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Abstract: This paper presents usages, examples, and mathematical backgrounds of a Python script, 
UPbplot.py, which was newly developed for calculation and visualization of U–Pb age data. The script is 
a collection of various functions to deal with the one- and two-dimensional weighted means, concordia 
ages, and concordia-intercept ages on the conventional (Wetherill) and Tera–Wasserburg concordia 
diagrams for U–Pb age data. This script can calculate those ages and output images including concordia 
diagrams, bar plots, and histograms. 
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1.  Introduction

For visualization of geochronological data, such as 
uranium–lead (U–Pb) ages, Isoplot (Ludwig, 2012) has 
been successfully used for a long time. Unfortunately, 
because it was written in Microsoft® Visual Basic®, 
there are some dependent problems for specific versions 
of Excel® or operating systems. Although a new open-
source project (e.g., Topsoil; Bowring and PI CIRDLES.
org Open Source Development Team, 2016) is now 
developing to replace Isoplot, it can only deal with the 
conventional diagrams at present. In order to overcome 
such problems, a new script, UPbplot.py (Noda, 2016), 
was written in Python which is a commonly used language 
in the scientific community. It enables us to 

•  plot scattered data with error ellipses on conventional 
(207Pb*/235U–206Pb*/238U; Wetherill, 1956) and Tera–
Wasserburg (207Pb*/206Pb*–238U/206Pb*; Tera and Wasser- 
burg, 1972) concordia diagrams, 

•  calculate the one- or two-dimensional weighted mean, 
concordia, and concordia-intercept ages with errors on 
both concordia diagrams, and 

•  work on any operating systems which can run Python 
scripts. 

The purposes of this short article are to introduce the 
usage of this script, show examples of output images, and 
explain details of the calculations used in the script.

2.  Usage

2. 1	 Preparations
The script was written in Python version 2.7 series. 

If the script is run by Python version 3 series, some 
modifications are required by reference to the comments 
in the script.

Mandatory libraries of matplotlib (Hunter, 2007), 
pandas (McKinney, 2010), and SciPy (Jones et al., 2001–) 
should be installed (Table 1). When the script is executed 
in the GUI mode, further libraries of PySide, wxPython, 
and quickgui will be required (Table 1).

Table 1   List of libraries used in the script of UPbplot.py.
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Table 1: List of libraries used in the script of UPbplot.py.
Library Version License URL
matplotlib1 2.0.0 PSF BSD2 http://matplotlib.org
Numpy1 1.12.0 BSD33 http://www.numpy.org
pandas1 0.19.2 BSD3 http://pandas.pydata.org
SciPy1 0.18.1 BSD3 https://www.scipy.org
PySide 1.2.2 LGPLv2.14 https://wiki.qt.io/PySide
quickgui 1.5.6 MIT5 https://pypi.python.org/pypi/quickgui
wxPython 3.0.2.0 wxWindows-3.16 http://www.wxpython.org
1 Mandatory libraries
2 http://matplotlib.org/users/license.html
3 https://opensource.org/licenses/BSD-3-Clause 
4 https://opensource.org/licenses/LGPL-2.1
5 https://opensource.org/licenses/mit-license.php
6 https://www.wxwidgets.org/about/licence/
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2. 2	 Data and configuration files
Data files (extension of file name must be .csv) are 

comma- or tab-separated data sheets that must have at least 
six columns for isotopic ratios of 207Pb*/235U, 206Pb*/238U, 
207Pb*/206Pb*, and their errors (1σ or 2σ). Optional columns 
of Th/U ratios and their errors are also acceptable.

Configuration files (.cfg as extension) are needed to run 
the script, which define many variables used in the script. 
At first, it is recommended to copy and modify example 
files in Noda (2016).

2. 3	 Command-line mode
2. 3. 1	 Options

The script accepts some options as arguments.

