震源データを用いた深部構造解析手法の検討 – 東北日本の例 –

楠瀬勤一郎¹·川方裕則²·竹内淳一³

Kinichiro Kusunose, Hironori Kawakata and Jun-ichi Takeuchi (2004) Investigation on analysis method for deep structure using hypocenter data – example in northern Honshu –. *Bull. Geol. Surv. Japan*, vol. 55(11/12), p.423 - 429, 8 figs.

Abstract: Using the earthquake catalog data provided by the Meteorological Agency at the existing observation points, the correlation between the hypocenter distribution and deep-seated geothermal resources areas under plains was investigated in northern Honshu. Although the used data might not be reflecting the steady seismic activity of northern Honshu enough since the period after completion of the dense network of seismic stations is short, it turns out that seismic activity is not so active in deep-seated geothermal resources areas. Ito *et al* (1990) pointed out that the lower limits of depth distribution of the hypocenters are correlative with degree of heat flow. Therefore, we tried to extract some informations on the temperature distribution of the crust from hypocenter distribution data. The result indicates that the circumference of "Furukawa" deep-seated geothermal resource area is active in seismic activity in comparison with "Furukawa" geothermal resource area itself. Many researches such as identification of the positions of earthquake reflective sides using the seismic wave forms, have carried out. Moreover, the 2003 northern Miyagi earthquake is under investigation, then it is expected that the situation in the crust under "Furukawa" geothermal area will become more clear.

Keywords: Japan Meteorological Agency Earthquake Catalog, Deep-seated hot water Resources, Furukawa

要 旨

稠密な微小地震観測網の整備が完成した1998年以 降,気象庁が大学・防災科学研究所などの諸機関のデー タ提供も受け,震源を求めて公開している,いわゆる 震源一元化データは,従前の気象庁の地震カタログに 比較し, 質量ともに格段に向上した. 本研究では, 気 象庁震源一元化データを使用し,50万分の1地熱資源 図「秋田」と「新潟」の両地域における地震の震源分 布と深層熱水資源賦存地域との相関を調べた.既存 データの範囲では,深層熱水資源賦存地域は地震活動 があまり活発でないことがわかった. 震源の深さ分布 の下限は地殻熱流量と相関がある(Ito, 1990など)と いう指摘があり、地殻内部に発生する地震について、 震源の深さ分布の下限を求めた、震源分布の下限と地 殻熱流量についての相関の可能性は示唆されたが,観 測期間が限られていることなどにより,震源が十分面 的にカバーしておらない為、両者について明瞭な関係 を示すまでにはいかなかった.

1.はじめに

世界的有数の地震災害国である我が国は, 地震予 知・地震災害の軽減を目的とした地震観測網が世界で 最も稠密に張り巡らされている.これらの地震観測結 果は,波形データとしてだけでなく,震源,発震機構 解などさまざまな形で公開され,研究・調査に用いら れている.ここでは,圧縮応力が支配的な場での深層 熱水資源賦存地域の構造について,50万分の1地熱資 源図「秋田」(緯度38°~40°,経度139°~142°)と「新 潟」(緯度36.5°~38.5°,経度138°~141°)の両地域(以 後,「秋田」,「新潟」と呼ぶ) を取り上げ,気象庁か ら公開されている震源データを用い考察する.

気象庁の公開データの性格について考察を行い,地 震の震源分布と深層熱水資源賦存地域の空間的な相関 について考察を行い,深層熱水資源賦存地域の構造を 詳しく調べるのに適切なモデル地域を選定した.

2. 震源分布から何を期待するのか?

地震は地殻中で発生する動的不安定現象であり,そ の発生は震源周囲の物理的な環境を反映する.そこで, 深部のどのような物理環境が地震の発生に影響を及ぼ すのかという観点から,さまざまな研究が行われてき ており,地殻内で発生する地震の震源の深さの下限と, 地殻熱流量には密接な関係があることが知られている [Ito (1990)].

