論文 - Article

岩手県外山地域の北部北上帯に分布する ジュラ紀付加体中砂岩の砕屑性ジルコン U-Pb 年代

内野 隆之^{1,*}

Takayuki Uchino (2019) Detrital zircon U-Pb ages of sandstone within the Jurassic accretionary complex in the North Kitakami Belt of the Sotoyama District, Iwate Prefecture, Northeast Japan. *Bull. Geol. Surv. Japan*, vol. 70 (5), p. 357–372, 4 figs, 5 tables, 2 appendices.

Abstract: U-Pb ages of detrital zircon from sandstone samples from the Jurassic accretionary complex in the southwestern margin of the North Kitakami Belt in the Sotoyama District, Iwate Prefecture, were examined in this study. Four samples were collected at four locations from the boundary area between the North Kitakami and Nedamo belts to the northeastward: the Tatezawa, Yonaigawa, Okawa and Mukaizawa samples, respectively.

Zircon from the Tatezawa and Yonaigawa samples shows youngest cluster ages of c.a. 190 Ma, and these sandstone samples probably deposit in the Early Jurassic. Zircon from the Okawa Sample shows a youngest cluster age of c.a. 260 Ma, and this sandstone sample probably deposit in the Late Permian, Late Triassic or Early Jurassic. Zircon from the Mukaizawa Sample shows a youngest cluster age of c.a. 170 Ma, and this sandstone sample probably deposit in the Middle Jurassic.

Keywords: U-Pb age, detrital zircon, Jurassic, accretionary complex, sandstone, North Kitakami Belt, Sotoyama District, Northeast Japan

要 旨

岩手県外山地域に分布する北部北上帯南西縁部のジュ ラ紀付加体について,砂岩に含まれる砕屑性ジルコンの U-Pb年代を測定した.砂岩試料は、本地域の北部北上 帯の付加体において,根田茂帯との境界付近から北東側 の層準にかけて4地点より採取され、それぞれ館沢試料, 米内川試料,大川試料,向井沢試料と名付けられた.

館沢試料及び米内川試料のジルコンは共に約190 Maの 最若クラスター年代を示し,両砂岩は前期ジュラ紀に堆 積した可能性が高い.大川試料のジルコンは約260 Maの 最若クラスター年代を示し,本砂岩は後期ペルム紀,後 期三畳紀,前期ジュラ紀のいずれかに堆積した可能性が ある.向井沢試料のジルコンは約170 Maの最若クラス ター年代を示し,本砂岩は中期ジュラ紀に堆積した可能 性が高い.

1. はじめに

北上山地は,東北地方の奥羽脊梁山脈の東側(太平洋 側)に位置し,東西約80 km,南北約260 kmの紡錘形を なしている.北上山地の南半分は、中古生代の島弧・陸 棚層からなる南部北上帯によって、北半分はジュラ紀付 加体からなる北部北上帯によって占められている.そし て、両者の間に石炭紀付加体からなる根田茂帯が、南北 幅約10 km,北西-南東方向に約40 kmの長さで狭長に分 布している(第1図).

北上山地の北部北上帯では、幾つかの地点から化石が 見いだされており、南西から北東に、すなわち付加体の 大局的な構造的上位から下位にかけて、中期ジュラ紀か ら後期ジュラ紀へと付加年代が若くなる極性を示してい る(例えば、永広ほか、2008).そして、奥羽脊梁山脈西 側や下北半島など北上山地以外の付加体も含めた北部北 上帯全体でみると、前期ジュラ紀〜最前期白亜紀の年代 極性が認められている(例えば、松岡、1988;植田ほか、 2009、内野、2018).

産総研地質調査総合センターでは、5万分の1地質図 幅「外山」を作製中である.北上山地中西部に位置する本 図幅地域(以降,外山地域と呼ぶ)は、行政区として岩手 県盛岡市の北東部と下閉伊郡岩泉町の南西部の一部を含 み、また、地帯構造区として根田茂帯と北部北上帯を含 んでいる(第1図).つまり、外山地域には北部北上帯の

¹産業技術総合研究所 地質調査総合センター 地質情報研究部門(AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

* Corresponding author: T. Uchino, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan, Email: t-uchino@aist.go.jp

- 第1図 北上山地中西部(岩手県盛岡市,宮古市,岩泉町)の地質図.地質図は産業技術総合研究所地質調査総合センター (2019)の20万分の1日本シームレス地質図V2を引用した.北部北上帯に分布する地質体以外の凡例は省略してある.
- Fig. 1 Geological map of the Midwest of the Kitakami Massif (Morioka and Miyako cities, and Iwaizumi Town, Iwate Prefecture). Geological map was referred from the Seamless Digital Geological Map of Japan (1:200,000) V2 of the Geological Survey of Japan, AIST (2019). Legends except geologic entities in the North Kitakami Belt are omitted.

構造的最上位に当たる南西縁部が広く分布している.北 部北上帯南西縁部のジュラ紀付加体は,変形が著しく, また所々に貫入する前期白亜紀花崗岩による接触変成作 用によって,年代決定に有効な化石をほとんど産しない. 本地域内では,唯一,松岡(1988)によりチャートから保 存の悪い前期ジュラ紀放散虫化石が報告されているのみ である.このことから本地域にはジュラ紀付加体の分布 が推測されるが,陸源性砕屑岩からの化石報告はないた め,詳細な付加年代は不明である.

一方,外山地域の北部北上帯付加体の南東延長部(宮 古市門馬)に産する珪長質凝灰岩には中期~後期三畳紀 の放散虫化石が含まれていることが,本地域南隣の5万 分の1地質図幅「早池峰山」(川村ほか,2013)で示され た(第1図).その後,この化石地点近傍の凝灰質泥岩か ら後期三畳紀のジルコンU-Pb年代が報告され,日本では 稀な後期三畳紀の付加体が断片的に存在する可能性が示 されている(内野, 2017).

このようなことから、北部北上帯の南西縁部の付加体 については、陸源性砕屑岩の年代データの充実が望まれ ている.そこで今回、外山地域の砂岩から砕屑性ジルコ ンを抽出し、そのU-Pb年代を測定した.本論ではその結 果を報告するとともに、本地域の付加体の陸源性砕屑岩 の堆積年代から近似される付加年代を議論する.

2. 外山地域のジュラ紀付加体

北上山地の北部北上帯は、岩相及び海洋性岩石(異地 性岩体)の古さの違いによって北北西-南南東方向の岩泉 構造線を境に、南西側の葛巻-釜石亜帯と北東側の安家-田野畑亜帯に区分されている(永広ほか、2005;第1図). 外山地域の付加体は、その分布位置から葛巻--釜石亜帯 に属する.

本地域のジュラ紀付加体は、南西部については中津川 コンプレックスと呼ばれており(内野ほか、2008)、その 南限は根田茂帯との境界であるが、その北及び東限の位 置については定義されていない.本付加体は、泥岩珪質 岩薄互層,砂岩,泥岩,砂岩泥岩互層,チャートを主体 とし、少量の玄武岩と極めて僅かの石灰岩を伴う(第1 図).特に泥岩珪質岩薄互層は、泥岩層と微細な石英を 主体とする層や珪長質凝灰岩層がミリオーダーで互層す るもので、泥岩優勢の場合から珪質岩優勢の場合まであ る. チャートは単層が数cmの層状チャートであるが、こ ちらもしばしばミリオーダーで成層している場合があり, 後者は"チャートラミナイト"(吉田, 1981)と呼ばれる ことがある. 泥岩珪質岩薄互層及びチャートラミナイト は北部北上帯の付加体を特徴付ける岩石である、泥岩珪 **質岩薄互層中には、しばしばチャートや砂岩が、またま** れに玄武岩が、数mm~数10 cmのシート状あるいはレ ンズ状岩塊として挟在している。付加体は全体に著しい 剪断変形を受けており、特に砕屑岩には層面劈開が発達 している.

地層は、全体的に北西-南東の走向で、大局的には南 西に中~高角度で傾斜している。ただし、層理面に平行 な軸面を持ち、半波長100~200 mで翼間隔の閉じた小 規模のシンフォーム・アンチフォームが本地域南西縁部 を中心に局所的に発達する.

3. 砕屑性ジルコンの U-Pb 年代測定

3.1 採取試料

年代測定に際し,本地域北部北上帯の4地点から砂岩 試料を採取した(第1図).

20171026L1-2(館涙試料)[地点1]:採取地点は, 糸 内川の支流である館沢に沿う林道脇の崖(39°44′57.57″ N, 141°17′17.13″E)である(付図1a).本露頭は,JR山 田線大志田駅(現在は廃駅)から北東に1 km,また,根田 茂帯との境界より約3 km離れた地点に幅4 m程度の砂岩 優勢砂岩泥岩互層として露出し,砂岩は単層厚約50 cm である.この露頭周辺には、塊状砂岩,砂岩泥岩互層, 泥岩珪質岩薄互層,砂岩岩塊を含む泥岩珪質岩薄互層, 層状チャート,チャートラミナイト,玄武岩が分布して おり,周辺地域全体の剪断変形はやや強い.

本試料は灰色を呈する中粒の長石質ワッケで(第2図a, 第3図),露頭では薄い泥岩と互層している.長径数mm の薄い泥岩偽礫を含み,その最大長径は2 cmに及ぶ.斜 長石,石英,岩片と僅かなカリ長石からなる.石英は波 動消光を示し,斜長石はソーシュライト化している.岩 片には,珪質泥岩,チャート,珪長質凝灰岩,極細粒砂 岩のほか,斜長石白雲母岩が認められる.その他,長径 0.5 mm以下の緑れん石, チタン石, 白雲母の砕屑粒子が 目立つ. 粒子間にはセリサイトが発達している. 石英・ 長石・岩片を端成分とする砂岩モード組成は, 石英・長 石・岩片が概ね等量を示す. なお, 近傍の黒色チャート から, 松岡(1988)によって, 保存は悪いが前期ジュラ紀 を示す放散虫化石が見いだされている.

20171103L1 (米内川試料) [地点2]:採取地点は、米内 川櫃取林道に沿う米内川上流に注ぐ支流の沢床(39°49′ 48.19″ N, 141°19′52.33″ E)である(付図1b).本露頭は、 根田茂帯との境界より約5 km離れた地点に単層厚1 mの 塊状砂岩として露出し、その南東延長部は沢直上の林道 沿いでも確認できる.この露頭周辺には、泥岩珪質岩薄 互層、チャート岩塊あるいは砂岩岩塊を含む泥岩珪質岩 薄互層、層状チャート、チャートラミナイト、玄武岩が 分布しており、周辺地域全体の剪断変形はやや強い.

本試料は淡緑色を呈する極粗粒の石質ワッケである (第2図b,第3図).館沢試料と同じく,長径数mmの薄 い泥岩偽礫を大量に含んでおり,その最大長径は5 cm に及ぶ.岩片を主体とし,斜長石,石英と僅かなカリ長 石からなる.石英はほとんどが波動消光を示す.斜長石 はしばしばソーシュライト化している.岩片は火山岩片 が多く,玄武岩,ドレライト,安山岩,デイサイトなど が認められ,その他は花崗岩質岩,珪長質凝灰岩,泥岩, 砂岩などが認められる.館沢試料よりは量が少ないが,0.5 mm以下の緑れん石,チタン石,白雲母の砕屑粒子を含 む.モード組成はかなり岩片質を示し,館沢試料と異な る.なお,本試料のような淡緑色を呈する砂岩の産出は まれである.

20161027L9 (大川試料) [地点3]:採取地点は,岩泉町 禁言 20161027L9 (大川試料) [地点3]:採取地点は,岩泉町 20161027L9 (大川試料) [沙市33]: 第第世国地区の駒ヶ沢-岩ノ渡間の大川の左岸河床(39°44' 54.94" N, 141°28'49.01" E)である(付図1c).本露頭は, 根田茂帯との境界より約13 km離れた地点に,泥岩珪長 質凝灰岩互層中に挟在する層厚10 cmの岩塊として露出 する.この露頭周辺には,泥岩珪質岩薄互層,砂岩岩塊 を含む泥岩珪質岩薄互層,砂岩泥岩互層,層状チャート, チャートラミナイトが分布しており,周辺地域全体の剪 断変形は強い.

本試料は灰色を呈する中粒の石質ワッケである(第2 図c,第3図).岩片を主体とし,石英,斜長石と僅かな カリ長石からなる.石英の多くは波動消光を示す.斜 長石の一部はソーシュライト化している.岩片は,泥岩, チャート,花崗岩質岩などが認められる.館沢試料や米 内川試料に比べて量は少ないが,細粒のチタン石,緑れ ん石,白雲母の砕屑粒子を含むほか,電気石も認められ る.モード組成は岩片質で米内川試料と似る.試料は変 形と弱変成を被っており,圧力溶解劈開が形成されてい る.その劈開に沿ってセリサイトを伴う黒色シーム層が 発達する.石英や長石の周囲にプレッシャーシャドーが 形成され,非対称変形構造も認められる.

