36–37.
- 伊藤順一・土井宣夫 (2005) 岩手火山地質図.火山地質図 13,産総研地質調査総合センター.
- 伊藤順一・土井宣夫・星住英夫・工藤 崇 (2006) 岩手 火山地質データベース.数値地質図V-1 (CD-ROM). 産総研地質調査総合センター.
- Jochum, K. P., Dingwell, D. B., Rocholl, A., Stoll, B., Hofmann, A. W., Becker, S., Besmehn, A., Bessette, D., Dietze, H.-J., Dulski, P., Erzinger, J., Hellebrand, E., Hoppe, P., Horn, I., Janssens, K., Jenner, G. A., Klein, M., McDonough, W. F., Maetz, M., Mezger, K., Münker, C., Nikogosian, I. K., Pickhardt, C., Raczek, I., Rhede, D., Seufert, H. M., Simakin, S. G., Sobolev, A. V., Spettel, B., Straub, S., Vincze, L., Wallianos, A., Weckwerth, G., Weyer, S., Wolf, D. and Zimmer, M. (2000) The preparation and preliminary characterization of eight geological MPI-DING reference glasses for in-situ microanalysis. *Geostandards Newsletter*, 24, 87–133.

Jochum, K. P., Stoll, B., Herwig, K., Willbold, M., Hofmann,

A.-K., Amini, M., Aarburg, S., Abouchami, W., Hellebrand, E., Mocek, B., Raczek, I., Stracke, A., Alard, O., Bouman, C., Becker, S., Dücking, M., Brätz, H., Klemd, R., de Bruin, D., Canil, D., Cornell, D., de Hoog, C.-J., Dalpé, C., Danyushevsky, L., Eisenhauer, A., Gao, Y., Snow, J. E., Groschopf, N., Günther, D., Latkoczy, C., Guillong, M., Hauri, E. H., Höfer, H. E., Lahaye, Y., Horz, K., Jacob, D. E., Kasemann, S. A., Kent, A. J. R., Ludwig, T., Zack, T., Mason, P. R. D., Meixner, A., Rosner, M., Misawa, K., Nash, B. P., Pfänder, J., Premo, W. R., Sun, W. D., Tiepolo, M., Vannucci, R., Vennemann, T., Wayne, D. and Woodhead, J. D. (2006) MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochemistry Geophysics Geosystems, 7, Q02008. doi: 10.1029/2005GC001060

- 工藤 崇・内野隆之 (2021) 岩手県盛岡市薮川,大石川沿 いで確認された十和田大不動テフラ.地質調査研究 報告, 72, 129–138.
- 町田 洋・新井房夫 (1992) 火山灰アトラス.東京大学出版会, 276p.
- 町田 洋・新井房夫 (2003)新編火山灰アトラス.東京大 学出版会, 336p.
- 町田 洋・新井房夫・宮内崇裕・奥村晃史 (1987) 北日本 を広くおおう洞爺火山灰.第四紀研究, 26, 129– 145.
- Matsu'ura, T., Furusawa, A., Shimogama, K., Goto, N. and Komatsubara, J. (2014) Late Quaternary tephrostratigraphy and cryptotephrostratigraphy of deep-sea sequences (Chikyu C9001C cores) as tools for marine terrace chronology in NE Japan. *Quaternary Geochronology*, 23, 63–79.
- Matsu'ura, T., Komatsubara, J. and Ahagon, N. (2018) Using Late and Middle Pleistocene tephrostratigraphy and cryptotephrostratigraphy to refine age models of Holes ODP1150A and ODP1151C, NW Pacific Ocean: A crosscheck between tephrostratigraphy and biostratigraphy. *Quaternary Geochronology*, **47**, 29–53.
- 中川久夫・石田琢二・佐藤二郎・松山 力・七崎 修 (1963) 北上川上流沿岸の第四系及び地形:北上川流域の第 四紀地史 (1). 地質学雑誌, **69**, 163–171.
- 大場 司・梅田浩司 (1999) 八幡平火山群の地質とマグマ 組成の時間—空間変化. 岩鉱, **94**, 187–202.
- 大上和良・畑村政行・土井宣夫 (1980) 北部北上低地帯の 鮮新・更新両統の層序について (その2). 岩手大工

学部研究報告, **33**, 53-73.

- 阪野 優 (1971) 北上山地・外山高原の周氷河地形.東北 地理, 23, 18-22.
- Sakata, S., Hattori, K., Iwano, H., Yokoyama, T. D., Danhara, T. and Hirata, T. (2014) Determination of U–Pb ages for young zircons using laser ablation-ICP-mass spectrometry coupled with an ion detection attenuator device. *Geostandards and Geoanalytical Research*, **38**, 409–420.
- 産総研地質調査総合センター (2019) 20万分の1日本シー ムレス地質図V2. https://gbank.gsj.jp/seamless/. (閲 覧日:2021年8月1日)
- 澤口晋一 (1984) 北上山地北部における晩氷期以降の化石 周氷河現象. 東北地理, **36**, 240–246.