Options:
  -h, --help	        �Show this help message and exit
  -i FILE, --in=FILE    �Name of input data file(*.csv)
  -c FILE, --cfg=FILE   �Name of configuration file 

(*.cfg)
  -o FILE, --out=FILE   �Name of output file (*.pdf, 

when DRIVER is pdf)
  -g, --gui	       Use GUI for file selection
  -n, --no-gui	       Do not use GUI (default)
  -d DRIVER,	       �Choose driver [pdf  (default),      
      --driver=DRIVER    qt4agg]
  -f, --force-overwrite     �Force overwrite the pre-

existing pdf

2. 3. 2　Running the script
If the script (UPbplot.py), data (data1.csv), and  

configuration (data1.cfg) files are stored in the current 
working directory, type like below in a terminal window.

　python UPbplot.py -i data1.csv

Name of the configuration file is assumed to be the same 
with that of the data file as default, but a different name 
can be set by using -c option. The following command 
line means that the script do not use GUI mode (-n), input 
data file name is data1.csv (-i), configuration file name is 
all.cfg (-c), pdf is the driver, and the pre-existing pdf file 
will be overwritten without any notice (-f).

 python UPbplot.py -n -i data1.csv -c all.cfg -d pdf -f

2. 3. 3　Output
After the script successfully works in the command-

line mode, two types of output (standard output and a 
pdf file) will be given by this script. The standard output 
includes the file names, first few lines of the input data, 
and results of calculation related to generate diagrams 
(Figure 1). A pdf file has four diagrams (A, B, C and 
D) in one file. The diagrams A and B are designated for 
plots of the measured isotopic ratios with error ellipses 
on the conventional (A) and Tera–Wasserburg (B) 
concordia diagrams, respectively. Decay constants used 

in this script are listed in Appendix A.1. Error ellipses for 
confidence regions of the measurements are illustrated 
by using covariances between the coordinates in each 
diagram (Appendix A.2). The script optionally plots 
two-dimensional (2D) weighted means (Appendix A.5), 
concordia ages (Appendix A.6), and regression lines 
(Appendix A.7), and concordia-intercept ages (Appendix 
A.7) with the confidence regions. Configuration files can 
set ranges of axes, styles of symbols and lines, labels, 
and confidence levels (e.g., 68%, 95%, or 99%) for error 
ellipses, weighted means, concordia ages, and concordia-
intercept ages. Several examples in Noda (2016) may be 
helpful to customize diagrams.

The diagram C shows bar plots of a selected age from 
among 206Pb*/238U, 207Pb*/235U, and 207Pb*/206Pb* ages with 
the one-dimensional weighted mean (Appendix A.3). The 
mean square of the weighted deviation (MSWD) can also 
be calculated (Appendix A.4).

The diagram D is a histogram of the age used in the 
diagram C with or without kernel density estimations 
(KDE), which is a way to estimate the probability density 
function (PDF) of a random variable in a non-parametric 
way. In this script, the function of stats.gaussian_kde in 
SciPy is used to obtain the KDE (SciPy.org, 2016). If the 
input data file has Th/U ratios, they can be plotted in this 
diagram.

Figure 2 is an example of plots for the Cretaceous 
granitoids in the Abukuma Highland (Ishihara and 
Orihashi, 2015). In the diagrams A and B, solid red, dashed 
blue, and dotted black ellipses represent 95% confidence 
regions of accepted, discordant (>10%), and manually 
excluded measurements, respectively. Calculation of the 
discordance is explained in Appendix A.8. Concordia ages 
are indicated by solid circles on the concordia curves, 
which are calculated from the accepted data (red ellipses 
in this case). Numbers of all (N) and accepted (n) data 
points, calculated ages, errors, and MSWD are listed in 
the upper left sides of the diagrams.