- 第2図 砂岩試料の薄片写真. (a) 館沢試料, (b) 米内川試料, (c) 大川試料, (d) 向井沢試料. すべて直交ポーラー.
 BS: 玄武岩岩片, Ep: 緑れん石, Pl: 斜長石, PS: 圧力溶解劈開, Qtz: 石英, Scr: セリサイト, Ttn:
 チタン石, Tur: 電気石.
- Fig. 2 Photomicrographs of thin sections of sandstone samples for zircon dating. (a) Tatezawa Sample, (b) Yonaigawa Sample, (c) Okawa Sample, (d) Mukaizawa Sample. All photographs are under cross-polarized lights.
 BS: basalt fragment, Ep: epidote, Pl: plagioclase, PS: pressure solution cleavage, Qtz: quartz, Scr: sericite, Ttn: titanite, Tur: tourmaline.

20181113L4 (向井沢試料) [地点4]:採取地点は,盛岡 市薮川地区の向井沢集落を流れる向井沢川の左岸斜面 下(39°49′47.78″N,141°27′57.60″E)である(付図1d). 本露頭は,根田茂帯との境界より約20 km離れた地点に, 単層厚2 mの塊状砂岩として露出する.この露頭周辺に は、塊状砂岩,砂岩泥岩互層,砂岩岩塊を含む泥岩珪質 岩薄互層,泥岩珪質岩薄互層,層状チャート,チャート ラミナイト,玄武岩が分布しており,全体の変形はやや 強い.他の3地点周辺の岩相と比べ,砂岩や砂岩泥岩互 層が多く産し,また層状チャートがしばしば層厚数100 mに及ぶほど厚く産する.

本試料は, 灰色を呈する粗粒の石質ワッケである(第 2図d, 第3図). 石英, 岩片, 斜長石と僅かなカリ長石 からなる. 石英は波動消光しないものが多い. 斜長石は ソーシュライト化している. 岩片は, 泥岩, 凝灰質泥岩, チャート, 花崗岩質岩, 半深成岩のほか, 斜長石白雲母 岩が認められる. 少量であるが細粒のチタン石, 緑れん 石, 白雲母の砕屑粒子を含んでいる. モード組成は, 石 英・長石・岩片がほぼ等量で館沢試料と似るが, それよ りは若干長石成分が少なく, また岩片質な米内川試料や 大川試料とは大きく異なる. 一部で, 圧力溶解劈開が認 められ, その劈開に沿ってセリサイトが発達している.

3.2 測定手法

U-Pb年代測定に用いた機器は東京大学大学院理学研 究科地殻化学実験施設の四重極型及びマルチコレクター 型結合誘導プラズマ質量分析装置であり、ArFエキシマ レーザーシステム及びフェムト秒レーザーシステムを

- 第3図 ジルコン年代が測定された砂岩のモード組成ダイア グラム.Q:石英,F:長石,L:岩片. 砂岩分類はOkada (1971)に基づく.
- Fig. 3 Modal composition diagram of the sandstone for which zircon U-Pb dating was carried. Q: quartz, F: feldspar, L: lithic fragment.

Classification of sandstone is based on Okada (1971).

それぞれ搭載している (Yokoyama et al., 2011; Sakata et al., 2014). 測定前にジルコン表面の鉛汚染を避けるため にワンショット・クリーニングを施した. レーザー照射 に際しては、極力、包有物や割れ目を避け、また、ジル コン粒子の中心部を狙った. レーザー照射及び測定条件 は第1表に示した.

年代測定結果の正確性を評価するために、610.0±0.9 Maを示すGJ-1 (Jackson et al., 2004), 337.1±0.4 Maを示 すPlešovice (Sláma et al., 2008) 及び 33.0 ± 0.1 Maを示す OD-3 (岩野ほか, 2012; Iwano et al., 2013; Lukács et al., 2015)の2次標準試料も分析した(付表1). 測定したGJ-1, Plešovice 及びOD-3の加重平均年代は、それらの文献値 からそれぞれ最大6%,4%,2%の誤差範囲内に収まっ ている。

3.3 年代測定結果

測定したジルコン粒子数は各試料とも60個であ る. 各試料におけるジルコンの同位体比.²³⁸U-²⁰⁶Pb年 代及び²³⁵U-²⁰⁷Pb年代を第2-5表に示す。年代の議論には、 ²³⁵U-²⁰⁷Pb年代よりも誤差の小さい²³⁸U-²⁰⁶Pb年代を採用し た. また,²³⁸U-²⁰⁶Pb年代及び²³⁵U-²⁰⁷Pb年代が2gの誤差範 囲で重複する場合をコンコーダントとみなした. これら 粒子のコンコーディア図及び²³⁸U-²⁰⁶Pb年代分布図(ヒス

第1表 試料を測定した四重極型及びマルチコレクター型結合誘導プラズマ質量分析論	麦置の条件 .
---	----------------

Table 1 Instrumentation using a quadrupole and a multi-collector inductively coupled plasma mass spectrometry for the analysis.

	Tatezawa and Yonaigawa samples	Okawa Sample	Mukaizawa Sample
Laser ablation			
Model	Analyte Excite (Photon Machines)	IFRIT (Cyber Laser Inc.)	CARBIDE (Light Conversion)
Laser type	Excimer ArF	Type-C Ti:S femtosecond laser	Femtosecond laser
Pulse duration	<4 ns	230 fs	224 fs
Wave length	193 nm	260 nm	260 nm
Energy density	3.0 J cm ⁻²	2-3 J cm ⁻²	1.57 J cm ²
Laser power	30%	30%	45%
Spot size	25 μm	15 μm	15 μm
Repetition rate	5 Hz	10 Hz	10 Hz
Duration of laser ablation	18 s	20 s	10 s
Carrier gas (He)	$0.80 \mathrm{L} \mathrm{min}^{-1}$	0.90 Lmin^{-1}	0.60 Lmin^{-1}
ICP-MS			
Model	iCAP-TQ ICP-MS (Thermo Fisher Scientific)	Nu Instruments Nu Plasma II (Wrexham)	iCAP-TQ ICP-MS (Thermo Fisher Scientific)
ICP-MS type	Quadrupole	Multi-collector	Quadrupole
Forward power	1550 W	1300 W	1550 W
Make-up gas (Ar)	$0.95 \mathrm{Lmin}^{-1}$	0.70 Lmin^{-1}	0.95 Lmin^{-1}
ThO ⁺ /Th (oxide ratio)	<1%	<1%	<1%
Data acquisition protocol	Time-resolved analysis	Time-resolved analysis	Time-resolved analysis
Data acquisition	50 s (15 s gas blank, 35 s ablation)	30 s (15 s gas blank, 15 s ablation)	25 s (15 s gas blank, 10 s ablation)
Monitor isotopes	²⁹ Si, ²⁰² Hg, ²⁰⁴ Pb, ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³⁸ U	²⁰² Hg, ²⁰⁴ Pb, ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³⁸ U	²⁹ Si, ²⁰² Hg, ²⁰⁴ Pb, ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³⁸ U
Dwell time	0.2 s for ²⁰⁶ Pb, ²⁰⁷ Pb; 0.1 s for others	1 s for all	0.2 s for ²⁰⁶ Pb, ²⁰⁷ Pb; 0.1 s for others
Standards			
Primary standard	Nancy 91500 ^{*1}	Nancy 91500	Nancy 91500
Secondary standard	OD-3 ^{*2, 3, 4} , Plešovice ^{*5} , GJ-1 ^{*6}	OD-3, Plešovice, GJ-1	OD-3, Plešovice, GJ-1

*1: Wiedenbeck et al. (1995); *2: Iwano et al. (2012); *3: Iwano et al. (2013); *4: Lukács et al. (2015); *5: Sláma et al. (2008); *6: Jackson et al. (2004).

第2表	四重極型結合誘導プラズマ質量分析装置による館沢試料のジルコンU-Pb同位体デ-	-タ.

Table 2 Zircon U-Pb isotopic data for the Tatezawa Sample determined using a quadrupole inductively coupled plasma mass spectrometry.