- 澤口晋一 (2005) 第2章北上山地と阿武隈山地,2-1北上 山地の地形,(4) 化石周氷河現象から見た氷期の北 上川上流域と北上山地.小池一之・田村俊和・鎮西 清高・宮城豊彦編,日本の地形3,東北.東京大学 出版会,55-58.
- 東宮昭彦・宮城磯治 (2020) 洞爺噴火の年代値.火山, 65, 13–18.
- 土谷信高・高橋和恵・木村純一 (1999) 北上山地の前期白 亜紀深成活動に先行する岩脈類の岩石化学的性質. 地質学論集, no. 53, 111–134.
- 内野隆之(2019)岩手県外山地域の北部北上帯に分布する ジュラ紀付加体中砂岩の砕屑性ジルコンU-Pb年代. 地質調査研究報告, 70, 357-372.
- 内野隆之 (2021) 岩手県岩泉町釜津田の北部北上帯付加体 砂岩から得られた中期ジュラ紀ジルコン年代:大川 試料を含む付加体の年代検証.地質調査研究報告, 72, 99–107.
- 内野隆之・羽地俊樹 (2021) 北上山地中西部の中古生代付 加体を貫く白亜紀岩脈群の岩相・年代と貫入応力解 析から得られた引張場.地質学雑誌, 127, 651-666.
- 和知 剛・土井宣夫・越谷 信 (1997) 秋田駒ヶ岳のテフ ラ層序と噴火活動.火山, **42**, 17–34.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. and Spiegel, W. (1995) Three natural zircon standards for U–Th–Pb, Lu– Hf, trace element and REE analyses. *Geostandards and Geoanalytical Research*, **19**, 1–23.
- Yokoyama, T. D., Suzuki, T., Kon, Y. and Hirata, T. (2011) Determinations of rare earth element abundance and U–Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry. *Analytical Chemistry*, 83, 8892–8899.
- (受付:2021年12月10日;受理:2022年6月6日) (早期公開:2022年7月5日)

付録 Appendix

- 付表1 数川テフラのB3層上部及びB4層に含まれる火山ガラスの主要元素組成. 試料20181113L1-2a及び20181113L1-2bはB3層のYbt2層準,B4層のYbt3層準からそれぞれ得られた.
 SD:標準偏差,FeO*:全鉄を2価で計算した値.
- Table A1Major element chemical compositions of volcanic glasses from the upper part of the subunit B3 and the subunit B4in the Yabukawa Tephra. Samples 20181113L1-2a and 20181113L1-2b were from the B3 (Ybt2 horizon) and B4 (Ybt3
horizon), respectively. SD: standard deviation. FeO*: total Fe as FeO.

20181113L	1-2b (Ybt3)																
Point no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Average	SD
SiO ₂	70.94	70.94	71.82	70.77	70.09	72.68	71.33	72.00	71.18	71.94	71.84	71.06	71.52	72.02	72.00	71.48	0.66
TiO ₂	0.13	0.13	0.09	0.10	0.10	0.10	0.16	0.08	0.09	0.07	0.00	0.08	0.09	0.14	0.13	0.10	0.04
AI_2O_3	11.44	11.54	11.70	11.34	11.39	11.85	11.40	11.65	11.53	11.66	11.58	11.43	11.66	11.72	11.56	11.56	0.14
FeO*	0.97	0.77	0.87	0.87	0.99	0.92	0.87	0.74	0.00	0.89	0.88	0.80	0.73	0.97	0.98	0.82	0.24
MnO	0.09	0.00	0.18	0.00	0.21	0.12	0.07	0.15	0.00	0.06	0.08	0.11	0.04	0.06	0.00	0.08	0.07
MgO	0.06	0.10	0.06	0.09	0.06	0.06	0.05	0.02	0.05	0.10	0.09	0.06	0.01	0.04	0.10	0.06	0.03
CaO	0.65	0.57	0.61	0.53	0.63	0.64	0.62	0.61	0.64	0.58	0.58	0.60	0.56	0.58	0.63	0.60	0.03
Na ₂ O	3.83	3.84	3.87	3.83	3.91	4.08	3.84	3.93	3.95	4.07	3.87	3.88	3.85	3.99	4.04	3.92	0.09
K ₂ O	2.55	2.47	2.50	2.60	2.41	2.48	2.57	2.49	2.52	2.53	2.50	2.47	2.64	2.62	2.50	2.52	0.06
Tota	90.66	90.36	91.70	90.13	89.79	92.93	90.91	91.67	89.96	91.90	91.42	90.49	91.10	92.14	91.94	91.14	
SiO ₂	78.25	78.51	78.32	78.52	78.06	78.21	78.46	78.54	79.12	78.28	78.58	78.53	78.51	78.16	78.31	78.42	0.25
TiO ₂	0.14	0.14	0.10	0.11	0.11	0.11	0.18	0.09	0.10	0.08	0.00	0.09	0.10	0.15	0.14	0.11	0.04
AI_2O_3	12.62	12.77	12.76	12.58	12.69	12.75	12.54	12.71	12.82	12.69	12.67	12.63	12.80	12.72	12.57	12.69	0.09
FeO*	1.07	0.85	0.95	0.97	1.10	0.99	0.96	0.81	0.00	0.97	0.96	0.88	0.80	1.05	1.07	0.90	0.26
MnO	0.10	0.00	0.20	0.00	0.23	0.13	0.08	0.16	0.00	0.07	0.09	0.12	0.04	0.07	0.00	0.09	0.07
MgO	0.07	0.11	0.07	0.10	0.07	0.06	0.05	0.02	0.06	0.11	0.10	0.07	0.01	0.04	0.11	0.07	0.03
CaO	0.72	0.63	0.67	0.59	0.70	0.69	0.68	0.67	0.71	0.63	0.63	0.66	0.61	0.63	0.69	0.66	0.04
Na ₂ O	4.22	4.25	4.22	4.25	4.35	4.39	4.22	4.29	4.39	4.43	4.23	4.29	4.23	4.33	4.39	4.30	0.08