Figure 2C shows the weighted mean (blue line) of 
206Pb*/238U ages with the 95% confidence region (shaded 
band). Red square, gray and open circles with error bars 
are accepted, discordant, and excluded data, respectively. 
Figure 2D contains a histogram (left side vertical axis) for 
the same age with the diagram C, which is stacked by blue 
(accepted), gray (discordant), and open (excluded) boxes. 
The Th/U ratios (right side vertical axis) are plotted by the 
same symbols with those in the diagram C. In addition, 
kernel-density estimations of all (dashed red) and accepted 
(solid red) data are also shown in the diagram D.

Figure 3 is another example of the output image for 
the Cretaceous granitic rocks in the Setouchi area (Iida et 
al., 2015). In addition to Figure 2, the diagrams A and B 
include confidence regions of 2D weighted means (green 
ellipses) of the accepted measurements and the regression 
lines with the errors (thick blue lines with purple zones). 
Solid black and dashed gray ellipses represent confidence 
regions of accepted and discordant data, respectively. 
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Figure 1	�� An example of standard output in a terminal window. This output includes file names to be processed, a part of the input data, 
and results of calculation. In this case, the script was applied to the data of sample 68A-64 in Ishihara and Orihashi (2015).

Other symbols and lines are the same with those in Figure 2.

2. 4	 GUI mode
To run the script as the GUI mode, add -g option in the 

command line. A new window will be opened to select 
an input data file. Please notice that the GUI mode cannot 
accept any command-line options related with file names 
(-i, -c, and -o) at the present version of the script. After 
the selection of input data and/or configuration files, a 
message window will pop up to show the calculation 
process.

If PySide is installed and the user’s matplotlib has a 
backend of qt4agg, the script accepts an option of “-d 
qt4agg” as the driver.

 python UPbplot.py -g -d qt4agg

This driver enables us to modify ranges of axes, labels, 
and styles of lines, interactively. To output images in the 

GUI mode, press “Save” bottom in the toolbar. Several 
image formats, such as png, jpg, and tiff, can be chosen in 
the save dialog, in addition to pdf. Figure 4 shows main, 
preference, and message windows of the GUI mode for 
the same data of Figure 2.

3.  Summary

In this paper, I introduced usages and examples of the 
script, UPbplot.py, which had developed in order to offer 
a new tool for calculation and visualization of U–Pb age 
data. It is an operating system-independent software and 
can deal with the conventional and Tera–Wasserburg 
diagrams with error ellipses of arbitrary confidence levels. 
It can calculate and plot the one- and two-dimensional 
weighted means, MSWDs, concordia ages, and concordia-
intercept ages. This script provides an alternative tool to a 
well-known Visual Basic® add-in program for Microsoft® 
Excel® “Isoplot”.
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Figure 2	  �An example of output image derived from the same data with those of Figure 1. A: Conventional concordia diagram 
with error ellipses for 95% confidence regions of the measurements. Solid red, dashed blue, and dotted black 
ellipses are accepted, discordant, and manually excluded measurements from the calculation, respectively. A solid 
black circle on the concordia curve indicates the concordia age. N and n indicate numbers of total and accepted 
measurements, respectively. B: Tera–Wasserburg concordia diagram for the same legend with A. C: Bar plots of 
206Pb*/238U ages and their weighted mean (blue line) with its 95% confidence region (shaded band). Red squares, 
gray circles, and open circles with error bars are accepted, discordant, and excluded measurements, respectively. 
D: Histogram of 206Pb*/238U age (left side of the vertical axis). Blue, gray, and, open boxes are accepted, discordant, 
and excluded measurements, respectively. Kernel density estimates of all (dashed red line) and accepted (solid 
red line) measurements are also illustrated. Th/U ratios (right side of the vertical axis) are indicated by the same 
symbol with C.

Appendix

A. 1	 Decay constants
The following decay constants are used in the script, 

based on Jaffey et al. (1971), Steiger and Jäger (1977) and 
Hiess et al. (2012) (see Schoene, 2014).