	Isotopic 1	ratic	os								Age (Ma)							
Grain	²⁰⁷ Pb		Error	²⁰⁶ Pb		Error	²⁰⁷ P)	Erre	or	²⁰⁶ F	Ъ	2	Error	2	⁰⁷ Pb		Error	Th/U	Remarks
no.	²⁰⁶ Pb	-	2 σ	²³⁸ U	-	2 σ	²³⁵ U	r	2	σ	238	U		2 σ		²³⁵ U	-	2 σ		
1	0.0543	±	0.0137	0.0409	±	0.0025	0.30	52 ±	E 0.0	0855	258	3.3	±	15.9	1	271.2	±	83.3	0.60	
2	0.0219	±	0.0111	0.0417	\pm	0.0034	0.12	59 ±	E 0.0	0680	263	3.3	±	21.6		120.4	\pm	66.8	0.54	dis.
3	0.0599	±	0.0125	0.0449	\pm	0.0023	0.37	6 ±	E 0.0	0851	283	3.3	±	15.0	2	320.8	±	83.0	0.73	
4	0.0511	\pm	0.0119	0.0304	\pm	0.0017	0.21	12 ∃	E 0.0	0528	193	3.1	\pm	10.7		197.1	\pm	52.3	0.42	*
5	0.0551	\pm	0.0132	0.0423	\pm	0.0025	0.32	5 ∃	E 0.0	0854	267	7.0	\pm	15.8	2	283.0	\pm	83.2	0.67	
6	0.0491	\pm	0.0190	0.0434	\pm	0.0038	0.29	± 0	E 0.1	1287	273	3.6	±	24.4	2	261.7	\pm	123.0	0.79	
7	0.0512	±	0.0109	0.0416	\pm	0.0021	0.29	1 1 ∃	E 0.0	0672	262	2.7	±	13.5	1	261.8	\pm	66.0	0.41	
8	0.0490	±	0.0095	0.0387	\pm	0.0018	0.26	17 ∃	E 0.0	0536	244	1.9	±	11.5	1	236.0	\pm	53.0	0.64	
9	0.0497	±	0.0087	0.0386	±	0.0016	0.26	l6 ∃	E 0.0	0476	243	3.9	±	10.5	2	238.3	±	47.2	0.45	
10	0.0562	±	0.0146	0.0404	±	0.0025	0.31	35 ∃	E 0.0	0905	255	5.3	±	16.4	1	276.9	±	88.0	0.48	
11	0.0544	±	0.0123	0.0398	±	0.0022	0.29	92 ±	E 0.0	0734	251	1.8	±	14.0		265.7	±	71.9	0.65	
12	0.0536	±	0.0127	0.0574	±	0.0033	0.42	± 0	E 0.1	1157	359	9.5	±	21.1		358.9	±	111.2	0.56	
13	0.0585	±	0.0185	0.0430	±	0.0033	0.34	59 ∃	E 0.1	1253	271	.4	±	21.4	-	302.4	±	119.9	0.46	
14	0.0535	±	0.0099	0.0386	±	0.0017	0.28	15 ±	E 0.0	0554	243	3.9	±	11.2	1	254.2	±	54.7	0.67	
15	0.0520	±	0.0102	0.0386	±	0.0018	0.27	o7 ∃	E 0.0	0573	244	ł.1	±	11.7	-	248.0	±	56.6	0.43	
16	0.0410	±	0.0142	0.0401	±	0.0029	0.22	/0 ±	E 0.0	0859	25:	3.6	±	18.8		207.7	±	83.7	0.26	
17	0.0524	±	0.0124	0.0390	±	0.0022	0.28	E 1	E 0.0	0723	240	0.5	±	14.0		252.0	±	70.8	0.64	
18	0.0527	±	0.0089	0.0426	±	0.0018	0.30	10 1		0544	268	5.9	±	11.4		2/4.1	±	53.7	0.43	
19	0.0521	±	0.0117	0.0396	±	0.0021	0.28	+9 ∃ ⊧o ⊧		0525	250).5	±	13.7		254.5	±	68.3 52.0	0.60	
20	0.0525	±	0.0074	0.0320	±	0.0019	0.38	[∠ ⊐ SQ ⊔		1060	240).4	±	12.1		527.9	±	33.0 103.1	0.07	
21	0.0548	т _	0.0171	0.0394	- -	0.0031	0.20)5 J		1009	243	5.0	т _	19.6	-	230.0	Ŧ	62.0	0.38	
22	0.0548	т -	0.0093	0.0423		0.0020	0.31			0600	200).0	т т	12.0	,	201.0	т т	60.0	0.40	
23	0.0576	+	0.0092	0.0412	+	0.0019	0.32)5 -	L 0.0	0587	200).1)/	+	12.0		207.9	+	57.0	0.03	
25	0.0520	+	0.0000	0.0339	+	0.0019	0.26	×1 -	⊢ 0.1	1450	232	7.2	+	24.2	-	314.5	+	137.5	0.78	
25	0.0399	+	0.0202	0.0403	+	0.0038	0.27	16 -	E 0.1	0666	254	15	+	13.8	-	246.4	+	65.5	0.02	
20	0.0522	+	0.0095	0.0414	+	0.0021	0.27	79 -	E 0.0	0627	26	1.5	+	12.9		264.7	+	61.8	0.45	
28	0.0409	±	0.0135	0.0420	±	0.0030	0.23	73 ±	= 0.0	0881	26	5.3	±	19.3		216.2	±	85.8	0.63	
29	0.0537	±	0.0130	0.0419	±	0.0025	0.31)5 ±	E 0.0	0868	264	1.8	±	16.4		274.6	±	84.5	0.36	
30	0.0563	±	0.0092	0.0393	±	0.0018	0.30	54 ∃	E 0.0	0573	248	3.7	±	11.5		270.6	±	56.6	0.44	
31	0.0511	±	0.0082	0.0397	\pm	0.0017	0.27	99 ±	E 0.0	0515	251	1.2	±	11.2	2	250.5	±	51.0	0.54	
32	0.0598	\pm	0.0099	0.0559	\pm	0.0026	0.46)8 ±	E 0.0	0939	350).6	±	17.0		384.8	\pm	91.1	0.61	
33	0.0586	±	0.0116	0.0448	±	0.0024	0.36	22 ±	E 0.0	0850	282	2.7	±	15.5	2	313.9	\pm	82.8	0.45	
34	0.0529	±	0.0081	0.0401	\pm	0.0017	0.29	25 ∃	E 0.0	0510	253	3.4	±	11.0	2	260.5	\pm	50.5	0.72	
35	0.0544	\pm	0.0148	0.0422	\pm	0.0029	0.31	52 ±	E 0.1	1002	266	5.2	\pm	18.4	2	279.0	\pm	96.9	0.51	
36	0.0448	\pm	0.0132	0.0424	\pm	0.0028	0.26	5 ∃	E 0.0	0876	267	7.4	\pm	18.3	2	235.8	\pm	85.3	0.19	
37	0.0511	±	0.0085	0.0401	±	0.0018	0.28	25 ∃	E 0.0	0538	253	3.2	±	11.6	1	252.7	±	53.2	0.52	
38	0.0576	±	0.0094	0.0398	±	0.0018	0.31	53 ±	E 0.0	0600	251	1.9	±	11.8	2	279.1	±	59.1	0.68	
39	0.0491	±	0.0071	0.0440	±	0.0018	0.29	77 🗄	E 0.0	0493	277	7.5	±	11.4	2	264.6	±	48.8	0.43	
40	0.0502	±	0.0078	0.0399	±	0.0017	0.27	50 ±	E 0.0	0489	252	2.2	±	10.9	2	247.5	±	48.5	0.42	
41	0.0520	±	0.0060	0.0403	±	0.0018	0.28	93 ±	E 0.0	0352	254	1.7	±	11.4	-	258.0	±	35.2	0.62	
42	0.0548	±	0.0151	0.0397	±	0.0029	0.29	17 ±	E 0.0	0940	250).8	±	18.7	1	266.2	±	91.2	0.62	
43	0.0496	±	0.0073	0.0413	±	0.0020	0.28	26 ±	E 0.0	0449	261	1.1	±	12.8	1	252.8	±	44.6	0.53	
44	0.0553	±	0.0168	0.0485	±	0.0039	0.36	18 ±		1327	305	0.3	±	24.9		519.5	±	126.5	0.46	
45	0.0545	±	0.0133	0.0423	±	0.0028	0.31	E 61		0445	260).9 1 7	±	18.2		280.2	±	80.4 44.2	0.46	
40	0.0508	±	0.0071	0.0419	±	0.0020	0.29	ro ⊐		0445	204	+./	±	12.8		201.0	±	44.Z	1.01	*
47	0.0551	Ŧ	0.0002	0.0303	±	0.0013	0.22	L 0(0204	193	2.6	т _	0.7		204.7	Ŧ	20.5	0.51	6.2.5
40	0.0507	т -	0.0064	0.0409	±	0.0020	0.32	50 J		0322	230	1.0	т -	10.5	,	201.9	±	28.0	0.72	
+9 50	0.0557	т +	0.0034	0.0307	т +	0.0010	0.28)0 ⊣	⊢ 0.0	0200 1154	244	1.7) 8	ے +	21.2	,	250.1	т +	20.9	0.59	
51	0.0364	+	0.0077	0.0397	+	0.0033	0.51	76 -	- 0.1	0465	250	3.4	+	13.0	-	232.7	+	46.1	0.51	
52	0.0540	±	0.0071	0.0394	±	0.0018	0.29	37 -	E 0.0	0415	240).3	±	11.8	-	261.5	±	41.3	0.50	
53	0.0535	+	0.0076	0.0399	+	0.0019	0.29	14 -	E 0.0	0455	253	2.1	+	12.4	-	262.0	+	45.2	0.58	
54	0.0494	±	0.0113	0.0425	±	0.0026	0.28)8 -	E 0.0	0748	268	3.3	_ ±	17.0		258.4	±	73.3	0.31	
55	0.0611	±	0.0133	0.0377	\pm	0.0024	0.31	76 ±	E 0.0	0780	238	3.3	±	15.4		280.1	±	76.2	0.59	
56	0.0508	±	0.0226	0.0441	±	0.0047	0.30	но об	E 0.1	1587	278	3.2	±	30.2		273.4	±	149.6	0.46	
57	0.0509	±	0.0096	0.0566	\pm	0.0031	0.39	73 ∃	E 0.0	0875	354	1.9	±	20.2		339.7	±	85.2	0.69	
58	0.0461	\pm	0.0139	0.0444	\pm	0.0033	0.28	24 ±	E 0.0	0966	280	0.0	\pm	21.2		252.5	\pm	93.6	0.47	
59	0.0433	±	0.0189	0.0442	\pm	0.0043	0.26	12 ∃	E 0.1	1308	279	9.0	±	27.9	2	238.0	±	124.8	0.36	
60	0.0621	±	0.0104	0.0397	±	0.0021	0.33	98 ±	E 0.0	0639	250).8	±	13.8	1	297.0	±	62.9	0.42	

Asterisks indicate the data adopted as the youngest cluster. "dis." indicates discordant data.

第3表 四重極型結合誘導プラズマ質量分析装置による米内川試料のジルコンU-Pb同位体データ.

 Table 3
 Zircon U-Pb isotopic data for the Yonaigawa Sample determined using a quadrupole inductively coupled plasma mass spectrometry.

	Isotopic 1	ratios						Age (Ma	a)						
Grain	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb		Error	²⁰⁶ Pb		Error	²⁰⁷ Pb		Error	Th/U	Remarks
no.	²⁰⁶ Pb	2 σ	²³⁸ U	2 σ	²³⁵ U		2 σ	²³⁸ U	_	2 σ	²³⁵ U		2 σ		
1	0.0507	± 0.0091	$0.0652 \pm$	0.0028	0.4561	±	0.0815	407.0	±	18.2	381.5	±	79.5	0.31	
2	0.0534	± 0.0086	0.0396 \pm	0.0016	0.2924	±	0.0428	250.5	\pm	10.1	260.4	\pm	42.6	0.96	
3	0.0544	± 0.0128	0.0395 \pm	0.0022	0.2964	\pm	0.0724	249.4	\pm	14.2	263.6	\pm	71.0	0.71	
4	0.0551	± 0.0116	$0.0420 \pm$	0.0021	0.3192	±	0.0685	265.2	±	13.7	281.3	±	67.3	0.43	
5	0.0618	± 0.0137	$0.0378 \pm$	0.0021	0.3225	±	0.0738	239.3	±	13.3	283.8	±	72.3	0.81	
6	0.0488	± 0.0119	$0.0388 \pm$	0.0022	0.2616	±	0.0665	245.5	±	14.1	235.9	±	65.4	0.49	
7	0.0565	± 0.0121	0.0423 ±	0.0022	0.3301	±	0.0728	267.2	±	14.1	289.6	±	71.4	0.50	
8	0.0518	\pm 0.0101	$0.0414 \pm$	0.0019	0.2955	±	0.0569	261.3	±	12.4	262.9	±	56.2	0.56	
9	0.0565	± 0.0117	$0.0392 \pm$	0.0020	0.3057	±	0.0638	247.8	±	12.6	270.8	±	62.8	0.75	
10	0.0576	± 0.0115 ± 0.0006	$0.0409 \pm 0.0414 \pm$	0.0020	0.3250	± +	0.0654	258.5	±	12.8	285.7	± +	64.3 52.7	0.75	
11	0.0522	± 0.0090 ± 0.0150	$0.0414 \pm 0.0435 \pm$	0.0018	0.2985	± +	0.0333	201.0	±	18.5	203.2	±	94.7	0.81	
12	0.0332	± 0.0130 ± 0.0094	$0.0433 \pm 0.0300 \pm 0.0300$	0.0029	0.2055	+	0.0371	190.8	+	87	189.7	+	37.0	0.58	*
14	0.0475	± 0.0054 ± 0.0158	$0.0396 \pm$	0.0025	0.3341	+	0.0931	250.6	+	16.3	292.7	+	90.4	0.67	
15	0.0490	± 0.0125	$0.0299 \pm$	0.0017	0.2025	±	0.0527	190.2	+	11.2	187.3	±	52.2	0.38	*
16	0.0527	± 0.0118	$0.0409 \pm$	0.0022	0.2978	±	0.0688	258.4	±	14.0	264.7	±	67.6	0.33	
17	0.0494	± 0.0097	0.0307 ±	0.0014	0.2093	±	0.0398	194.9	\pm	9.2	193.0	±	39.7	0.59	*
18	0.0588	± 0.0251	0.0401 ±	0.0041	0.3258	±	0.1576	253.7	\pm	26.7	286.4	±	148.6	0.65	
19	0.0533	± 0.0092	$0.0311 \pm$	0.0013	0.2292	±	0.0368	197.7	±	8.4	209.6	±	36.7	0.38	*
20	0.0475	± 0.0139	$0.0428 \pm$	0.0028	0.2801	±	0.0885	269.9	±	18.2	250.7	±	86.1	0.77	
21	0.0533	± 0.0138	$0.0431 \pm$	0.0025	0.3173	±	0.0866	272.2	±	16.1	279.8	±	84.3	0.58	
22	0.0565	± 0.0104	0.0389 \pm	0.0016	0.3032	±	0.0523	245.7	\pm	10.3	268.9	±	51.7	0.69	
23	0.0540	± 0.0090	$0.0401 \pm$	0.0015	0.2992	±	0.0439	253.6	±	9.5	265.8	±	43.6	0.65	
24	0.0535	± 0.0117	$0.0406 \pm$	0.0020	0.2998	±	0.0662	256.6	±	12.8	266.3	±	65.1	0.44	
25	0.0488	± 0.0102	$0.0405 \pm$	0.0019	0.2730	±	0.0562	256.0	±	11.9	245.1	±	55.5	0.45	
26	0.0550	± 0.0205	0.0423 ±	0.0036	0.3217	±	0.1336	267.4	±	23.3	283.2	±	127.3	0.51	
27	0.0391	± 0.0115	$0.0426 \pm$	0.0025	0.2300	±	0.0706	268.8	±	16.3	210.2	±	69.3	0.53	
28	0.0579	± 0.0129	0.0420 ± 0.0207	0.0021	0.3361	±	0.0766	265.4	±	13.8	294.2	±	74.9	0.73	
29	0.0599	± 0.0110	0.0397 ± 0.0301	0.0017	0.3279	±	0.05/1	250.7	±	10.7	288.0	±	56.4	0.79	*
30	0.0347	± 0.0102 ± 0.0161	$0.0301 \pm 0.0411 \pm 0.0411$	0.0015	0.2270	±	0.0393	250.8	±	0.1	207.7	±	59.5 05.1	0.40	
32	0.0533	± 0.0101 ± 0.0128	$0.0411 \pm 0.0411 +$	0.0020	0.3344	±	0.0982	259.0	±	14.3	293.0	±	73.8	0.67	
33	0.0555	+ 0.0128	$0.0411 \pm 0.0408 \pm$	0.0015	0.3022	+	0.0485	257.8	+	9.9	200.1	+	48.1	0.31	
34	0.0538	± 0.0000	$0.0403 \pm 0.0417 \pm$	0.0029	0.3097	+	0.1036	263.5	+	18.7	274.0	+	100.1	0.44	
35	0.0492	± 0.0100 ± 0.0102	$0.0302 \pm$	0.0014	0.2049	±	0.0408	191.7	±	8.8	189.3	±	40.6	0.42	*
36	0.0436	± 0.0117	0.0306 ±	0.0017	0.1842	±	0.0503	194.5	±	11.1	171.6	±	49.9	1.22	*
37	0.0611	± 0.0135	$0.0384 \pm$	0.0020	0.3235	±	0.0723	242.7	\pm	12.6	284.6	±	70.9	0.84	
38	0.0586	± 0.0127	0.0409 \pm	0.0020	0.3312	±	0.0723	258.6	\pm	13.1	290.5	±	70.9	0.72	
39	0.0560	± 0.0136	$0.0293 \pm$	0.0016	0.2269	±	0.0553	186.4	±	10.4	207.6	±	54.6	0.55	*
40	0.0517	± 0.0126	$0.0419 \pm$	0.0023	0.2992	±	0.0758	264.6	\pm	14.7	265.8	\pm	74.2	0.66	
41	0.0475	± 0.0086	$0.0302 \pm$	0.0017	0.1980	±	0.0367	191.7	\pm	11.2	183.5	±	36.6	0.56	*
42	0.0439	± 0.0110	0.0407 \pm	0.0027	0.2463	±	0.0671	257.2	\pm	17.7	223.6	\pm	66.0	0.41	
43	0.0574	± 0.0129	0.0397 \pm	0.0027	0.3144	±	0.0776	250.7	±	17.2	277.6	±	75.9	0.71	
44	0.0415	± 0.0103	$0.0457 \pm$	0.0030	0.2616	±	0.0714	288.1	±	19.5	236.0	±	70.0	0.28	
45	0.0563	± 0.0198	$0.0391 \pm$	0.0036	0.3035	±	0.1211	247.2	±	23.3	269.1	±	116.0	0.79	
46	0.0321	± 0.0167	0.0386 ±	0.0040	0.1709	±	0.0964	244.1	±	25.6	160.2	±	93.4	0.63	
47	0.0518	± 0.0098	$0.0397 \pm$	0.0024	0.2838	±	0.0575	251.1	±	15.3	253.7	±	56.8	0.45	
48	0.0438	± 0.0093	0.0386 ± 0.0202	0.0024	0.2329	±	0.0528	243.9	±	15.3	212.6	±	52.2	0.50	*
49	0.0575	± 0.0103	$0.0293 \pm 0.0200 \pm$	0.0017	0.2324	±	0.0429	180.1	±	11.2	212.2	±	42.7	0.44	
50	0.0500	± 0.0078 ± 0.0022	$0.0399 \pm 0.0402 \rightarrow 0.0402$	0.0021	0.3084	т +	0.0429	252.1	± +	24.0	272.9	± +	42.0 141 7	0.49	
52	0.0561	+ 0.0233 + 0.0105	$0.0402 \pm 0.0375 \pm 0.0375 \pm 0.0375$	0.0033	0.2903	+	0.0575	233.0	+	14.5	258.8	+	56.8	0.42	
53	0.0499	± 0.0103 ± 0.0092	0.0409 +	0.0023	0.2814	+	0.0547	258.3	±	15.4	250.8	+	54 1	0.75	
54	0.0603	± 0.0092 ± 0.0181	0.0443 +	0.0037	0.3684	+	0.1275	279 3	+	23.9	318.4	+	121.9	0.29	
55	0.0478	± 0.0140	$0.0391 \pm$	0.0030	0.2579	±	0.0834	247.0	±	19.2	232.9	±	81.3	0.69	
56	0.0551	± 0.0102	0.0388 ±	0.0023	0.2955	±	0.0585	245.6	±	15.0	262.9	±	57.7	0.60	
57	0.0457	± 0.0083	0.0392 ±	0.0023	0.2470	±	0.0469	247.9	±	14.5	224.2	±	46.6	0.68	
58	0.0410	± 0.0130	$0.0438 \pm$	0.0034	0.2474	±	0.0870	276.1	±	21.8	224.5	±	84.7	0.52	
59	0.0462	± 0.0111	$0.0426 \pm$	0.0028	0.2714	±	0.0710	268.7	±	18.2	243.8	±	69.6	0.69	
60	0.0536	+ 0.0125	0.0387 +	0.0026	0.2865	+	0.0733	245.0	+	17.0	255.8	+	71.9	0.45	