K ₂ O	2.81	2.73	2.73	2.88	2.68	2.67	2.83	2.72	2.80	2.75	2.73	2.73	2.90	2.84	2.72	2.77	0.07
Tota	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
20181113L ⁻	1-2a (Ybt2)	,															
20181113L ² Point no.	1-2a (Ybt2) 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Average	SD
20181113L ⁻ Point no. SiO ₂	1-2a (Ybt2) 1 70.45	2 71.49	3 71.81	4 70.49	5 71.52	6 72 <u>.</u> 55	7	8 71.58	9 72 <u>.</u> 33	10 72.21	11 72.89	12 70.91	13 71.19	14 71.02	15 70 <u>.</u> 53	Average 71.56	SD 0.80
20181113L Point no. SiO ₂ TiO ₂	1-2a (Ybt2) 1 70.45 0.16	2 71.49 0.00	3 71.81 0.08	4 70.49 0.00	5 71.52 0.02	6 72.55 0.07	7 72.46 0.12	8 71.58 0.05	9 72.33 0.12	10 72.21 0.00	11 72.89 0.00	12 70.91 0.02	13 71.19 0.15	14 71.02 0.07	15 70.53 0.05	Average 71.56 0.06	SD 0.80 0.06
20181113L Point no. SiO ₂ TiO ₂ Al ₂ O ₃	1-2a (Ybt2) 1 70.45 0.16 11.38	2 71.49 0.00 11.57	3 71.81 0.08 11.65	4 70.49 0.00 11.25	5 71.52 0.02 11.55	6 72.55 0.07 11.88	7 72.46 0.12 11.66	8 71.58 0.05 11.49	9 72.33 0.12 11.78	10 72.21 0.00 11.76	11 72.89 0.00 11.98	12 70.91 0.02 11.41	13 71.19 0.15 11.56	14 71.02 0.07 11.58	15 70.53 0.05 11.35	Average 71.56 0.06 11.59	SD 0.80 0.06 0.20
20181113L Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO*	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95	2 71.49 0.00 11.57 0.87	3 71.81 0.08 11.65 0.98	4 70.49 0.00 11.25 0.85	5 71.52 0.02 11.55 0.83	6 72.55 0.07 11.88 0.95	7 72.46 0.12 11.66 0.85	8 71.58 0.05 11.49 0.92	9 72.33 0.12 11.78 0.79	10 72.21 0.00 11.76 1.07	11 72.89 0.00 11.98 0.91	12 70.91 0.02 11.41 0.96	13 71.19 0.15 11.56 1.13	14 71.02 0.07 11.58 0.97	15 70.53 0.05 11.35 0.91	Average 71.56 0.06 11.59 0.93	SD 0.80 0.06 0.20 0.09
20181113L Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13	2 71.49 0.00 11.57 0.87 0.11	3 71.81 0.08 11.65 0.98 0.18	4 70.49 0.00 11.25 0.85 0.11	5 71.52 0.02 11.55 0.83 0.21	6 72.55 0.07 11.88 0.95 0.05	7 72.46 0.12 11.66 0.85 0.11	8 71.58 0.05 11.49 0.92 0.08	9 72.33 0.12 11.78 0.79 0.08	10 72.21 0.00 11.76 1.07 0.03	11 72.89 0.00 11.98 0.91 0.02	12 70.91 0.02 11.41 0.96 0.07	13 71.19 0.15 11.56 1.13 0.10	14 71.02 0.07 11.58 0.97 0.13	15 70.53 0.05 11.35 0.91 0.18	Average 71.56 0.06 11.59 0.93 0.11	SD 0.80 0.06 0.20 0.09 0.05
20181113L ² Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08	2 71.49 0.00 11.57 0.87 0.11 0.06	3 71.81 0.08 11.65 0.98 0.18 0.08	4 70.49 0.00 11.25 0.85 0.11 0.09	5 71.52 0.02 11.55 0.83 0.21 0.07	6 72.55 0.07 11.88 0.95 0.05 0.08	7 72.46 0.12 11.66 0.85 0.11 0.04	8 71.58 0.05 11.49 0.92 0.08 0.05	9 72.33 0.12 11.78 0.79 0.08 0.05	10 72.21 0.00 11.76 1.07 0.03 0.00	11 72.89 0.00 11.98 0.91 0.02 0.09	12 70.91 0.02 11.41 0.96 0.07 0.04	13 71.19 0.15 11.56 1.13 0.10 0.05	14 71.02 0.07 11.58 0.97 0.13 0.00	15 70.53 0.05 11.35 0.91 0.18 0.01	Average 71.56 0.06 11.59 0.93 0.11 0.05	SD 0.80 0.06 0.20 0.09 0.05 0.03
20181113L Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61	3 71.81 0.08 11.65 0.98 0.18 0.08 0.58	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61	5 71.52 0.02 11.55 0.83 0.21 0.07 0.65	6 72.55 0.07 11.88 0.95 0.05 0.08 0.64	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58	8 71.58 0.05 11.49 0.92 0.08 0.05 0.67	9 72.33 0.12 11.78 0.79 0.08 0.05 0.60	10 72.21 0.00 11.76 1.07 0.03 0.00 0.67	11 72.89 0.00 11.98 0.91 0.02 0.09 0.62	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56	13 71.19 0.15 11.56 1.13 0.10 0.05 0.59	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65	15 70.53 0.05 11.35 0.91 0.18 0.01 0.61	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61	SD 0.80 0.06 0.20 0.09 0.05 0.03 0.04