λ238U = 1.55125×10−10 [year−1] ±0.107% (2σ)

λ235U = 9.8485×10−10 [year−1] ±0.137% (2σ)

λ232Th = 4.9475×10−11 [year−1] ± ∼ 1% (2σ)
238U
235U

= 137.818 ±0.045 (2σ)

A. 2	 Concordia diagrams
Coordinates of X and Y for the conventional concordia 

diagram (Wetherill, 1956) are written as functions of time t,

 (A1)

 
(A2)

where asterisks denote radiogenic components. Coordinates 
of x and y for the Tera–Wasserburg concordia diagram 
(Tera and Wasserburg, 1972) can be expressed by using 
eqs. (A1)–(A2) and the constants in Appendix A.1.
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X =
207Pb∗
235U

= exp(λ235Ut)−1 (A1)

Y =
206Pb∗
238U

= exp(λ238Ut)−1 (A2)

where asterisks denote radiogenic components. Coordinates of x and y for the Tera–Wasserburg concordia dia-

gram (Tera and Wasserburg, 1972) can be expressed by using eqs. (A1)–(A2) and the constant in Appendix A.1.
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137.818
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Y
. (A4)

Because both coordinates of X and Y (x and y) are not independent each other, the covariance of X and Y

(x and y) is needed to obtain confidence regions of the measurements, which is defined as

cov(X,Y ) ≡ σXσYρXY (A5)

cov(x, y) ≡ σxσyρxy (A6)

where σX and ρXY mean the standard deviation of X and the error correlation between X and Y , respectively.

For the calculation of the error correlations in eqs. (A5) and (A6), error propagation (Taylor, 1997) should

be considered. As for x = 1/Y from eq. (A3) and y = uX/Y (u is a constant) from eq. (A4),
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Figure 3	� Another example of output image. A: Conventional concordia diagram with 95% confidence regions of the 
measurements. Solid and gray dashed ellipses are accepted and discordant data, respectively. Two-dimensional 
weighted mean (solid green ellipse), concordia age (solid black circle), two regression lines (thick blue lines) with 
the errors (shaded areas) are also plotted. B: Tera–Wasserburg concordia diagram for the same legend with A. C: 
Bar plots of 206Pb*/238U ages. Symbols are same with Figure 2C. D: Histogram of 206Pb*/238U age and Th/U ratios. 
Symbols are same with Figure 2D. The data come from sample 080122I01 in Iida et al. (2015).
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For the calculation of the error correlations in eqs. 
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be considered. As for x = 1/Y from eq. (A3) and y = uX/Y 
(u is a constant) from eq. (A4),
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where Sx  = sx /X and Sy  = sy /Y are relative errors in the 
measures. Then, eqs. (A7) and (A8) yield relative errors of
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where SX = σX/X and SY = σY/Y are relative errors in the measures. Then, eqs. (A7) and (A8) yield relative
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where Sx = σx/x and Sy = σy/y. For the inverse case of eq. (A8), X = y/(ux), we obtain

S2
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x + S2
y −2SxSyρxy . (A11)

Therefore, the error correlations can be calculated from eqs. (A9)–(A11),

ρXY =
S2
X + S2

Y − S2
y

2SXSY
(A12)

ρxy =
S2
Y − SXSYρXY

SxSy
. (A13)

Please notice that eq. (A13) is different from the equation of ρxy in p. 27 of Ludwig (2012).

By using the covariances of eqs. (A5)–(A6) with error correlations of eqs. (A12)–(A13), we can draw error

ellipses showing the two-dimensional “normally distributed” areas with certain confidences, especially 68%

8
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Figure 4	� A collection of screenshots of the GUI mode. A: Main window of the diagrams. B: Preference panel to control ranges of axes 
and labels in the diagrams. C: Message window showing result of calculation. The U–Pb data are same with Figure 1.
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where Sx = sx/x and Sy = sy/y. For the inverse case of eq. 
(A8), X = y/(ux), we obtain

 (A11)

Therefore, the error correlations can be calculated from 
eqs. (A9)–(A11),

 (A12)

 (A13)

Please notice that eq. (A13) is different from the equation 
of rxy in p. 27 of Ludwig (2012).