Asterisks indicate the data adopted as the youngest cluster.

第4表 マルチコレクター型結合誘導プラズマ質量分析装置による大川試料のジルコンU-Pb同位体データ.

 Table 4
 Zircon U-Pb isotopic data for the Okawa Sample determined using a multi-collector inductively coupled plasma mass spectrometry.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Isotopic ratios			Age (Ma)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Grain	²⁰⁷ Pb Error	²⁰⁶ Pb Error	²⁰⁷ Pb Error	²⁰⁶ Pb Error	²⁰⁷ Pb Error	Th/U Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	no.	²⁰⁶ Pb 2 σ	²³⁸ U 2 σ	²³⁵ U 2 σ	²³⁸ U 2 σ	²³⁵ U 2 σ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.0506 ± 0.0015	0.0403 ± 0.0006	0.2809 ± 0.0100	254.4 ± 3.6	251.4 ± 10.1	0.38 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.0503 ± 0.0015	0.0419 ± 0.0006	0.2902 ± 0.0105	264.3 ± 3.7	$258.7 \hspace{0.2cm} \pm \hspace{0.2cm} 10.6$	0.89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0.0511 ± 0.0023	0.0469 ± 0.0007	0.3307 ± 0.0170	295.4 ± 4.8	290.1 ± 17.1	0.41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0.0501 ± 0.0018	0.0411 ± 0.0006	0.2839 ± 0.0121	259.7 ± 3.9	253.7 ± 12.2	0.89 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0.0505 ± 0.0024	0.0439 ± 0.0007	0.3056 ± 0.0164	276.8 ± 4.6	270.8 ± 16.5	0.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0.0531 ± 0.0025	0.0412 ± 0.0007	0.3016 ± 0.0165	260.0 ± 4.4	267.7 ± 16.6	0.65 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/	0.0525 ± 0.0021	0.0429 ± 0.0006	0.3108 ± 0.0143	270.9 ± 4.2	$2/4.8 \pm 14.4$	0.53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.0493 ± 0.0031 0.0532 ± 0.0032	0.0403 ± 0.0009	0.3101 ± 0.0220 0.2005 ± 0.0150	291.5 ± 5.7	$2/8.9 \pm 22.7$	0.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.0332 ± 0.0023 0.0511 ± 0.0019	0.0409 ± 0.0000	0.3003 ± 0.0130 0.2832 ± 0.0120	253.0 ± 4.2 253.8 ± 3.8	200.6 ± 13.1 253.2 ± 12.1	0.71 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.0506 ± 0.0019	0.0401 ± 0.0000 0.0425 ± 0.0006	0.2052 ± 0.0120 0.2966 ± 0.0127	253.0 ± 5.0 268.3 ± 4.0	263.7 ± 12.1	0.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0.0492 ± 0.0024	0.0425 ± 0.0007	0.3018 ± 0.0170	280.6 ± 4.8	267.8 ± 17.2	0.56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	0.0527 ± 0.0027	0.0455 ± 0.0008	0.3311 ± 0.0191	287.0 ± 5.0	290.4 ± 19.2	0.60
15 0.0547 ± 0.0023 0.0454 ± 0.0007 0.3423 ± 0.0169 286.0 ± 4.6 298.9 ± 17.0 0.57 16 0.0501 ± 0.0022 0.0437 ± 0.0007 0.3018 ± 0.0155 275.8 ± 4.5 267.8 ± 15.6 0.54 17 0.0521 ± 0.0022 0.0473 ± 0.0007 0.3402 ± 0.0165 298.2 ± 4.7 297.3 ± 16.6 0.46 18 0.0586 ± 0.0035 0.0455 ± 0.0009 0.3682 ± 0.0252 287.0 ± 5.6 318.3 ± 25.3 0.49 $dis.$ 19 0.0503 ± 0.0019 0.0433 ± 0.0006 0.3005 ± 0.0132 273.5 ± 4.1 266.8 ± 13.4 0.36 20 0.0511 ± 0.0017 0.0467 ± 0.0007 0.3296 ± 0.0134 294.4 ± 4.3 289.3 ± 13.5 0.41 21 0.0524 ± 0.0021 0.0455 ± 0.0012 0.3291 ± 0.0170 286.8 ± 7.5 288.9 ± 17.1 0.38 22 0.0506 ± 0.0021 0.0419 ± 0.0011 0.2924 ± 0.0153 264.4 ± 7.0 260.4 ± 15.5 0.62 23 0.0541 ± 0.0027 0.0423 ± 0.0011 0.2924 ± 0.0153 267.1 ± 7.0 278.6 ± 15.6 0.65 24 0.0017 0.0419 ± 0.0011 0.2924 ± 0.0152 259.5 ± 6.6 259.3 ± 13.3 0.82 *25 0.0486 ± 0.0027 0.0423 ± 0.0011 0.3157 ± 0.0152 255.7 ± 13.4 29.77 ± 51.0 0.59 26 0.0504 ± 0.0057 0.0572 ± 0.0021 0.3836 ± 0.0515 358.7 ± 13.4 280.6 ± 22.4 0.33 27 0.0535 ± 0.0021 0.0445 ± 0.0013 0.3184 ± 0.0223 288.8 ± 8.1 280	14	0.0505 ± 0.0024	0.0460 ± 0.0007	0.3199 ± 0.0172	289.8 ± 4.8	281.8 ± 17.3	0.58
16 0.0501 ± 0.0022 0.0437 ± 0.0007 0.3018 ± 0.0155 275.8 ± 4.5 267.8 ± 15.6 0.54 17 0.0521 ± 0.0022 0.0473 ± 0.0007 0.3402 ± 0.0165 298.2 ± 4.7 297.3 ± 16.6 0.46 18 0.0586 ± 0.0035 0.0455 ± 0.0009 0.3682 ± 0.0252 287.0 ± 5.6 318.3 ± 25.3 0.49 $dis.$ 19 0.0503 ± 0.0019 0.0433 ± 0.0006 0.3005 ± 0.0132 273.5 ± 4.1 266.8 ± 13.4 0.36 20 0.0511 ± 0.0017 0.0467 ± 0.0007 0.3296 ± 0.0134 294.4 ± 4.3 289.3 ± 13.5 0.41 21 0.0524 ± 0.0021 0.0455 ± 0.0012 0.3291 ± 0.0170 286.8 ± 7.5 288.9 ± 17.1 0.38 22 0.0506 ± 0.0021 0.04473 ± 0.0011 0.2924 ± 0.0153 264.4 ± 7.0 260.4 ± 15.5 0.62 23 0.0541 ± 0.0020 0.0423 ± 0.0011 0.2924 ± 0.0155 257.5 ± 6.6 259.3 ± 13.3 0.82 24 0.0514 ± 0.0017 0.0447 ± 0.0011 0.2909 ± 0.0132 259.5 ± 6.6 259.3 ± 13.3 0.82 25 0.0486 ± 0.0057 0.0572 ± 0.0021 0.3836 ± 0.0515 358.7 ± 13.4 329.7 ± 51.0 0.59 26 0.0504 ± 0.0029 0.0455 ± 0.0010 0.2986 ± 0.0152 255.7 ± 6.7 265.3 ± 15.3 0.56 26 0.0504 ± 0.0029 0.0458 ± 0.0013 0.3182 ± 0.0122 288.8 ± 8.1 280.6 ± 22.4 0.33 27 0.0535 ± 0.0021 0.0405 ± 0.0010 0.2986 ± 0.0152 255.7 ± 6.7 $265.$	15	0.0547 ± 0.0023	0.0454 ± 0.0007	0.3423 ± 0.0169	286.0 ± 4.6	298.9 ± 17.0	0.57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	0.0501 ± 0.0022	0.0437 ± 0.0007	0.3018 ± 0.0155	275.8 ± 4.5	267.8 ± 15.6	0.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	0.0521 ± 0.0022	0.0473 ± 0.0007	0.3402 ± 0.0165	298.2 ± 4.7	297.3 ± 16.6	0.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	$0.0586 \ \pm \ 0.0035$	$0.0455 \ \pm \ 0.0009$	$0.3682 \ \pm \ 0.0252$	287.0 ± 5.6	$318.3 \hspace{0.2cm} \pm \hspace{0.2cm} 25.3$	0.49 dis.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	0.0503 ± 0.0019	0.0433 ± 0.0006	0.3005 ± 0.0132	273.5 ± 4.1	266.8 ± 13.4	0.36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.0511 ± 0.0017	0.0467 ± 0.0007	0.3296 ± 0.0134	294.4 ± 4.3	289.3 ± 13.5	0.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	0.0524 ± 0.0021	0.0455 ± 0.0012	0.3291 ± 0.0170	286.8 ± 7.5	288.9 ± 17.1	0.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	0.0506 ± 0.0021	0.0419 ± 0.0011	0.2924 ± 0.0153	264.4 ± 7.0	260.4 ± 15.5	0.62 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	0.0541 ± 0.0020	0.0423 ± 0.0011	0.3157 ± 0.0155	267.1 ± 7.0	278.6 ± 15.6	0.65
25 0.0486 ± 0.0057 0.0572 ± 0.0021 0.3836 ± 0.0515 358.7 ± 13.4 329.7 ± 51.0 0.59 26 0.0504 ± 0.0029 0.0458 ± 0.0013 0.3184 ± 0.0223 288.8 ± 8.1 280.6 ± 22.4 0.33 27 0.0535 ± 0.0021 0.0405 ± 0.0010 0.2986 ± 0.0152 255.7 ± 6.7 265.3 ± 15.3 0.56 28 0.0515 ± 0.0016 0.0424 ± 0.0011 0.3007 ± 0.0134 267.5 ± 6.8 267.0 ± 13.5 0.65 29 0.0525 ± 0.0029 0.0463 ± 0.0013 0.3352 ± 0.0223 291.6 ± 8.1 293.6 ± 22.4 0.30 30 0.0571 ± 0.0016 0.0801 ± 0.0020 0.6311 ± 0.0271 496.7 ± 12.8 496.8 ± 27.1 0.61 31 0.0505 ± 0.0018 0.0435 ± 0.0011 0.3025 ± 0.0145 274.3 ± 7.1 268.4 ± 14.6 0.39	24	0.0514 ± 0.0017	0.0411 ± 0.0010	0.2909 ± 0.0132	259.5 ± 6.6	259.3 ± 13.3	0.82 *