20181113L ⁻ Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04	3 71.81 0.08 11.65 0.98 0.18 0.08 0.58 3.98	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88	5 71.52 0.02 11.55 0.83 0.21 0.07 0.65 3.93	6 72.55 0.07 11.88 0.95 0.05 0.08 0.64 4.00	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99	8 71.58 0.05 11.49 0.92 0.08 0.05 0.67 4.04	9 72.33 0.12 11.78 0.79 0.08 0.05 0.60 3.99	10 72.21 0.00 11.76 1.07 0.03 0.00 0.67 4.12	11 72.89 0.00 11.98 0.91 0.02 0.09 0.62 3.99	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76	13 71.19 0.15 11.56 1.13 0.10 0.05 0.59 4.03	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65 4.05	15 70.53 0.05 11.35 0.91 0.18 0.01 0.61 4.04	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61 3.97	SD 0.80 0.06 0.20 0.09 0.05 0.03 0.04 0.11
20181113L ⁻ Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04 2.48	3 71.81 0.08 11.65 0.98 0.18 0.08 0.58 3.98 2.65	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88 2.49	5 71.52 0.02 11.55 0.83 0.21 0.07 0.65 3.93 2.54	6 72.55 0.07 11.88 0.95 0.05 0.08 0.64 4.00 2.67	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51	8 71.58 0.05 11.49 0.92 0.08 0.05 0.67 4.04 2.52	9 72.33 0.12 11.78 0.79 0.08 0.05 0.60 3.99 2.52	10 72.21 0.00 11.76 1.07 0.03 0.00 0.67 4.12 2.55	11 72.89 0.00 11.98 0.91 0.02 0.09 0.62 3.99 2.54	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60	13 71.19 0.15 11.56 1.13 0.10 0.05 0.59 4.03 2.54	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65 4.05 2.77	15 70.53 0.05 11.35 0.91 0.18 0.01 0.61 4.04 2.38	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61 3.97 2.55	SD 0.80 0.06 0.20 0.09 0.05 0.03 0.04 0.11 0.09
20181113L ⁻ Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04 2.48 91.23	3 71.81 0.08 11.65 0.98 0.18 0.08 0.58 3.98 2.65 91.99	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88 2.49 89.77	5 71.52 0.02 11.55 0.83 0.21 0.07 0.65 3.93 2.54 91.32	6 72.55 0.07 11.88 0.95 0.05 0.08 0.64 4.00 2.67 92.89	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32	8 71.58 0.05 11.49 0.92 0.08 0.05 0.67 4.04 2.52 91.40	9 72.33 0.12 11.78 0.79 0.08 0.05 0.60 3.99 2.52 92.26	10 72.21 0.00 11.76 1.07 0.03 0.00 0.67 4.12 2.55 92.41	11 72.89 0.00 11.98 0.91 0.02 0.09 0.62 3.99 2.54 93.04	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60 90.33	13 71.19 0.15 11.56 1.13 0.10 0.05 0.59 4.03 2.54 91.34	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65 4.05 2.77 91.24	15 70.53 0.05 11.35 0.91 0.18 0.01 0.61 4.04 2.38 90.06	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61 3.97 2.55 91.44	SD 0.80 0.06 0.20 0.09 0.05 0.03 0.04 0.11 0.09