By using the covariances of eqs. (A5)–(A6) with 
error correlations of eqs. (A12)–(A13), we can draw 
error ellipses showing the two-dimensional “normally 
distributed” areas with certain confidences, especially 
68% (≈1s) and 95% (≈2s).

A. 3	 One-dimensional weighted mean
Weighted mean (weighted average) is a kind of mean 

with consideration of errors. For the one-dimensional 
case, the weighted mean is written as

where Xi is the measurement of the ith component of a 
total of N measurements, and ω(Xi) is weight of each 
measurement. The weight is an inverse square of the 
standard deviation sXi divided by sum of them,

Variance of the weighted mean is

when each of the measurements are independent (McLean 
et al., 2011).

If we use 95% confidence region of the weighted mean 
X, it can be simply calculated by using sX times 1.96 
(Student’s t for an infinite sample size).

A. 4	 Mean square of the weighted deviation (MSWD)
Mean square of the weighted deviation (MSWD) 

was originally developed for statistical evaluation of 
a regression line (e.g.,Wendt and Carl, 1991), which 
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(≈1σ) and 95% (≈2σ).

A.3 One-dimensional weighted mean

Weighted mean (weighted average) is a kind of mean with consideration of errors. For the one-dimensional

case, the weighted mean is written as

X =
N∑
i=1
ω(Xi)Xi

where Xi is the measurement of the ith components of a total of N measurements, and ω(Xi) is weight of each

measurement. The weight is an inverse square of the standard deviation σXi divided by sum of them,

ω(Xi) = (σXi )−2
/ N∑

i=1
(σXi )−2.

Variance of the weighted mean is

σ2
X
= 1

/ N∑
i=1

(σXi )−2

when each of the measurements are independent (McLean et al., 2011).

If we use 95% confidence region of the weighted mean X , it can be simply calculated by using σX times

1.96 (Student’s t for an infinite sample size).

A.4 Mean square of the weighted deviation (MSWD)

Mean square of the weighted deviation (MSWD) was originally developed for statistical evaluation of a regres-

sion line (e.g., Wendt and Carl, 1991), which indicates how well the line describes the data Xi . When a value of

MSWD is less than 1, the observed deviations from the regression line are considered within analytical error.

Otherwise, if it is more than 3, interpretation of such line may be doubtful. It is written as
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where S is sum of “residual” that is sum of distances from 
each data point to the regression line (to the weighted 
mean for the one-dimensional case),

 (A15)

and df is degree of freedom, N –1.

A. 5	 Two-dimensional weighted mean
The two-dimensional weighted mean (X, Y ) can be 

obtained by minimizing the sum of the squares of the N 
error weighted residuals (Ludwig, 1998) as,

 
 

(A16)

where vi is a vector of residuals written as

 (A17)

and Ωi is

 (A18)

Solving eqs. (A16)–(A18) gives (X, Y ) that minimize S as

 (A19)

 (A20)
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MSWD = S
/

df (A14)

where S is sum of “residual” that is sum of distances from each data point to the regression line (to the weighted

mean for the one-dimensional case),

S =
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(Xi − X)2

σ2
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and df is degree of freedom, N −1.

A.5 Two-dimensional weighted mean

The two-dimensional weighted mean (X , Y ) can be obtained by minimizing the sum of the squares of the N

error weighted residuals (Ludwig, 1998) as,
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Standard deviations of the means (sX and sY) are 
derived from eq. (9) in Ludwig (1998),

 (A21)

 (A22)

The MSWD can be calculated by eq. (A14) with S of eq. 
(A16) and the degree of freedom, df = 2N – 2.