26 0.0504 ± 0.0029 0.0458 ± 0.0013 0.3184 ± 0.0223 288.8 ± 8.1 280.6 ± 22.4 0.33 27 0.0535 ± 0.0021 0.0405 ± 0.0010 0.2986 ± 0.0152 255.7 ± 6.7 265.3 ± 15.3 0.56 * 28 0.0515 ± 0.0016 0.0424 ± 0.0011 0.3007 ± 0.0134 267.5 ± 6.8 267.0 ± 13.5 0.65 29 0.0525 ± 0.0029 0.0463 ± 0.0013 0.3352 ± 0.0223 291.6 ± 8.1 293.6 ± 22.4 0.30 30 0.0571 ± 0.0016 0.0801 ± 0.0020 0.6311 ± 0.0271 496.7 ± 12.8 496.8 ± 27.1 0.61 31 0.0505 ± 0.0018 0.0435 ± 0.0011 0.3025 ± 0.0145 274.3 ± 7.1 268.4 ± 14.6 0.39	25	0.0486 ± 0.0057	0.0572 ± 0.0021	0.3836 ± 0.0515	358.7 ± 13.4	329.7 ± 51.0	0.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	0.0504 ± 0.0029	0.0458 ± 0.0013	0.3184 ± 0.0223	288.8 ± 8.1	280.6 ± 22.4	0.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	0.0535 ± 0.0021	0.0405 ± 0.0010 0.0424 ± 0.0011	0.2986 ± 0.0152 0.2007 ± 0.0124	255.7 ± 6.7	265.3 ± 15.3 267.0 ± 12.5	0.56 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.0313 ± 0.0010 0.0525 ± 0.0020	0.0424 ± 0.0011 0.0463 ± 0.0013	0.3007 ± 0.0134 0.3352 ± 0.0223	207.3 ± 0.8 201.6 \pm 8.1	207.0 ± 13.3 203.6 ± 22.4	0.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	0.0523 ± 0.0029 0.0571 ± 0.0016	0.0403 ± 0.0013 0.0801 ± 0.0020	0.5352 ± 0.0223 0.6311 ± 0.0271	496.7 ± 12.8	496.8 ± 27.1	0.50
	31	0.0505 ± 0.0018	0.0435 ± 0.0011	0.0011 ± 0.0271 0.3025 ± 0.0145	2743 ± 71	268.4 ± 14.6	0.39
$32 0.0517 \ \pm \ 0.0020 0.0421 \ \pm \ 0.0011 0.3000 \ \pm \ 0.0150 265.9 \ \pm \ 6.9 \qquad 266.4 \ \pm \ 15.2 \qquad 0.42$	32	0.0517 ± 0.0020	0.0421 ± 0.0011	0.3000 ± 0.0150	265.9 ± 6.9	266.4 ± 15.2	0.42
$33 0.0541 \ \pm \ 0.0024 0.0431 \ \pm \ 0.0011 0.3216 \ \pm \ 0.0182 272.0 \ \pm \ 7.3 \qquad 283.1 \ \pm \ 18.3 0.62$	33	0.0541 ± 0.0024	0.0431 ± 0.0011	0.3216 ± 0.0182	272.0 ± 7.3	283.1 ± 18.3	0.62
$34 0.0559 \ \pm \ 0.0026 0.0465 \ \pm \ 0.0012 0.3588 \ \pm \ 0.0210 293.3 \ \pm \ 7.9 \qquad 311.3 \ \pm \ 21.1 \qquad 0.56$	34	0.0559 ± 0.0026	0.0465 ± 0.0012	0.3588 ± 0.0210	293.3 ± 7.9	311.3 ± 21.1	0.56
$35 0.0523 \ \pm \ 0.0024 0.0460 \ \pm \ 0.0012 0.3317 \ \pm \ 0.0190 289.9 \ \pm \ 7.8 \qquad 290.9 \ \pm \ 19.1 \qquad 0.46$	35	$0.0523 \ \pm \ 0.0024$	0.0460 ± 0.0012	$0.3317 \ \pm \ 0.0190$	$289.9 \hspace{0.2cm} \pm \hspace{0.2cm} 7.8$	290.9 ± 19.1	0.46
$36 0.0536 \ \pm \ 0.0020 0.0426 \ \pm \ 0.0011 0.3149 \ \pm \ 0.0154 268.7 \ \pm \ 7.0 \qquad 278.0 \ \pm \ 15.5 \qquad 0.74$	36	0.0536 ± 0.0020	0.0426 ± 0.0011	0.3149 ± 0.0154	$268.7 \hspace{0.2cm} \pm \hspace{0.2cm} 7.0$	278.0 ± 15.5	0.74
$37 0.0540 \ \pm \ 0.0018 0.0419 \ \pm \ 0.0011 0.3117 \ \pm \ 0.0145 264.3 \ \pm \ 6.8 \qquad 275.5 \ \pm \ 14.6 \qquad 0.54 *$	37	0.0540 ± 0.0018	0.0419 ± 0.0011	0.3117 ± 0.0145	264.3 ± 6.8	275.5 ± 14.6	0.54 *
$38 0.0507 \ \pm \ 0.0019 0.0446 \ \pm \ 0.0011 0.3115 \ \pm \ 0.0156 281.2 \ \pm \ 7.3 \qquad 275.3 \ \pm \ 15.7 \qquad 0.34$	38	0.0507 ± 0.0019	0.0446 ± 0.0011	0.3115 ± 0.0156	281.2 ± 7.3	275.3 ± 15.7	0.34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	0.0501 ± 0.0023	0.0457 ± 0.0012	0.3163 ± 0.0185	288.4 ± 7.8	279.0 ± 18.6	0.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	0.0544 ± 0.0025	0.0415 ± 0.0011	0.3116 ± 0.0182	262.4 ± 7.1	275.5 ± 18.3	0.53 *
41 0.0502 ± 0.0010 0.0439 ± 0.0011 0.3040 ± 0.0113 277.0 ± 7.0 269.5 ± 11.4 0.40	41	0.0502 ± 0.0010	0.0439 ± 0.0011	0.3040 ± 0.0113	277.0 ± 7.0	269.5 ± 11.4	0.40
$42 0.0527 \pm 0.0025 0.0448 \pm 0.0012 0.0229 \pm 0.0185 282.7 \pm 7.6 280.4 \pm 18.5 0.47$	42	0.0527 ± 0.0023	0.0448 ± 0.0012 0.0462 \pm 0.0012	0.3239 ± 0.0183	282.7 ± 7.0	280.4 ± 18.5	0.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	0.0313 ± 0.0018 0.0526 ± 0.0015	0.0403 ± 0.0012 0.0418 ± 0.0010	0.3283 ± 0.0102 0.3034 ± 0.0131	291.3 ± 7.0 264.3 ± 6.8	260.2 ± 10.3 260.1 ± 13.2	0.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	0.0520 ± 0.0015 0.0501 ± 0.0025	0.0418 ± 0.0010 0.0460 ± 0.0012	0.3034 ± 0.0131 0.3176 ± 0.0197	204.3 ± 0.8 289.9 ± 7.9	209.1 ± 13.2 280.1 ± 19.8	0.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	0.0501 ± 0.0025 0.0513 ± 0.0014	0.0400 ± 0.0012 0.0428 ± 0.0011	0.3025 ± 0.0127	2701 ± 69	268.4 ± 12.8	0.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	0.0568 ± 0.0028	0.0449 ± 0.0012	0.3513 ± 0.0217	283.0 ± 7.8	305.7 ± 21.8	0.32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	0.0522 ± 0.0017	0.0429 ± 0.0011	0.3091 ± 0.0146	271.0 ± 7.0	273.5 ± 14.7	0.42
$49 0.0540 \ \pm \ 0.0021 0.0417 \ \pm \ 0.0011 0.3106 \ \pm \ 0.0164 263.5 \ \pm \ 7.0 \qquad 274.7 \ \pm \ 16.5 \qquad 0.53 *$	49	0.0540 ± 0.0021	0.0417 ± 0.0011	0.3106 ± 0.0164	263.5 ± 7.0	274.7 ± 16.5	0.53 *
$50 0.0465 \ \pm \ 0.0023 0.0421 \ \pm \ 0.0011 0.2702 \ \pm \ 0.0165 265.7 \ \pm \ 7.2 \qquad 242.8 \ \pm \ 16.6 \qquad 0.53$	50	0.0465 ± 0.0023	0.0421 ± 0.0011	0.2702 ± 0.0165	265.7 ± 7.2	242.8 ± 16.6	0.53
$51 0.0490 \ \pm \ 0.0014 0.0424 \ \pm \ 0.0011 0.2869 \ \pm \ 0.0124 267.8 \ \pm \ 6.8 \qquad 256.1 \ \pm \ 12.5 \qquad 1.06$	51	$0.0490 \ \pm \ 0.0014$	$0.0424 \ \pm \ 0.0011$	0.2869 ± 0.0124	$267.8 \hspace{0.2cm} \pm \hspace{0.2cm} 6.8$	256.1 ± 12.5	1.06
$52 0.0535 \ \pm \ 0.0021 0.0433 \ \pm \ 0.0011 0.3199 \ \pm \ 0.0170 273.4 \ \pm \ 7.3 \qquad 281.8 \ \pm \ 17.2 \qquad 0.50$	52	0.0535 ± 0.0021	0.0433 ± 0.0011	0.3199 ± 0.0170	273.4 ± 7.3	281.8 ± 17.2	0.50
$53 0.0502 \ \pm \ 0.0020 0.0488 \ \pm \ 0.0013 0.3379 \ \pm \ 0.0182 307.2 \ \pm \ 8.2 \qquad 295.6 \ \pm \ 18.3 \qquad 0.39$	53	0.0502 ± 0.0020	0.0488 ± 0.0013	0.3379 ± 0.0182	307.2 ± 8.2	295.6 ± 18.3	0.39
$54 0.0487 \ \pm \ 0.0017 0.0441 \ \pm \ 0.0011 0.2964 \ \pm \ 0.0146 278.5 \ \pm \ 7.3 \qquad 263.6 \ \pm \ 14.8 \qquad 0.41$	54	0.0487 ± 0.0017	0.0441 ± 0.0011	0.2964 ± 0.0146	278.5 ± 7.3	263.6 ± 14.8	0.41
$55 0.0508 \ \pm \ 0.0012 0.0431 \ \pm \ 0.0011 0.3020 \ \pm \ 0.0121 271.9 \ \pm \ 6.9 \qquad 268.0 \ \pm \ 12.2 \qquad 0.78$	55	0.0508 ± 0.0012	0.0431 ± 0.0011	0.3020 ± 0.0121	271.9 ± 6.9	268.0 ± 12.2	0.78
$56 0.0505 \pm 0.0013 0.0432 \pm 0.0011 0.3008 \pm 0.0125 272.5 \pm 6.9 267.0 \pm 12.6 0.71$	56	0.0505 ± 0.0013	0.0432 ± 0.0011	0.3008 ± 0.0125	272.5 ± 6.9	267.0 ± 12.6	0.71
$57 - 0.0513 \pm 0.0023 - 0.0483 \pm 0.0013 - 0.3416 \pm 0.0200 - 304.0 \pm 8.2 - 298.4 \pm 20.2 - 0.61$	57	0.0513 ± 0.0023	0.0483 ± 0.0013	0.3416 ± 0.0200	304.0 ± 8.2	298.4 ± 20.2	0.61
$58 - 0.0547 \pm 0.0020 - 0.0445 \pm 0.0011 - 0.3558 \pm 0.0170 - 279.3 \pm 7.4 - 292.5 \pm 17.1 - 0.40$	58	0.0547 ± 0.0020	0.0443 ± 0.0011	0.3338 ± 0.0170	$2/9.3 \pm 7.4$	292.5 ± 17.1	0.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	0.0525 ± 0.0026 0.0530 ± 0.0022	0.0447 ± 0.0012 0.0447 ± 0.0012	0.3212 ± 0.0199 0.3267 ± 0.0177	280.0 ± 7.7 281.9 ± 7.5	262.6 ± 20.0 287.0 ± 17.8	0.38

Asterisks indicate the data adopted as the youngest cluster. "dis." indicates discordant data.