20181113L: Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total SiO ₂	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97 78.30	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04 2.48 91.23 78.36	3 71.81 0.08 11.65 0.98 0.18 0.08 0.58 3.98 2.65 91.99 78.06	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88 2.49 89.77 78.52	5 71.52 0.02 11.55 0.83 0.21 0.07 0.65 3.93 2.54 91.32 78.32	6 72.55 0.07 11.88 0.95 0.05 0.08 0.64 4.00 2.67 92.89 78.10	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32 78.49	8 71.58 0.05 11.49 0.92 0.08 0.05 0.67 4.04 2.52 91.40 78.32	9 72.33 0.12 11.78 0.79 0.08 0.05 0.60 3.99 2.52 92.26 78.40	10 72.21 0.00 11.76 1.07 0.03 0.00 0.67 4.12 2.55 92.41 78.14	11 72.89 0.00 11.98 0.91 0.02 0.09 0.62 3.99 2.54 93.04 78.34	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60 90.33 78.50	13 71.19 0.15 11.56 1.13 0.10 0.05 0.59 4.03 2.54 91.34 77.94	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65 4.05 2.77 91.24 77.84	15 70.53 0.05 11.35 0.91 0.18 0.01 0.61 4.04 2.38 90.06 78.31	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61 3.97 2.55 91.44 78.26	SD 0.80 0.06 0.20 0.09 0.05 0.03 0.04 0.11 0.09
20181113L: Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total SiO ₂ TiO ₂	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97 78.30 0.18	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04 2.48 91.23 78.36 0.00	3 71.81 0.08 11.65 0.98 0.18 0.58 3.98 2.65 91.99 78.06 0.09	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88 2.49 89.77 78.52 0.00	5 71.52 0.02 11.55 0.83 0.21 0.65 3.93 2.54 91.32 78.32 0.02	6 72.55 0.07 11.88 0.95 0.05 0.64 4.00 2.67 92.89 78.10 0.08	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32 78.49 0.13	8 71.58 0.05 11.49 0.92 0.08 0.67 4.04 2.52 91.40 78.32 0.05	9 72.33 0.12 11.78 0.79 0.08 0.05 0.60 3.99 2.52 92.26 78.40 0.13	10 72.21 0.00 11.76 1.07 0.03 0.07 4.12 2.55 92.41 78.14 0.00	11 72.89 0.00 11.98 0.91 0.02 0.62 3.99 2.54 93.04 78.34 0.00	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60 90.33 78.50 0.02	13 71.19 0.15 11.56 1.13 0.10 0.59 4.03 2.54 91.34 77.94 0.16	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65 4.05 2.77 91.24 77.84 0.08	15 70.53 0.05 11.35 0.91 0.18 0.01 4.04 2.38 90.06 78.31 0.06	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61 3.97 2.55 91.44 78.26 0.07	SD 0.80 0.06 0.20 0.09 0.05 0.03 0.04 0.11 0.09 0.20 0.06
20181113L Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total SiO ₂ TiO ₂ Al ₂ O ₃	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97 78.30 0.18 12.65	2 71.49 0.00 11.57 0.11 0.06 0.61 4.04 2.48 91.23 78.66 0.00 12.68	3 71.81 0.08 11.65 0.98 0.18 0.08 0.58 3.98 2.65 91.99 78.06 0.09 12.66	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88 2.49 89.77 78.52 0.00 12.53	5 71.52 0.02 11.55 0.83 0.21 0.07 0.65 3.93 2.54 91.32 78.32 0.02 12.65	6 72.55 0.07 11.88 0.95 0.08 0.64 4.00 2.67 92.89 78.10 0.08 12.79	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32 78.49 0.13 12.63	8 71.58 0.05 11.49 0.08 0.05 0.67 4.04 2.52 91.40 78.32 0.05 12.57	9 72.33 0.12 11.78 0.79 0.08 0.05 0.60 3.99 2.52 92.26 78.40 0.13 12.77	10 72.21 0.00 11.76 1.07 0.03 0.00 0.67 4.12 2.55 92.41 78.14 0.00 12.73	11 72.89 0.00 11.98 0.91 0.02 0.09 0.62 3.99 2.54 93.04 78.34 0.00 12.88	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60 90.33 78.50 0.02 12.63	13 71.19 0.15 11.56 1.13 0.10 0.59 4.03 2.54 91.34 97.94 0.16 12.66	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65 4.05 2.77 91.24 77.84 0.08 12.69	15 70.53 0.05 11.35 0.91 0.61 4.04 2.38 90.06 78.31 0.06 12.60	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61 3.97 2.55 91.44 78.26 0.07 12.67	SD 0.80 0.06 0.20 0.09 0.05 0.03 0.04 0.11 0.09 0.20 0.06 0.09