Ito (1990)は,京都大学が展開していた近畿北部の観

¹地圈資源環境研究部門(Institute for Geo-Resources and Environment, GSJ)

²京都大学 防災研究所(Disaster Prevention Research Institute, Kyoto University)

³立命館大学 理工学研究科(The Institute of Science & Engineering, Ritsumeikan University)

測ネットワークによって1976年から1987年の間に観 測された21,000個以上の震源データを用いて内陸地震 における震源の深さの下限と地殻熱流量を関連付け, 震源の深さの下限と地表の地殻熱流量には逆相関があ り,下限は地温が約200度~400度の範囲であること を示唆した.また,田中・伊藤(2002)は,1984年長野 県西部地震の余震域で整備された地震観測網の微小地 震データと,観測網周囲の観測井で行われた温度検層 及び温度回復試験から得られた温度構造を用い,長野 県西部地域における地殻内地震の下限温度が,ほぼ 250℃であることを示した.

3. 気象庁一元化データ

Ito (1990)の示した結果を発展させ,様々な地質条件 と組み合わせて議論するためには,特に深さの決定精 度の高い震源データが整備される必要がある.これま では,気象庁の観測網を基に決定していた気象庁震源 データは,観測点の密度が十分でなく,このような研 究に用いるには不十分であった.

1995年に発生した兵庫県南部地震を契機に,高感度 地震観測網が,防災科学技術研究所を中心に全国に展 開・整備された.気象庁は地震防災対策特別措置法の 趣旨に従い,防災科学技術研究所,大学等関係機関の 観測網のデータ提供を受け,震源決定を行うことと なった.気象庁では,震源情報の精度を高めていくた めに再検測,再々検測を行っており,決定された震源 情報を公開している.これらの震源データは,従前の 気象庁震源データに比べ質・量ともに大きく向上して おり,「気象庁一元化震源」と一般に呼ばれている.本 報告は,気象庁一元化震源データにもとづいて行うこ とにした.

気象庁がネット上で公開している全期間(1923年~2003年8月)の震源を使い「秋田」の深さ45kmまでの震源分布を第1図に示す.総地震数は22,328個であった.

第2図は、防災科学技術研究所の高感度地震観測網 (Hi-net)が整備された後の期間(1998年1月~2003 年8月)の震源分布を示す.総地震数は14,434個であ り、観測網の充実により、2003年8月までに気象庁が 決定した震源の64パーセントが1998年1月から2003 年8月に観測されたことになる.第3図はこれらの地 震について、マグニチュード(M)と累積個数(N)を 示したもので、マグニチュード2付近で累積個数Nの 増加が頭打ちになっており、この地域で地震が漏れな く観測されているのは、マグニチュード2以上と考え られる.

しかし,この期間には火山性地震や2003年7月26日 に宮城県北部で発生した M6.2 に起因する余震が含ま れており、定常的な内陸地震活動をあらわしていると はいえない.このように不均一なデータではあるが、 地震が発生している地域では地震発生層が見てとれる だけの十分な数のデータが存在する.よって本報告で は震源決定精度がほぼ一様であると思われる1998年か ら2003年8月までの気象庁一元化震源データを使用す ることとする.

4. 震源分布

第4図は、1998年1月~2003年8月の期間に発生し た地震の震源を「秋田」地熱資源図の上にプロットし たもので、火山フロントに沿って活発な地震活動が見 られる.また、2003年7月26日に宮城県北部のほか、 1962年宮城県北部地震や1996年の鬼頭地震の余震域 で引き続き活発な地震活動が続いていることが見て取 れる.また、図中青色に塗りつぶして示している深層 熱水資源賦存地域では、地震がほとんど発生してい ない.

第5図は0.1度で区切った区画内で発生した地震の 浅いほうから10%目の地震が発生した深さ(震源深さ の上限)と90%目の地震が発生した深さ(震源深さの 下限)を示す.ただし,5個以下しか発生しなかった区 画は削除した.

同様に 第6図は、「新潟」の深さ45kmまでの震 源分布,第7図は地震発生層上限下限を示す.この地 域は「秋田」より内陸地震活動が活発で広い地域にわ たって地震が分布しているが、深層熱水資源賦存地域 では、一部を除き地震がほとんど発生していない.