第5表 四重極型結合誘導プラズマ質量分析装置による向井沢試料のジルコンU-Pb同位体データ.

Table 5Zircon U-Pb isotopic data for the Mukaizawa Sample determined using a quadrupole inductively coupled plasma mass
spectrometry.

	Isotopic ratios			Age (Ma)		
Grain [·]	²⁰⁷ Pb Error	²⁰⁶ Pb Error	²⁰⁷ Pb Error	²⁰⁶ Pb Error	²⁰⁷ Pb Error	Th/U Remarks
no.	²⁰⁶ Pb 2 σ	²³⁸ U 2 σ	²³⁵ U 2 σ	²³⁸ U 2 σ	²³⁵ U 2 σ	
1	0.1106 ± 0.00	$70 0.3169 \pm 0.0034$	4.8327 ± 0.3511	1774.4 ± 17.0	1790.5 ± 63.3	0.17
2	0.0519 ± 0.004	$49 \qquad 0.0415 \ \pm \ 0.0008$	0.2972 ± 0.0314	262.4 ± 4.9	264.1 ± 24.9	0.46
3	0.0511 ± 0.004	41 0.0273 ± 0.0004	0.1926 ± 0.0166	174.0 ± 2.6	178.7 ± 14.3	0.42
4	0.0508 ± 0.00	$51 \qquad 0.0406 \ \pm \ 0.0008$	0.2841 ± 0.0322	256.4 ± 5.2	$253.8 \hspace{0.2cm} \pm \hspace{0.2cm} 25.8$	0.69
5	0.0482 ± 0.002	$52 \qquad 0.0307 \pm 0.0007$	0.2038 ± 0.0244	194.7 ± 4.3	188.2 ± 20.8	0.54
6	0.0503 ± 0.004	$14 0.0394 \pm 0.0007$	0.2730 ± 0.0266	249.0 ± 4.2	245.0 ± 21.5	0.60
7	0.0500 ± 0.00	0.0399 ± 0.0005	0.2747 ± 0.0206	252.1 ± 3.0	246.3 ± 16.5	0.33
8	0.0492 ± 0.003	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.1818 ± 0.0157	170.4 ± 2.5	169.5 ± 13.6	0.35 *
9	0.0509 ± 0.00	$54 0.0419 \ \pm \ 0.0009$	0.2942 ± 0.0352	264.5 ± 5.7	261.7 ± 28.0	0.48
10	$0.04/4 \pm 0.00$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.1771 ± 0.0155	$1/2.5 \pm 2.6$	165.5 ± 13.5	0.53 *
11	0.0500 ± 0.00	$1 0.0341 \pm 0.0005$	0.2352 ± 0.0212	210.2 ± 3.3	214.4 ± 17.0	0.41
12	0.0493 ± 0.00	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.1874 ± 0.0131 0.2478 ± 0.0214	$1/4.8 \pm 2.4$	174.3 ± 13.0 224.7 ± 17.6	0.44
13	0.0510 ± 0.004	$+0$ 0.0333 \pm 0.0003	0.2478 ± 0.0214 0.2162 ± 0.0274	223.5 ± 3.5	224.7 ± 17.0 108.7 ± 21.7	0.96
15	0.0323 ± 0.000	10 0.0358 + 0.0005	0.2102 ± 0.0374 0.2426 ± 0.0217	2265 ± 34	220.5 + 17.9	0.65
16	0.0492 ± 0.00	$13 0.0419 \pm 0.0007$	0.2420 ± 0.0217 0.2875 ± 0.0277	220.3 ± 3.4 2647 + 44	256.5 ± 22.1	0.52
17	0.0509 ± 0.00	0.0419 ± 0.0007 0.0270 ± 0.0004	0.1898 ± 0.0153	1721 + 23	1763 ± 132	0.35 *
18	0.0522 ± 0.00	$56 0.0393 \pm 0.0009$	0.2825 ± 0.0340	248.4 ± 5.5	252.5 ± 27.3	0.61
19	0.1471 ± 0.00	0.4218 ± 0.0051	8.5574 ± 0.7244	2268.7 ± 23.6	2291.9 ± 80.4	0.58
20	0.0511 ± 0.002	0.0348 ± 0.0005	0.2455 ± 0.0207	220.7 ± 3.1	222.8 ± 17.0	0.79
21	0.1112 ± 0.002	0.3078 ± 0.0038	4.7215 ± 0.2264	1729.8 ± 19.0	1770.9 ± 41.4	0.49
22	0.0515 ± 0.002	0.0358 ± 0.0005	0.2542 ± 0.0148	226.8 ± 3.4	229.9 ± 12.1	0.78
23	0.0518 ± 0.002	0.0298 ± 0.0006	$0.2128 \ \pm \ 0.0170$	189.2 ± 3.5	$195.8 \hspace{0.2cm} \pm \hspace{0.2cm} 14.4$	0.66
24	0.0470 ± 0.002	$28 \qquad 0.0320 \ \pm \ 0.0005$	0.2073 ± 0.0137	203.1 ± 3.2	191.2 ± 11.6	0.47
25	0.0488 ± 0.003	0.0309 ± 0.0006	0.2079 ± 0.0168	196.1 ± 3.6	191.7 ± 14.2	0.55
26	0.0508 ± 0.002	0.0307 ± 0.0005	0.2148 ± 0.0156	194.9 ± 3.4	197.5 ± 13.1	0.58
27	0.0509 ± 0.002	$26 0.0397 \ \pm \ 0.0006$	0.2785 ± 0.0161	251.1 ± 3.7	249.4 ± 12.9	0.76
28	0.0490 ± 0.003	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.2724 ± 0.0221	254.7 ± 4.6	244.5 ± 17.8	0.50
29	0.0481 ± 0.00	0.0394 ± 0.0007	0.2610 ± 0.0192	249.0 ± 4.2	235.3 ± 15.6	0.53
30	0.1096 ± 0.00	$\begin{array}{rcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrc$	$4.06/2 \pm 0.1/02$	1535.8 ± 10.5	1047.0 ± 35.1	0.53 als.
32	0.0501 ± 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1824 ± 0.0087 0.2785 ± 0.0247	107.9 ± 2.3 242.7 ± 4.8	170.0 ± 7.3 249.4 ± 19.8	0.33
33	0.0527 ± 0.001	0.0365 ± 0.0005	0.1861 ± 0.0135	169.4 ± 3.0	173.2 ± 11.6	0.43 *
34	0.1147 ± 0.001	0.2926 ± 0.0034	4.6283 ± 0.1730	1654.4 ± 17.1	1754.2 ± 32.2	0.10 <i>dis</i> .
35	0.0544 ± 0.00	$50 0.0410 \pm 0.0010$	0.3074 ± 0.0325	258.9 ± 5.9	272.0 ± 25.6	0.38
36	0.0524 ± 0.004	$14 0.0350 \pm 0.0008$	0.2529 ± 0.0242	221.9 ± 4.7	228.8 ± 19.8	1.01
37	0.0544 ± 0.003	0.0416 ± 0.0008	0.3118 ± 0.0258	262.6 ± 4.9	275.4 ± 20.2	0.38
38	0.0483 ± 0.002	0.0302 ± 0.0004	0.2007 ± 0.0115	191.6 ± 2.8	185.6 ± 9.8	0.44
39	0.0500 ± 0.002	$27 \qquad 0.0302 \ \pm \ 0.0005$	0.2084 ± 0.0124	191.8 ± 2.9	192.1 ± 10.5	0.98
40	0.0576 ± 0.002	$28 \qquad 0.0414 \ \pm \ 0.0006$	0.3290 ± 0.0182	261.8 ± 3.8	288.7 ± 14.0	0.53 dis.
41	0.1608 ± 0.00	55 0.4696 ± 0.0067	10.4153 ± 0.8865	2482.0 ± 29.7	2472.3 ± 82.5	1.30
42	0.0531 ± 0.002	$26 0.0402 \pm 0.0005$	0.2947 ± 0.0162	254.3 ± 3.4	262.2 ± 12.8	0.50
43	0.0494 ± 0.002	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1885 ± 0.0091	175.9 ± 2.2	175.3 ± 7.8	0.38
44	0.0485 ± 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2789 ± 0.0186	263.7 ± 4.0	249.7 ± 14.9	0.70
45	0.0341 ± 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2890 ± 0.0184 0.1827 ± 0.0003	243.1 ± 3.7 172.4 ± 2.2	257.7 ± 14.0 170.2 \pm 8.0	0.75
40	0.0489 ± 0.00	$23 0.0271 \pm 0.0004$	0.1827 ± 0.0093 0.2767 ± 0.0176	172.4 ± 2.2 250.3 + 3.7	170.3 ± 8.0 247.9 ± 14.1	0.63
48	0.0507 ± 0.00	$56 0.0428 \pm 0.0012$	0.3377 ± 0.0459	250.3 ± 5.7 270.3 ± 7.7	2953 ± 355	0.43
49	0.0372 ± 0.007	0.0120 ± 0.0012	0.1870 ± 0.0100	175.3 ± 2.3	173.9 ± 8.6	0.36
50	0.0521 ± 0.002	$30 0.0302 \pm 0.0005$	0.2171 ± 0.0137	192.1 ± 2.9	199.4 ± 11.6	0.70
51	0.0533 ± 0.004	$40 0.0401 \ \pm \ 0.0008$	0.2947 ± 0.0252	253.6 ± 4.7	262.2 ± 20.0	0.60
52	0.0521 ± 0.002	0.0404 ± 0.0007	0.2905 ± 0.0215	255.4 ± 4.2	258.8 ± 17.1	0.37
53	0.0513 ± 0.00	$53 \qquad 0.0425 \ \pm \ 0.0012$	$0.3006 \ \pm \ 0.0429$	$268.3 \hspace{0.2cm} \pm \hspace{0.2cm} 7.7$	$266.8 \hspace{0.2cm} \pm \hspace{0.2cm} 34.0$	0.61
54	0.0511 ± 0.004	$48 \qquad 0.0419 \ \pm \ 0.0010$	0.2957 ± 0.0323	$264.9 \hspace{0.2cm} \pm \hspace{0.2cm} 6.0$	$262.9 \hspace{0.2cm} \pm \hspace{0.2cm} 25.6$	0.64
55	0.0496 ± 0.002	$28 \qquad 0.0300 \ \pm \ 0.0004$	0.2052 ± 0.0128	190.6 ± 2.8	189.4 ± 10.8	0.48
56	0.0491 ± 0.002	$27 0.0286 \ \pm \ 0.0004$	0.1935 ± 0.0117	181.6 ± 2.6	179.5 ± 10.0	0.89
57	0.0485 ± 0.002	$26 0.0279 \pm 0.0004$	0.1869 ± 0.0109	177.6 ± 2.5	173.9 ± 9.4	0.44
58	0.0482 ± 0.002	$27 0.0316 \pm 0.0005$	0.2102 ± 0.0129	200.8 ± 2.9	193.6 ± 10.9	0.48
59 60	0.0498 ± 0.002	$20 0.0347 \pm 0.0004$ $39 0.0447 \pm 0.0009$	0.2383 ± 0.0104 0.3215 ± 0.0283	219.9 ± 2.0 282.2 ± 5.3	210.9 ± 8.0 282.9 ± 22.0	0.54

Asterisks indicate the data adopted as the youngest cluster. "dis." indicates discordant data.

トグラムと相対確率分布曲線)を第4図に示す. これら の図は、マイクロソフト社の表計算ソフトExcel用のア ドインモジュールであるIsoplot/Ex 4.15 (Ludwig, 2008)を 用いて作成した. 堆積年代の議論は基本的にはDickinson and Gehrels (2009)のYC2σ法に従い、誤差2σで重複す る粒子集団(3粒子以上)のうち最も若い集団の加重平均 値を「最若クラスター年代」として求めた. ただし、誤 差は10ではなく2 σ を採用した. また、最若クラスター 年代については、参考として、年代解析ソフト「Density Plotter」(Vermeesch, 2012)のMixture modeling (Sambridge and Compston, 1994)でも求めた.