20181113L' Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total SiO ₂ TiO ₂ Al ₂ O ₃ FeO*	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97 78.30 0.18 12.65 1.06	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04 2.48 91.23 78.36 0.00 12.68 0.95	3 71.81 0.08 11.65 0.98 0.18 0.08 0.58 3.98 2.65 91.99 78.06 0.09 12.66 1.07	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88 2.49 89.77 78.52 0.00 12.53 0.95	5 71.52 0.02 11.55 0.83 0.21 0.07 0.65 3.93 2.54 91.32 78.32 0.02 12.65 0.91	6 72.55 0.07 11.88 0.95 0.05 0.08 0.64 4.00 2.67 92.89 78.10 0.08 12.79 1.02	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32 78.49 0.13 12.63 0.92	8 71.58 0.05 11.49 0.92 0.08 0.05 0.67 4.04 2.52 91.40 78.32 0.05 12.57 1.01	9 72.33 0.12 11.78 0.08 0.60 0.60 3.99 2.52 92.26 78.40 0.13 12.77 0.86	10 72.21 0.00 11.76 1.07 0.03 0.07 4.12 2.55 92.41 78.14 0.00 12.73 1.16	11 72.89 0.00 11.98 0.91 0.62 0.69 0.62 3.99 2.54 93.04 78.34 0.00 12.88 0.98	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60 90.33 78.50 0.02 12.63 1.06	13 71.19 0.15 11.56 1.13 0.10 0.05 0.59 4.03 2.54 91.34 77.94 0.16 12.66 12.66 1.24	14 71.02 0.07 11.58 0.97 0.13 0.05 2.77 91.24 77.84 0.08 12.69 1.06	15 70.53 0.05 11.35 0.91 0.61 4.04 2.38 90.06 78.31 0.06 12.60 1.01	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61 3.97 2.55 91.44 78.26 0.07 12.67 1.02	SD 0.80 0.06 0.20 0.05 0.03 0.04 0.11 0.20 0.06 0.09 0.10
20181113L Point no. SiO ₂ TiO ₂ TiO ₂ FeO* MnO MgO CaO Na ₂ O Na ₂ O Total SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97 78.30 0.18 12.65 1.06 0.14	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04 2.48 91.23 78.36 0.00 12.68 0.95 0.12	3 71.81 0.08 11.65 0.98 0.18 0.08 0.58 3.98 2.65 91.99 78.06 0.09 12.66 1.07 0.20	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88 2.49 89.77 78.52 0.00 12.53 0.95 0.12	5 71.52 0.02 11.55 0.83 0.21 0.07 0.65 3.93 2.54 91.32 78.32 0.02 12.65 0.91 1.25	6 72.55 0.07 11.88 0.95 0.08 0.64 4.00 2.67 92.89 78.10 0.08 12.79 1.02 0.05	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32 78.49 0.13 12.63 0.92 0.12	8 71.58 0.05 11.49 0.92 0.08 0.05 0.67 4.04 2.52 91.40 78.32 0.05 12.57 1.01 0.09	9 72.33 0.12 11.78 0.79 0.08 0.05 0.60 3.99 2.52 92.26 78.40 0.13 12.77 0.86 0.09	10 72.21 0.00 11.76 1.07 0.03 0.00 0.67 4.12 2.55 92.41 78.14 0.00 12.73 1.16 0.03	11 72.89 0.00 11.98 0.91 0.02 0.09 0.62 3.99 2.54 93.04 78.34 0.00 12.88 0.98 0.92	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 2.60 90.33 78.50 0.02 12.63 1.06 0.08	13 71.19 0.15 11.56 1.13 0.10 0.05 0.59 4.03 2.54 91.34 77.94 0.16 12.66 1.24 0.11	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65 4.05 2.77 91.24 77.84 0.08 12.69 1.06 0.14	15 70.53 0.05 11.35 0.91 0.18 0.01 0.61 4.04 4.2.38 90.06 78.31 0.06 12.60 1.01 0.20	Average 71.56 0.06 11.59 0.91 0.05 0.61 3.97 2.55 91.44 78.26 0.07 12.67 1.06 12.67 1.02 0.12	SD 0.80 0.06 0.20 0.09 0.03 0.04 0.11 0.09 0.20 0.06 0.09 0.10 0.06
20181113L' Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO [*] MnO MgO CaO Na ₂ O K ₂ O Total SiO ₂ TiO ₂ Al ₂ O ₃ FeO [*] MnO MnO MnO MnO MnO	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97 78.30 0.18 12.65 1.06 0.14 0.09	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04 2.48 91.23 78.36 0.00 12.68 0.95 0.12 0.07	3 71.81 0.08 11.65 0.98 0.18 0.58 0.58 3.98 2.65 91.99 78.06 0.09 12.66 1.07 0.20 0.09	4 70.49 0.00 11.25 0.85 0.11 3.88 2.49 89.77 78.52 0.00 12.53 0.95 0.12 0.10	5 