A. 6	 Concordia ages
A. 6. 1	 Conventional concordia curve

A point on the conventional concordia curve (Xc , Yc) 
is expressed as a function of time t using eqs. (A1) and 
(A2). The vector of residuals vi represents the difference 
between (Xc , Yc) and each measurement (Xi , Yi),

 (A23)

The best t can be obtained, when the least sum of the 
weighted squared residuals of eq. (A16) with eqs. (A18) 
and (A23) is minimum. As mentioned in Ludwig (1998), 
the two-dimensional weighted mean of eqs. (A19)–(A20) 
and the standard deviation of eqs. (A21)–(A22) are 
practically used to calculate the minimum S and t for (Xc, 
Yc). The least square method (the function of optimize.
leastsq in SciPy) is applied in this script to calculate t to 
minimize S.

The variance in t is

where
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Standard deviations of the means (σX and σY ) are derived from eq. (9) in Ludwig (1998),

σX =

����� ∑N
i=1Ω

22
i

∑N
i=1Ω

11
i

∑N
i=1Ω

22
i −

(∑N
i=1Ω

12
i

)2 (A21)

σY =

����� ∑N
i=1Ω

11
i

∑N
i=1Ω

11
i

∑N
i=1Ω

22
i −

(∑N
i=1Ω

12
i

)2 . (A22)

The MSWD can be calculated by eq. (A14) with S of eq. (A16) and the degree of freedom, df = 2N −2.

A.6 Concordia ages

A.6.1 Conventional concordia curve

A point on the conventional concordia curve (Xc , Yc) is expressed as a function of time t using eqs. (A1) and

(A2). The vector of residuals vi represents the difference between (Xc , Yc) and each measurement (Xi , Yi),

vi =
����
�

Xi − Xc

Yi −Yc

����
�
=

����
�

Ri

ri

����
�
. (A23)

The best t can be obtained, when the least sum of the weighted squared residuals of eq. (A16) with eqs. (A18) and

(A23) is minimum. As mentioned in Ludwig (1998), the two-dimensional weighted mean of eqs. (A19)–(A20)

and the standard deviation of eqs. (A21)–(A22) are practically used to calculate the minimum S and t for (Xc ,

11

A new tool for calculation and visualization of U–Pb age data: UPbplot.py

Solving eqs. (A16)–(A18) gives (X , Y ) that minimize S as

X =

∑N
i=1Ω

22
i

∑N
i=1(XiΩ

11
i +YiΩ12

i )−∑N
i=1Ω

12
i

∑N
i=1(YiΩ22

i + XiΩ
12
i )

∑N
i=1Ω

11
i

∑N
i=1Ω

22
i −

(∑N
i=1Ω

12
i

)2 (A19)

Y =

∑N
i=1Ω

11
i

∑N
i=1(YiΩ22

i + XiΩ
12
i )−∑N

i=1Ω
12
i

∑N
i=1(XiΩ

11
i +YiΩ12

i )
∑N

i=1Ω
11
i

∑N
i=1Ω

22
i −

(∑N
i=1Ω

12
i

)2 . (A20)

Standard deviations of the means (σX and σY ) are derived from eq. (9) in Ludwig (1998),

σX =

����� ∑N
i=1Ω

22
i

∑N
i=1Ω

11
i

∑N
i=1Ω

22
i −

(∑N
i=1Ω

12
i

)2 (A21)

σY =

����� ∑N
i=1Ω

11
i

∑N
i=1Ω

11
i

∑N
i=1Ω

22
i −

(∑N
i=1Ω

12
i

)2 . (A22)

The MSWD can be calculated by eq. (A14) with S of eq. (A16) and the degree of freedom, df = 2N −2.