5. 深層熱水資源賦存地域「古川」

深層熱水資源賦存地域「古川」の西は火山フロント が通過しており、栗駒山や鳴子火山で地震活動が活発 であり, 東側は1962年宮城県北部地震 (M6.5) の余震 域に活発な地震活動が観測される。また、2003年7月 26日にはこの地域の南東で宮城県北部地震(M6.2)が 発生した、深層熱水資源賦存地域「古川」の周囲では 地震活動は活発であるが,熱水資源賦存地域では地震 が発生していない空白域となっている。第8図に、鳴 子火山-1962年のM6.5の余震域を含むほぼ東西の地 域と深層熱水資源賦存地域「古川」の南西に位置する 地震群-1962年のM6.5の余震域,に沿った震源分布 断面図を示す、この地域は、鳴子火山の発生機構を解 明するため、地震波の波形解析や電磁探査等を用いた 研究が活発に行われており(Mitsuhata et al., 2001), 1962年の地震を発生した地震断層の下や深層熱水資源 賦存地域「古川」の地下15kmに地震波反射面が存在 していることが明らかになった(Hasegawa et al.,

2000). 現在, 2003 年宮城県北部地震の震源過程の解 明が進んでおり, これらの成果を検討することで, 深 層熱水のメカニズムについての理解が深まることが期 待される.

6.議論

「秋田」・「新潟」地熱資源図と地震活動度を比較して みると、深層熱水資源賦存地域では地震があまり発生 していない.ただし「新潟」の日本海側にある深層熱 水資源賦存地域は例外的に多くの地震活動が見られる. このことは、地熱資源図に示されている深層熱水資源 地域とされる地域が正しいとすれば、前弧と背弧では 深層熱水資源の地殻内における状況が違う可能性があ る.使用した、気象庁一元化データカタログ期間が短 いので、震源分布が定常的なものをあらわしていない と思われるが、十分な数の震源があるので、Clustering Analysis (例えば、Gvishiani and Dubois; 2002)を行 なうことで、隠れている構造が明らかになると思わ れる.

熱水資源賦存地域「古川」については,垂直断面図 上で空白域がお椀状になっている.これは,1962年・ 2003年の宮城県北部地震の地震断層が西に傾斜してい るため,余震分布も断層に沿う形となり,お椀状の西 側を形作っていると考えられる.一方,東側では鳴子 火山から深層熱水資源賦存地域「古川」に向けて地震 発生層下限は下降している.このことは地殼熱流量が 減少していることを示している可能性がある.今後, これら反射面となっている水と深層熱水との関係を中 心に検討を進めたい.

7.まとめ

既存の観測点によって験測された気象庁震源一元化 データを使用し,東北地方における地震の震源分布と 深層熱水資源賦存地域との相関を調べた.稠密な地震 観測網が整備されてからの期間が短いため,用いた データが東北地方の定常的な地震活動を十分反映して いない可能性があるが,深層熱水資源賦存地域では地 震活動があまり活発でないことがわかった.地殻内部 に発生する地震について,震源の深さ分布の下限を求 めた.Ito (1990)らによれば,震源の深さ分布の下限は 地殻熱流量と相関があるといわれており,今後地殻熱 流量との比較を行い,あるいは震源分布データから地 殻深部の温度分布について情報を抽出することも有用 であろう.深層熱水資源賦存地域「古川」の周囲は地 震活動が活発であり,地震波形を用いた地震反射面の 位置の同定など多くの研究成果が出ている.また, 2003年宮城県北部地震の震源域は,調査が進行中であ り,今後より詳細な地殻内の状況が明らかになってく ることが期待される.

謝辞:本報告で使用した気象庁震源一元化データは, 京都大学防災研究所よりデータの提供を受けた.なお, 震源分布図作成には,SEIS-PC for Windows を使用した.ここに謝意を表する.