71.52 0.02 11.55 0.83 0.21 0.65 3.93 2.54 91.32 78.32 0.02 12.65 0.91 0.23 0.08	6 72.55 0.07 11.88 0.95 0.05 0.05 0.05 0.05 0.64 4.00 2.67 92.89 78.10 0.08 12.79 1.02 0.05 0.09	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32 78.49 0.13 12.63 0.92 0.12 0.14	8 71.58 0.05 11.49 0.92 0.08 0.05 4.04 2.52 91.40 78.32 0.05 12.57 1.01 0.05	9 72.33 0.12 11.78 0.79 0.08 0.05 0.60 3.99 2.52 92.26 78.40 0.13 12.77 0.86 0.09 0.05	10 72.21 0.00 11.76 1.07 0.03 0.07 4.12 2.55 92.41 78.14 0.00 12.73 1.16 0.03 0.00	11 72.89 0.00 11.98 0.91 0.02 0.09 2.54 93.04 78.34 0.00 12.88 0.02 0.98 0.02	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60 90.33 78.50 0.02 12.63 1.06 0.08 0.04	13 71.19 0.15 11.56 1.13 0.05 4.03 2.54 91.34 77.94 0.16 12.66 1.24 0.11 0.05	14 71.02 0.07 11.58 0.97 0.13 0.00 6.65 4.05 2.77 91.24 77.84 0.08 12.69 1.06 0.14 0.04	15 70.53 0.05 11.35 0.91 0.61 4.04 2.38 90.06 78.31 0.06 12.60 1.01 0.20 0.01	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61 3.97 2.55 91.44 78.26 0.07 12.67 1.02 0.12 0.16	SD 0.80 0.06 0.20 0.03 0.04 0.11 0.09 0.20 0.06 0.00 0.10 0.06 0.03
20181113L' Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O <u>Total</u> SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO MgO CaO	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97 78.30 0.18 12.65 1.06 0.14 0.09 0.59	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04 2.48 91.23 78.36 0.00 12.68 0.95 0.12 0.07 0.67	3 71.81 0.08 11.65 0.98 0.58 0.58 0.58 2.65 91.99 78.06 0.09 12.66 1.07 0.20 0.63	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88 2.49 89.77 78.52 0.00 12.53 0.95 0.12 0.12 0.68	5 71.52 0.02 11.55 0.83 0.21 0.65 3.93 2.54 91.32 78.32 0.02 12.65 0.91 0.23 0.08 0.71	6 72.55 0.07 11.88 0.95 0.05 0.08 4.00 2.67 92.89 78.10 0.08 12.79 1.02 0.05 0.09 0.69	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32 78.49 0.13 12.63 0.92 0.12 0.92 0.12 0.63	8 71.58 0.05 11.49 0.92 0.08 0.67 4.04 2.52 91.40 78.32 0.05 12.57 1.01 0.09 0.05 0.73	9 72.33 0.12 11.78 0.08 0.05 0.60 3.99 2.52 92.26 78.40 0.13 12.77 0.86 0.09 0.05 0.65	10 72.21 0.00 11.76 1.07 0.03 0.67 4.12 2.55 92.41 78.14 0.00 12.73 1.16 0.03 0.00 0.73	11 72.89 0.00 11.98 0.91 0.62 0.09 0.62 3.99 2.54 93.04 78.34 0.00 12.88 0.98 0.02 0.10 0.67	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60 90.33 78.50 0.02 12.63 1.06 0.08 0.04 0.08 0.04 0.62	13 71.19 0.15 11.56 1.13 0.10 0.05 0.59 4.03 2.54 91.34 77.94 0.16 12.66 1.24 0.11 0.05 0.65	14 71.02 0.07 11.58 0.97 0.13 0.05 2.77 91.24 77.84 0.08 12.69 1.06 0.14 0.07	15 70.53 0.05 11.35 0.91 0.61 4.04 2.38 90.06 78.31 0.06 12.60 1.01 0.20 0.01	Average 71.56 0.06 11.59 0.61 3.97 2.55 91.44 78.26 0.07 12.67 1.02 0.12 0.06 1.02 0.67	SD 0.80 0.06 0.20 0.05 0.03 0.04 0.11 0.09 0.06 0.09 0.10 0.06 0.03 0.03 0.04
20181113L Point no. SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO CaO Na ₂ O TiO ₂ Al ₂ O ₃ CaO Na ₂ O TiO ₂ Al ₂ O ₃ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O CaO Na ₂ O Na ₂ O CaO Na ₂ O CaO Na ₂ O CaO Na ₂ O CaO Na ₂ O CaO Na ₂ O CaO CaO Na ₂ O CaO CaO Na ₂ O CaO CaO Na ₂ O CaO CaO CaO CaO CaO Na ₂ O CaO CaO CaO CaO CaO CaO CaO Ca	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97 78.30 0.18 12.65 1.06 0.14 0.59 0.59 4.15	2 71.49 0.00 11.57 0.87 0.11 0.06 0.61 4.04 2.48 91.23 78.36 0.00 12.68 0.95 0.12 0.07 0.67 0.67 4.43	3 