地点1の館沢試料は、59個のジルコンがコンコーダ ント年代を示す.先カンブリア時代のジルコンはな く、254 Ma辺りにかなり大きなピークを、195 Ma、333 Ma、356 Ma辺りに小さなピークを示す.195 Maの最若 ピークは2粒子のみからなり、3粒子以上を必要とする Dickinson and Gehrels (2009)のYC2σ法が適用できないが、 本論ではこの2粒子をもって最若粒子集団とした.最若 クラスター年代は193.3±6.6 Ma(粒子数:2,MSWD: 0.0023)である.また、Density Plotterでは193.3±6.8 Ma (粒子集団数:3)を示す.最若ジルコンの年代は193.1± 10.7 Maであり、最若クラスター年代と誤差の範囲内で 一致する.

地点2の米内川試料は、60個すべてのジルコンがコ ンコーダント年代を示す. 先カンブリア時代のジルコ ンはなく、256 Ma辺りにかなり大きなピークを、190 Ma辺りにやや大きな、406 Ma辺りに小さなピークを示 す. 最若クラスター年代は191.9±3.0 Ma(粒子数:10, MSWD:0.55)である.また、Density Plotterでは192.0± 3.0 Ma(粒子集団数:3)を示す.最若ジルコンの年代は 186.1±11.2 Maであり、最若クラスター年代と誤差の範 囲内で一致する.

地点3の大川試料は、59個のジルコンがコンコーダ ント年代を示す.先カンブリア時代のジルコンはなく、 270 Ma辺りに大きなピークを、289 Ma辺りに中くらいの、 359 Maと498 Ma辺りに小さなピークを示す.最若クラ スター年代は258.6±2.4 Ma(粒子数:12, MSWD:2.3) である.また、Density Plotterでは266.1±1.1 Ma(粒子集 団数:4)が求められ、やや古い年代を示す.最若ジルコ ンの年代は253.8±3.8 Maであり、Isoplotで算出された 最若クラスター年代とは誤差の範囲内で一致する.

地点4の向井沢試料は、57個のジルコンがコンコー ダント年代を示す. このうち4個は2500-1700 Ma (先カ ンブリア時代の古原生代)の年代を示す. それ以外は顕 生代の290-170 Ma (ペルム紀〜ジュラ紀)の間に集中し、 173 Ma, 191 Ma, 252 Ma辺りに大きなピークを、221 Maと264 Ma辺りにやや大きなピークを示し、他の試料 と比べ多くのピークが認められる. 最若クラスター年代 は170.8±2.0 Ma (粒子数:6, MSWD:2.5)を示す. また、 Density Plotterでは 173.8±0.7 Ma (顕生代の粒子集団数: 3)を示す. 最若ジルコンの年代は 167.9±2.3 Maであり, Isoplotで算出された最若クラスター年代とは誤差の範囲 内で一致する.

4. 堆積年代の解釈

4.1 館沢試料及び米内川試料

地点1と2の砂岩(館沢試料及び米内川試料)について, 前者は石英・長石・岩片が概ね等量の長石質ワッケ、後 者は岩片に富む石質ワッケで、砂岩モード組成に大きな 違いがある(第3図). しかしながら、ジルコン年代につ いては、ともに最若クラスター年代が約190 Ma付近(前 期ジュラ紀中頃)であり、250 Ma辺りに大きな年代ピー クを持ち、先カンブリア時代のジルコンを含まないとい う類似した年代分布パターンを示す. 最若クラスター 年代は、砂岩堆積年代の下限を制約できるため(例えば、 Brown and Gehrels, 2007), これらの地点の砂岩は、前期 ジュラ紀中頃以降に堆積したといえる. 植田ほか(2009) は奥羽脊梁山脈西側の青森県弘前南方に露出する北部北 上帯の泥岩から、前期ジュラ紀の放散虫化石を見出し、 当時では北部北上帯最古となる陸源性砕屑岩年代を報告 した. この地層の南東延長部はちょうど北上山地の北部 北上帯西南縁部に相当し得ることから、本地域の付加体 の形成年代が前期ジュラ紀である可能性は高い. ちなみ に、松岡(1988)によって、地点1近傍の黒色チャートか らParahsuum simplum, Canoptum sp., Pantanellium sp.と いった放散虫化石が得られており、年代は前期ジュラ紀 前半を示すとされる. 館沢試料の下限年代はこの黒色 チャートよりも若く、本層序単元内での海洋プレート層

(p. 367 →)

- 第4図 砂岩中砕屑性ジルコンの分析データ. (a, c, e, g)ジ ルコン年代値のコンコーディア図. コンコーディア 図中の灰色点線楕円はディスコーダントデータを示 す. (b, d, f, h, i) コンコーダントデータにおけるヒス トグラム及び相対確率分布曲線. 横軸は²³⁸U²⁰⁶Pb年 代. 青太線は最若粒子集団を構成するジルコンにお ける20の誤差を含んだ年代を示し,緑線はその加重 平均年代値を示す. (a, b)館沢試料, (c, d)米内川試料, (e, f)大川試料, (g, h, i)向井沢試料.
- Fig. 4 Analytical data of the detrital zircon grains from the sandstone. (a, c, e, g) Concordia diagram of zircon ages. A gray ellipse in the concordia diagram is discordant data. (b, d, f, h, i) Probability density plot and histogram of the concordant data. Horizontal axis indicates a $^{238}U^{-206}Pb$ age. A blue bar indicates the zircon ages with a 2σ error composing the youngest cluster. A green line indicates a weighted mean age of the zircon ages.

(a, b) Tatezawa Sample, (b, c) Yonaigawa Sample, (d, e) Okawa Sample, (g, h, i) Mukaizawa Sample.

序は保持されている.

以上のことから,本地域の北部北上帯南西縁部に分布 する館沢試料及び米内川試料の堆積年代は,前期ジュラ 紀の可能性が高い.

4. 2 大川試料

地点3の砂岩(大川試料)については、最若クラスター 年代が258.6±2.4 Maであるため、本試料の堆積年代は 後期ペルム紀以降である. 堆積年代については三つの可 能性が考えられる.一つ目は、後期ペルム紀に堆積し た砂岩、すなわち後期ペルム紀付加体の要素がこの地点 に分布しているというものである.北上山地における 後期ペルム紀の付加体は、釜石地域に分布する桐内コン プレックスの泥岩から後期ペルム紀放散虫化石が見い だされたことから、その存在が指摘されている(Nakae and Kurihara, 2011). 桐内コンプレックスは釜石地域に おいて北部北上帯の構造的最上位に位置するとされ、南 部北上帯の古生界と断層で接する(例えば、Suzuki et al.、 2007; Nakae and Kurihara, 2011). 千枚岩質泥岩や塊状 砂岩を主体とし、珪質泥岩や珪長質凝灰岩を伴う. この 桐内コンプレックス相当層が外山地域のジュラ紀付加体 中に存在している可能性はある.しかし、地点3の岩相 は, 層状チャートや玄武岩, 泥岩珪質岩薄互層を含まな い桐内コンプレックスとは異なっており、むしろ地点1 や地点2周辺の岩相と類似する.砂岩の変形・変成度に ついては、地点1の館沢試料や地点2の米内川試料より 桐内コンプレックスの砂岩にやや似るが、本地域北部北 上帯内での変成・変形度や地点3周辺の地質構造の詳細 については未解明なためこれ以上の議論はできない.

二つ目は、大川試料は地点1の館沢試料や地点2の米 内川試料と同じ堆積年代を示すというものである. 大川 試料のジルコン年代パターンは、190 Ma付近に若いピー クを示さないこと以外は館沢試料や米内川試料のもの とほとんど変わらない. 館沢試料や米内川試料の年代パ ターンも, 最若クラスター年代に大きなピークを示すわ けではなく、250 Ma付近(後期ペルム紀)に大きなピーク を示す. 館沢試料に至っては、最若粒子集団は2粒のみ から構成されている. つまり、大川試料から前期ジュラ 紀のジルコンを抽出できていない可能性はあり得る. 南 部北上帯下部ジュラ系輩の浜層砂岩のジルコン年代パ ターン (Okawa et al., 2013) をみると、実際に最若ジルコ ンは237.6±4.0 Ma (中期三畳紀末~後期三畳紀初頭)を 示し,前期ジュラ紀のジルコンは全く検出されていない. 大川試料のモード組成は、館沢試料のものとは異なるが、 米内川試料のものとは類似する.緑れん石やチタン石の 砕屑粒子は、館沢試料及び米内川試料より少ない傾向に あるものの,前述した地点1及び2周辺との岩相類似性 も含め、大川試料の堆積年代は館沢試料や米内川試料と 同じ前期ジュラ紀の可能性がある.

三つ目は、本地域南東延長部の宮古市門馬地区に分布 する門馬コンプレックス(川村ほか、2013)中の構造的最 上位に位置している後期三畳紀の可能性がある付加体 (内野、2017)が、地点3付近に存在しているというもの である.門馬地区の後期三畳紀(?)付加体は、泥岩珪質 岩薄互層と、側方に連続性の良い層厚数100 mの砂岩・ チャート・玄武岩がシート状岩体として産することを特 徴とし(川村ほか、2013)、岩相としては地点3周辺のも のと大きな違いは認められない.ただし、周辺の詳細な 地質構造が明らかになっていないため、現段階ではこの 後期三畳紀(?)付加体に対比できるか否かは不明である.

以上のように、大川試料の堆積年代については、3つ の可能性が考えられるが、現時点で得られているデータ では結論を出すことはできない、今後、より詳細な砂岩 比較や泥岩からの放散虫化石抽出、追加のジルコン年代 測定など更なるデータを収集し検討していく必要がある.

4.3 向井沢試料

地点4の砂岩(向井沢試料)は、顕生代の290-170 Maに 大きなピークをもち、その最若クラスター年代は170.8 ±2.0 Maである.したがって、向井沢試料の堆積年代は 中期ジュラ紀以降となる. 向井沢試料と他の試料とのジ ルコン年代パターンの大きな違いは、前者には先カンブ リア時代のジルコンが含まれているということである. 内野(2018)は、奥羽脊梁山脈西側の十和田湖西方に分布 する付加体砂岩中ジルコンのU-Pb年代を測定し、174.6 ±0.7 Maの最若クラスター年代を報告した. その試料 は、先カンブリア時代の新始生代~古原生代を示すジル コンを1割含んでおり、向井沢試料の年代パターンと類 似する. 南部北上帯のジュラ紀砂岩も中期ジュラ紀以降 は先カンブリア時代古原生代のジルコンを含むことが示 されている (Okawa et al., 2013). 筆者の外山地域におけ るこれまでの予察的な検討では、地点4周辺の岩相は地 点1~3のものと比較して、厚いチャートが多いことと 地質構造が低角なことといった違いが認められる. また 年代測定試料の鏡下での特徴は、向井沢試料のモード組 成は米内川試料や大川試料のものとは異なり、館沢試料 のものと類似するが、長石成分はやや少ない.また、波 動消光を示さない石英粒子が多い.まだデータは少ない が、以上のことを勘案すると、向井沢試料は他の試料と 異なる層序単元に属する可能性があり、また、北上山地 の年代極性を考慮すれば、その分布位置から中期ジュラ 紀に堆積した可能性が高い.

5. まとめ

・北上山地北部北上帯南西縁部に分布する付加体中の砂 岩4試料から砕屑性ジルコンU-Pb年代を測定した.根 田茂帯との境界に近い層準に属する館沢試料と米内川 試料のジルコンは共に190 Ma付近の最若クラスター年 代を示し,両者とも前期ジュラ紀に堆積した可能性が 高い.

- ・館沢試料及び米内川試料より北東側の層準に属する大 川試料のジルコンは260 Ma付近の最若クラスター年代 を示し、本試料は後期ペルム紀、後期三畳紀、あるい は前期ジュラ紀に堆積した可能性がある。
- ・大川試料より北東側の層準に属する向井沢試料のジル コンは170 Ma付近の最若クラスター年代を示し、本試 料は中期ジュラ紀に堆積した可能性が高い.

謝辞:株式会社京都フィッション・トラックの檀原 徹 氏及び岩野英樹氏にはジルコンのU-Pb年代を測定いただ いた.地質情報基盤センター地質標本館室地質試料調製 グループの諸氏には薄片を作製いただいた.査読者の原 英俊博士(地質情報研究部門)には,原稿改善に当たり有 益なご意見をいただいた.記して感謝の意を表する.