A.6 Concordia ages

A.6.1 Conventional concordia curve

A point on the conventional concordia curve (Xc , Yc) is expressed as a function of time t using eqs. (A1) and

(A2). The vector of residuals vi represents the difference between (Xc , Yc) and each measurement (Xi , Yi),

vi =
����
�

Xi − Xc

Yi −Yc

����
�
=

����
�

Ri

ri

����
�
. (A23)

The best t can be obtained, when the least sum of the weighted squared residuals of eq. (A16) with eqs. (A18) and

(A23) is minimum. As mentioned in Ludwig (1998), the two-dimensional weighted mean of eqs. (A19)–(A20)

and the standard deviation of eqs. (A21)–(A22) are practically used to calculate the minimum S and t for (Xc ,

11

A new tool for calculation and visualization of U–Pb age data: UPbplot.py

Yc). The least square method (the function of optimize.leastsq in SciPy) is applied in this script to calculate t

to minimize S.

The variance in t is
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Three MSWDs are considered for the concordia ages, which include the MSWD for X–Y equivalence that is

sum of S (Xi , Yi) divided by 2N −1, the MSWD for concordance that is S (X , Y ), and the MSWD for combined

equivalence and concordance (p. 667 in Ludwig, 1998). The script outputs one of the MSWDs according to

the settings in the configuration file.
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the settings in the configuration file.
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S =
N∑
i=1

Zi(Yi − bXi − a)2

is minimized. Because this equation cannot be solved explicitly, the MLE method is used to calculate the best

b,

b =
−B±

√
B2+4AC
2A

where

A =
N∑
i=1

Z2
i

(
(Xi − X)(Yi −Y )
ω(Xi)

− ρXY (Xi − X)2√
ω(Xi)ω(Yi)

)

B =
N∑
i=1

Z2
i

(
(Xi − X)2
ω(Yi)

− (Yi −Y )2
ω(Xi)

)

C =
N∑
i=1

Z2
i

(
(Xi − X)(Yi −Y )

ω(Yi)
− ρXY (Yi −Y )2√
ω(Xi)ω(Yi)

)
.

Therefore, b has two solutions, meaning two lines are obtained.

The variances of a and b are given by

σ2
a =

N∑
i=1

X2
i Zi

/ N∑
i=1

Zi

N∑
i=1

(Xi − X)2Zi

σ2
b = 1

/ N∑
i=1

(Xi − X)2Zi .

The concordia-intercept age is the age (t) at which the regression line of eq. (A24) intersects the concordia

curve, meaning |Yc −Y ′ | is zero.
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methods to calculate the discordance (%).
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A.8 Data rejection

Discordant data can be excluded from calculation of the weighted mean, concordia, and concordia-intercept

ages. The script can choose one from among the following three methods to calculate the discordance (%).

Discordance =
(
1−

206Pb∗/238U age
207Pb∗/206Pb∗ age

)
×100,

=

(
1−

207Pb∗/235U age
207Pb∗/206Pb∗ age

)
×100,or

=

(
1−

206Pb∗/238U age
207Pb∗/235U age

)
×100

where

207Pb∗
235U

age =
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λ235U

log
( 207Pb∗

235U
+1
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206Pb∗
238U

age =
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λ238U

log
( 206Pb∗

238U
+1

)
.

207Pb∗/206Pb∗ age is the time t, when

����
238U
235U

207Pb∗
206Pb∗

− exp(λ235Ut)−1
exp(λ238Ut)−1

���� = 0.
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U–Pb 年代データのための新しい計算・可視化ツールの開発 : UPbplot.py

野田　篤

要   旨

本稿は，U–Pb年代データの計算・可視化のために新しく開発したスクリプト（UPbplot.py）の使用方法と使用例及び数学的背景
についての解説である．このスクリプトは，U–Pb年代値の1次元または 2次元の加重平均，標準（Wetherill）及び Tera–Wasserburg
コンコーディア図におけるコンコーディア年代・コンコーディア曲線とのインターセプト年代を求めるための関数を含んでおり，それ
らの計算結果やコンコーディア図・棒グラフ・ヒストグラムなどのグラフを出力することができる．
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