文 献

- Gvishiani, A. and Dubois, J.O. (2002) Artificial Intelligence and Dynamic Systems for Geophysical Application, *Springer, Berlin*, 347p.
- Hasegawa, A., Yamamoto, A., Umino, N., Miura, S., Horiuchi, S., Zhao, D. and Sato, H. (2000) Seismic activity and deformation process of the overriding plate in the northeastern Japan subduction zone, *Tectnophysics*, **319**, 225-239.
- Ito, K. (1990) Regional Variations of the Cutoff Depth of Seismisity in the Crust and Their Relation to Heat Flow and Large Inland-Earthquakes, *J. Phys. Earth*, **38**, 223-250.
- Mitsuhata, Y., Ogawa, Y., Mishina, M., Kohno, T., Yokokura, T. and Uchida, T., (2001) Electromagnetic heterogeneity of the seismogenic region of 1962 M.6.5 Northern Miyagi Earthquake, northeastern Japan, *Geophys. Res. Lett.*, 28, 4371-4374.
- 高橋正明・駒澤正夫·村田泰章·玉生志郎 (1997): 50万 分の1秋田地熱資源図説明書 (31-2), 地質調査所, 162p.
- 高橋正明・山口 靖・野田徹郎・駒澤正夫・村田泰章・ 玉生志郎 (1997) 50 万分の1新潟地熱資源図説明 書(31-1), 地質調査所, 116p.
- 田中明子・伊藤久男 (2002) 長野県西部地域における地 殻内地震の下限深度とその場の温度, 地震, 55, 1-10.
- Turcotte, D. and Schubert, G. (1982) Geodynamics application of continuum physics to geologic problems, *John Wiley & Sons*, 450 p.
- (受付:2004年10月26日;受理:2004年12月16日)

第1図 1923 年から 2003 年 8 月までの 50 万分の 1 「秋田」における浅発地震の活動. Fig. 1 Shallow earthquakes occurred in the map of 1:500,000 scaled "Akita" from 1923 to August 2003.

第2図 1998 年から 2003 年8 月までの 50 万分の1 「秋田」における浅発地震の活動. Fig. 2 Shallow earthquakes occurred in the map of 1:500,000 scaled "Akita" from 1998 to August 2003.

第3図 第2図に震源を示した地震の規模別頻度分布とb値(左上),累積個数(右上),震源の深さ(左下)の経年変化.

Fig. 3 Upper left diagram: Magnitude histogram and b-values of earthquakes of which hypocenters are shown on Fig. 2, Upper right diagram: Annual change of cumulative number of earthquakes, Lower left diagram: Annual change of depths of hypocenters

1998 1/1 0:0 -- 2003 8/31 23:59

Fig. 4 Comparison between earthquake activities from 1998 to August 2003, and 1:500,000 scaled geothermal resources map "Akita"

- 第5図 秋田地熱資源図と地震発生層上下限.0.1-間隔の震源深さの上限(左)と下限(右).色が暗色になるに従い,深度が深くなる.
- Fig. 5 1:500,000 scaled geothermal resources map "Akita" and upper & lower limits of depths of epicenters gritted by 0.1∞. Left diagram: Upper limits, Right diagram: Lower limits. Color legends: The darker the deeper for depths of epicenters.

第6図 1998年から2003年8月までの地震活動度と新潟地熱資源図.

Fig. 6 Comparison between earthquake activities from 1998 to August 2003, and 1:500,000 scaled geothermal resources map "Niigata"

- 第7図 新潟地熱資源図と地震発生層上下限.0.1-間隔の震源深さの上限(左)と下限(右上).色が暗色になるに従い,深度が 深くなる.
- Fig. 7 1:500,000 scaled geothermal resources map "Niigata" and upper & lower limits of depths of epicenters gritted by 0.1∞ . Left diagram: Upper limits, Right diagram: Lower limits. Color legends: The darker the deeper for depths of epicenters.

- 第8図 深層熱水資源賦存地域「古川」周辺の震源分布. 鳴子火山-1962年のM6.5の余震域を含むほぼ東西の地域(右上図). 深層熱水資源賦存地域「古川」の南西に位置する地震群-1962年のM6.5の余震域(左下図).
- Fig. 8 Epicenter distribution maps in and around the deep-seated geothermal resources area "Furukawa". Upper right diagram: East-West cross section along the "Furukawa" area from Narugo volcano to the aftershock region of 1962 earthquake (M6.5). Lower right diagram: Northeast-Southwest cross section along the "Furukawa" area, including the aftershock region of 1962 earthquake (M6.5) to the southwest of "Furukawa" area.