71.81 0.08 11.65 0.98 0.18 0.08 3.98 2.65 91.99 78.06 0.09 12.66 1.07 0.20 0.09 12.63 1.07 0.20 0.63 3.4.33	4 70.49 0.00 11.25 0.85 0.11 0.09 0.61 3.88 2.49 88.77 78.52 0.00 12.53 0.95 0.12 0.12 0.10 0.68 4.32	5 71.52 0.02 11.55 0.83 0.21 0.07 0.65 3.93 2.54 91.32 78.32 0.02 12.65 0.91 0.23 0.08 0.71 4.30	6 72.55 0.07 11.88 0.95 0.08 0.64 4.00 2.67 92.89 78.10 0.08 12.79 1.02 0.05 0.09 0.69 0.69 4.31	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32 78.49 0.13 12.63 0.92 0.12 0.04 0.63 0.42 0.64 0.63 4.32	8 71.58 0.05 11.49 0.92 0.08 0.05 0.67 4.04 2.52 91.40 78.32 0.05 12.57 1.01 0.09 0.05 0.73 4.42	9 72.33 0.12 11.78 0.05 0.60 3.99 2.52 92.26 78.40 0.13 12.77 0.86 0.09 0.05 0.65 0.65 0.65	10 72.21 0.00 11.76 1.07 0.03 0.67 4.12 2.55 92.41 78.14 0.00 12.73 1.16 0.03 0.07 0.03 0.07 4.46	11 72.89 0.00 11.98 0.91 0.62 3.99 2.54 93.04 78.34 0.00 12.88 0.93 0.02 0.10 0.67 4.29	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60 90.33 78.50 0.02 12.63 1.06 0.08 0.04 0.62 4.16	13 71.19 0.15 11.56 1.13 0.05 0.59 4.03 2.54 91.34 77.94 0.16 1.24 0.11 0.65 0.65 4.41	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65 4.05 2.77 91.24 77.84 0.08 12.69 1.06 0.14 0.014 0.014 0.014 0.014	15 70.53 0.05 11.35 0.91 0.61 4.04 2.38 90.06 78.31 0.06 1.01 0.01 0.01 0.01 0.449	Average 71.56 0.06 11.59 0.93 0.11 0.61 3.97 2.55 91.44 78.26 0.07 12.67 1.02 0.12 0.12 0.66 0.67 4.34	SD 0.80 0.06 0.20 0.05 0.03 0.04 0.11 0.09 0.20 0.06 0.09 0.10 0.06 0.03 0.04 0.03 0.04 0.03
20181113L Point no. SiO ₂ TiO ₂ TiO ₂ FeO* MnO MgO CaO Na ₂ O X ₂ O Total SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO MnO MgO CaO K ₂ O K ₂ O	1-2a (Ybt2) 1 70.45 0.16 11.38 0.95 0.13 0.08 0.53 3.73 2.56 89.97 78.30 0.18 12.65 1.06 0.14 0.09 0.59 4.15 2.85	2 71.49 0.00 11.57 0.87 0.11 4.04 2.48 91.23 78.36 0.00 12.68 0.95 0.12 0.07 0.67 4.43 2.72	3 71.81 0.08 11.65 0.98 0.18 0.08 3.98 2.65 91.99 78.06 0.09 12.66 1.07 0.20 0.09 0.63 4.33 2.88	4 70.49 0.00 11.25 0.85 0.11 3.88 2.49 89.77 78.52 0.00 12.53 0.95 0.12 0.12 0.10 0.68 4.32 2.77	5 71.52 0.02 11.55 0.83 0.21 0.65 3.93 2.54 91.32 78.32 0.02 12.65 0.91 0.23 0.08 0.73 0.08 0.71 4.30 0.8	6 72.55 0.07 11.88 0.95 0.08 0.64 4.00 2.67 92.89 78.10 0.08 12.79 1.02 0.05 0.09 0.69 4.31 2.87	7 72.46 0.12 11.66 0.85 0.11 0.04 0.58 3.99 2.51 92.32 78.49 0.13 12.63 0.92 0.12 0.04 0.63 4.32 2.72	8 71.58 0.05 11.49 0.92 0.08 0.05 0.67 4.04 2.52 91.40 78.32 0.05 12.57 1.01 0.09 0.05 0.73 4.42 2.76	9 72.33 0.12 11.78 0.08 0.05 0.60 3.99 2.52 92.26 78.40 0.13 12.77 0.86 0.09 0.05 0.65 0.65 0.65 0.65 2.73	10 72.21 0.00 11.76 1.07 0.03 0.00 0.67 4.12 2.55 92.41 78.14 0.00 12.73 1.16 0.03 0.00 0.73 4.46 2.76	11 72.89 0.00 11.98 0.91 0.02 0.09 0.62 3.99 2.54 93.04 78.34 0.00 12.88 0.92 0.10 0.67 4.29 2.73	12 70.91 0.02 11.41 0.96 0.07 0.04 0.56 3.76 2.60 90.33 78.50 0.02 12.63 1.06 0.08 0.04 0.62 4.16 2.88	13 71.19 0.15 11.56 1.13 0.10 0.059 4.03 2.54 91.34 77.94 0.16 12.66 1.24 0.15 0.55 4.61 2.64 1.34	14 71.02 0.07 11.58 0.97 0.13 0.00 0.65 4.05 2.77 91.24 0.08 12.69 1.06 0.14 0.04 0.014 0.00 0.71 4.44	15 70.53 0.05 11.35 0.91 0.18 0.01 4.04 2.38 90.06 12.60 1.01 0.20 0.01 0.68 4.49 2.64	Average 71.56 0.06 11.59 0.93 0.11 0.05 0.61 3.97 2.55 91.44 78.26 0.07 12.67 1.02 0.12 0.12 0.66 0.67 4.34 2.79	SD 0.80 0.06 0.20 0.05 0.03 0.04 0.11 0.09 0.06 0.09 0.10 0.06 0.03 0.04 0.10