文 献

- Brown, E. H. and Gehrels, G. E. (2007) Detrital zircon constraints on terrane ages and affinities and timing of orogenic events in the San Juan Islands and North Cascades, Washington. *Can. Jour. Earth Sci.*, 44, 1375– 1396.
- Dickinson, W. R. and Gehrels, G. E. (2009) Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. *Earth Planet. Sci. Lett.*, 288, 115–125.
- 永広昌之・川村信人・川村寿郎(2005) II. 1.1 東北地方, 中・ 古生界, 概説および構造帯区分. 日本の地質増補版 編集委員会編, 日本の地質増補版, 共立出版, 東京. 49-50.
- 永広昌之・山北 聡・高橋 聡・鈴木紀毅(2008) 安家
 一久慈地域の北部北上帯ジュラ紀付加体. 地質雑,
 114 補遺, 121–139.
- 岩野英樹・折橋裕二・檀原 徹・平田岳史・小笠原正継 (2012) 同一ジルコン結晶を用いたフィッション・ トラックとU-Pbダブル年代測定法の評価-島根県 川本花崗閃緑岩中の均質ジルコンを用いて-.地質 雑,118,365-375.
- Iwano, H., Orihashi, Y., Hirata, T., Ogasawara, M., Danhara, T., Horie, K., Hasebe, N., Sueoka, S., Tamura, A., Hayasaka, Y., Katsube, A., Ito, H., Tani, K., Kimura, J., Chang, Q., Kouchi, Y., Haruta, Y. and Yamamoto, K. (2013) An inter-laboratory evaluation of OD-3 zircon for use as a secondary U-Pb dating standard. *Island Arc*, 22, 382– 394.
- Jackson, S. E, Pearson, N. J., Griffin, W. L. and Belousova, E.

A. (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. *Chem. Geol.*, **211**, 47–69

- 川村寿郎・内野隆之・川村信人(2013) 早池峰山地域の 地質,第8章 北部北上帯ジュラ系.地域地質研究 報告(5万分の1地質図幅).産総研地質調査総合セ ンター, 62-67.
- Ludwig, K. R. (2008) Isoplot 3.70: Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Spec. Publ., 4, 77p.
- Lukács, R., Harangi, S., Bachmann, O., Guillong, M., Danišík, M., Buret, Y., von Quadt, A., Dunkl, I., Fodor, L., Sliwinski J., Soós, I. and Szepesi, J. (2015) Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe. *Contrib. Mineral. Petrol.*, **170**, 1–26.
- 松岡 篤(1988) 北部北上帯(狭義)よりジュラ紀古世放 散虫化石の発見. 地球科学, 42, 104–106.
- Nakae, S. and Kurihara, T. (2011) Direct age determination for an Upper Permian accretionary complex (Kirinai Formation), Kitakami Mountains, Northeast Japan. *Palaeoworld*, **20**, 146–157.
- Okada, H. (1971) Classification of sandstone: analysis and proposal. *Jour. Geology*, **79**, 509–525.
- Okawa, H., Shimojo, M., Orihashi, Y., Yamamoto, K., Hirata, T., Sano, S., Ishizaki, Y., Kouch, Y., Yanai, S. and Otoh, S. (2013) Detrital zircon geochronology of the Silurian– Lower Cretaceous continuous succession of the South Kitakami Belt, Northeast Japan. *Mem. Fukui Pref. Dinosaur Mus.*, 12, 35–78.
- Sambridge, M. S. and Compston, W. (1994) Mixture modeling of multi-component data sets with application to ionprobe zircon ages. *Earth Planet. Sci. Lett.*, **128**, 373–390.
- 産業技術総合研究所地質調査総合センター(2019)20万 分の1日本シームレス地質図V2. https://gbank.gsj.jp/ seamless/(2019年6月1日参照)
- Sakata, S., Hattori, K., Iwano, H., Yokoyama, T. D., Danhara, T. and Hirata, T. (2014) Determination of U-Pb ages for young zircons using laser ablation-ICP-mass spectrometry coupled with an ion detection attenuator device. *Geostand. Geoanal. Res.*, 38, 409–420.
- Sláma, J., Košler, J., Condon, J. D. Crowley, J. L., Gerdes, A. Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. and Whitehouse, M. J. (2008) Plešovice zircon —A new natural reference material for U-Pb and Hf isotopic microanalysis. *Chem. Geol.*, 249, 1–35.

- Suzuki, N., Ehiro, M., Yoshihara, K., Kimura, Y., Kawashima, G., Yoshimoto, H. and Nogi, T. (2007) Geology of the Kuzumaki–Kamaishi Subbelt of the North Kitakami Belt (a Jurassic accretionary complex), Northeast Japan: Case study of the Kawai–Yamada area, eastern Iwate Prefecture. *Bull. Tohoku Univ. Mus.*, no. 6, 103–174.
- 内野隆之(2017) 北部北上帯門馬コンプレックスの凝灰 質泥岩から得られた後期三畳紀のジルコンU-Pb年 代. 地質雑, 123, 977-982.
- 内野隆之(2018) 十和田湖西方に分布するジュラ紀付加 体の砕屑性ジルコンU-Pb年代.地質調査研究報告, 69, 37-46.
- 内野隆之・川村信人・川村寿郎(2008)北上山地前期石 炭紀付加体「根田茂帯」の構成岩相と根田茂帯・南部 北上帯境界.地質雑,114 補遺,141–157.
- 植田勇人・盛美和子・佐藤和泉(2009)青森県弘前市南

方の付加体泥岩から産出した前期ジュラ紀放散虫 化石.地質雑,115,610-613.

- Vermeesch, P. (2012) On the visualisation of detrital age distributions. *Chem. Geol.*, **312–313**, 190–194.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. and Spiegel,
 W. (1995) Three natural zircon standards for U–Th– Pb, Lu–Hf, trace element and REE analyses. *Geostand. Newslett.*, 19, 1–23.
- Yokoyama, T. D., Suzuki, T., Kon, Y. and Hirata, T. (2011) Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablationinductively coupled plasma mass spectrometry. *Anal. Chem.*, 83, 8892–8899.
- 吉田鎮男(1981) チャートラミナイト:岩石学的記載と 本邦地向斜における産状.地質雑, 87, 131–141.
- (受付:2019年6月10日;受理:2019年9月27日)

付録 Appendices

- 付図1 ジルコンU-Pb年代測定を行った砂岩採取地点.地形図は地理院地図(http://maps.gsi.go.jp/,参照日:2019.5.20) を使用. (a) 館沢試料, (b) 米内川試料, (c) 大川試料, (d) 向井沢試料.
- Fig. A1 Locations of sandstone for the zircon U-Pb dating. Topographic map is from the GIS map (http://maps.gsi.go.jp/, accessed: 2019.5.20) of the Geospatial Information Authority of Japan. (a) Tatezawa Sample, (b) Yonaigawa Sample, (c) Okawa Sample, (d) Mukaizawa Sample.

付表1 四重極型及びマルチコレクター型結合誘導プラズマ質量分析装置による2次標準試料のU-Pb同位体データ.

Table A1 U-Pb isotopic data from secondary zircon standards using a quadrupole and a multi-collector inductively coupled plasma mass spectrometry.

	Isotopic	ratios						Age (Ma)					
Sample	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb		Error	²⁰⁶ Pb		Error	²⁰⁷ Pb	Error	Target
Hame	²⁰⁶ Pb	2 σ	²³⁸ U	2σ	²³⁵ U		2σ	²³⁸ U		2σ	²³⁵ U	2σ	sample
GJ-1 (610.0	± 0.9 Ma)												
GJ1 1-1	0.0613	± 0.0087	0.0960	± 0.0035	0.8122	±	0.1238	590.9	±	22.8	603.7	± 118.5	*1
GJ1 1-2	0.0605	± 0.0055	0.0957	± 0.0032	0.7985	±	0.0964	589.2	±	20.4	596.0	± 93.5	*1
GJ1 1-3	0.0655	± 0.0063	0.0955	± 0.0041	0.8627	±	0.1002	587.9	±	26.2	631.6	± 97.0	*1
								589.5	±	13.2	weighted r	neans	
											Ū		
GJ1 3-1	0.0598	± 0.0017	0.0972	± 0.0013	0.8014	±	0.0275	597.8	±	8.5	597.6 :	± 27.5	*2
GJ1 3-2	0.0594	± 0.0016	0.0971	± 0.0013	0.7957	±	0.0273	597.6	±	8.5	594.4	± 27.3	*2
GJ1 3-3	0.0593	± 0.0014	0.0982	± 0.0024	0.8029	±	0.0303	604.1	±	15.5	598.4	± 30.3	*2
GJ1 3-4	0.0603	± 0.0014	0.0983	± 0.0024	0.8178	±	0.0309	604.4	±	15.5	606.8 :	± 30.9	*2
								599.2	±	5.3	weighted r	neans	
GJ1 4-1	0.0590	± 0.0040	0.0967	± 0.0012	0.7867	±	0.0601	595.0	±	6.9	589.2 :	± 34.8	*3
GJ1 4-2	0.0592	± 0.0022	0.0969	± 0.0012	0.7920	±	0.0369	596.5	±	7.4	592.2	± 21.2	*3
GJ1 4-3	0.0592	± 0.0022	0.0972	± 0.0011	0.7934	±	0.0363	598.3	±	6.7	593.0 :	± 20.8	*3
								597.0	±	4.0	weighted r	neans	
Plešovice (3.	37.1 ± 0.4	Ma)											
PSV 1-1	0.0495	± 0.0073	0.0529	± 0.0019	0.3611	±	0.0534	332.0	±	12.5	313.1 :	± 52.8	*1
PSV 1-2	0.0543	± 0.0051	0.0526	± 0.0017	0.3936	±	0.0437	330.2	±	11.1	337.0 :	± 43.5	*1
PSV 1-3	0.0527	± 0.0054	0.0530	± 0.0022	0.3853	±	0.0415	332.8	±	14.4	331.0 :	± 41.3	*1
								331.5	±	7.2	weighted r	neans	
	0.050.4	0.0045	0.050.4	0.0007	0.0700		0.0400	007.0				10.0	*0
PSV 3-1	0.0524	± 0.0015	0.0521	± 0.0007	0.3762	±	0.0128	327.3	±	4.5	324.3 :	± 12.9	*2
PSV 3-2	0.0532	± 0.0015	0.0530	± 0.0007	0.3883	±	0.0132	332.7	±	4.6	333.1 :	± 13.3	*2
PSV 3-3	0.0531	± 0.0012	0.0512	± 0.0013	0.3752	±	0.0139	321.9	±	0.1	323.5 :	± 14.0	*2
F3V 3-4	0.0529	I 0.0012	0.0515	± 0.0013	0.3756	Ι	0.0140	323.1 220.2	±	0.1 2.0	J24.0	I 14.1	2
								520.5	-	2.0	weighteu i	liealis	
PSV 4-1	0.0529	+ 0.0036	0.0517	+ 0,0006	0.3772	+	0 0282	325.3	+	38	324.9	+ 210	*3
PSV 4-2	0.0524	+ 0.0020	0.0523	+ 0.0007	0.3782	+	0.0159	328.7	+	4.0	325.6	+ 11.8	*3
PSV 4-3	0.0528	± 0.0020	0.0518	± 0.0006	0.3770	±	0.0161	325.4	±	3.7	324.7	± 12.0	*3
								326.4	±	2.2	weighted r	neans	-
											9		
00-3 (33.0	+01Ma)												
OD3 1-1	0.0516	± 0.0134	0.0052	± 0.0003	0.0370	±	0.0094	33.4	±	2.0	36.9	± 9.5	*1
OD3 1-2	0.0666	± 0.0169	0.0053	± 0.0004	0.0485	±	0.0123	34.0	±	2.3	48.1	± 12.4	*1
OD3 1-3	0.0513	± 0.0124	0.0052	± 0.0003	0.0367	±	0.0089	33.4	±	2.0	36.6	± 9.0	*1
OD3 1-4	0.0536	± 0.0125	0.0052	± 0.0003	0.0385	±	0.0088	33.5	±	2.1	38.4	± 8.9	*1
								33.5	±	1.0	weighted r	neans	
OD3 3-1	0.0440	± 0.0025	0.0050	± 0.0001	0.0307	±	0.0019	32.5	±	0.9	30.7 :	± 2.0	*2
OD3 3-2	0.0469	± 0.0017	0.0050	± 0.0001	0.0323	±	0.0015	32.2	±	0.8	32.3 :	± 1.5	*2
OD3 3-3	0.0475	± 0.0017	0.0051	± 0.0001	0.0335	±	0.0015	32.9	±	0.8	33.4 :	± 1.6	*2
OD3 3-4	0.0476	± 0.0017	0.0051	± 0.0001	0.0336	±	0.0016	32.9	±	0.8	33.5	± 1.6	*2
								32.6	±	0.4	weighted r	neans	
002 44	0.0404	. 0.0050	0.0054	1 0 0001	0.0000		0.0007	00.0		0.7	00.7		*2
003 4-1	0.0481	± 0.0052	0.0051	± 0.0001	0.0339	±	0.0037	33.0	±	0.7	33.7 :	± 3.7	*3
003 4-2	0.0432	± 0.0044	0.0050	± 0.0001	0.0297	±	0.0030	32.2	±	1.0	29.0	I 3.U	*2
003 4-3	0.0438	± 0.0066	0.0050	± 0.0002	0.0302	Ŧ	0.0045	32.2 33 E	±	0.5	JU.1 :	I 4.5	-3
								32.5	Ξ	0.5	weighted r	nearis	

*1: Tatezawa Sample; Yonaigawa Sample, *2: Okawa Sample, *3: Mukaizawa Sample