関東平野南部における土壌の地球化学的研究 - 土壌地球化学図の基礎研究(第5報)総括 --

寺島 滋¹·今井 登¹·太田充恒¹·岡井貴司¹·御子柴真澄¹

Shigeru Terashima, Noboru Imai, Atsuyuki Ohta, Takashi Okai and Masumi Mikoshiba (2004) Geochemistry of soils from the southern Kanto district, Japan: Preliminary study for the soil geochemical mapping (part 5: Generalization). *Bull. Geol. Surv. Japan*, vol. 55(1/2), p.1 - 18, 5 figs., 7 tables.

Abstract: In order to characterize the geochemical map of soil elements, major and minor elements were determined for Kuroboku soils, brown forest soils and alluvial soils collected in the southern Kanto district, Japan. The effects of biological accumulation on the soil elements are evaluated with the analyses of several plant materials. Compared to the crustal abundance, the plant materials are often enriched in P, Sb, Zn, Cd, Cu, Ca, Pb, Bi, Mn, Sr, K, Mo, As and Sn, but depleted in Al, Ti, Fe, Li, Cs, Tl, Be, Co, Cr, Ni, V, Ga, La, Ce, Th, U, Y and Zr. Most of the elements enriched in plant materials are generally dominant in the uppermost soil layers, reflecting the biological accumulation process. Whereas the elements depleted in the plant materials are clearly lower in the upper soil layers than the deeper one. This may be caused by the diagenetic transportation and the diluting effects by soil water and organic materials which accumulated during soil forming process. It is assumed that the parent material of the studied Kuroboku soils originated from the atomospheric transport materials such as altered tephra, reworked crustal materials with the fine particles of aeolian dust. The brown forest soils are composed mainly of altered basement rocks, and a small amount of the atomospheric transport materials. Both clastic materials derived from basement rocks and the atomospheric transport materials are significant sources of the alluvial soils. Compared to the noncultivated soils, cultivated soils are dominant in K and P through its suppying the manures. There is a clear difference in the chemical composition of the river sediments and the soils. In some samples collected around the highly industrialized areas, recent anthropogenic pollution for heavy metals are recognized. The geochemical mapping according to analyses of the soil itself will be useful for evaluation of recent environmental pollution and estimation of background level concentration of soil elements.

Keywords: Kuroboku soil, brown forest soil, alluvial soil, major and trace element, geochemical behavior, geochemical map, southern Kanto district

要 旨

土壌地球化学図の作成に関する予察的研究の総括とし て,関東平野南部で新たに採取した土壌柱状・表層試料中 の主・微量成分元素を分析し,土壌中元素の地球化学的挙 動を総合的に研究した.土壌における元素の生物濃縮は, 実際の樹木・草本試料を灰化・分析して評価した.土壌柱 状試料における元素濃度の鉛直変化を支配する要因とし ては,土壌化の影響,生物濃集,土壌母材の起源等が重要 である.生物濃縮の影響を受けないAl, Ti, Fe, Li, Cs, Tl, Be, Co, Cr, Ni, V, Ga, La, Ce, Th, U, Y, Zr等は表層部 よりも下層部で高濃度を示すが,これは土壌化に伴なう移 動と,水分や腐植質物質による希釈効果である.生物濃縮 の影響が大きい元素は,P, Sb, Zn, Cd, Cu, Ca, Pb, Bi, Mn, Sr, K, Mo, As, Sn等であり,これら元素の大部分は 柱状試料の最表層部で高濃度を示す.Mn, Ca, K, Cu等 は,最表層部で高濃度を示さない場合が多いが,これは生物濃縮の影響よりも土壌化に伴う溶出や水分等による希釈効果が大きいためであろう.黒ボク土の主要母材は,火山噴出物,近傍裸地からの風塵再移動堆積物,広域風成塵等の大気経由物質であり,元素濃度の地域変化は小さい. 褐色森林土の母材は,表層地質を構成する岩石等の風化物を主とし,これに若干の大気経由物質が付加されたもので,元素濃度は地質区分毎に異なる.沖積層土壌は,河川由来の砕屑物と大気経由物質の混合物が母材である.土 壌地球化学図は,環境汚染の評価と元素濃度のバックグラウンド値を判定するうえで重要な資料である.

1.はじめに

地表物質(河川堆積物,土壌,岩石等)中の元素の濃度 分布を図化したものが地球化学図であり,環境科学,地球

¹地球科学情報研究部門(Institute of Geoscience, GSJ)

化学,地質学,鉱床学等多くの分野において重要な基礎資 料である,日本では,椎川ほか(1984)が秋田県,菅・黒沢 (1987,1996)が北海道北·中央部、Tanaka et al. (1994).山 本ほか(1998)が愛知県下,神賀・田切(2003)が渡良瀬川・ 宮田川流域の地球化学図を作成している.地質調査総合 センターでは,主として河川堆積物を分析試料とする方法 により,北関東地域(伊藤ほか,1991;上岡ほか,1991),山 形市,仙台市周辺地域(今井ほか,1997,2000b,太田ほか, 2002, 2003)の地球化学図を作成した後,現在は日本全土 から約3000個の河川堆積物を採取し,有害微量元素(As, B, Be, Cd, Hg, Mo, Sb, Tl等)をはじめとする約50元素の 地球化学図を作成する研究を進めており(今井ほか, 2000a, 2002), 2004年中には総合的なとりまとめが予定さ れている、河川堆積物は、その試料を採取した地点の上流 域に分布する基盤岩類,堆積物,土壌等を河川水が削剥・ 混合したもので,その化学組成は集水域に分布するすべて の地質試料を代表すると考えられる.したがって河川堆積 物を分析することにより、比較的少数の試料によって広い 調査地域をカバーすることができ、日本全土を目的とした 地球化学図の作成では最適な試料である.しかしながら, 人間生活において最も身近な地質物質で,食料生産に必 要不可欠な土壌は、河川堆積物とは異なる起源物質で構 成される場合が多く、このことは有害元素のバックグラウン ド値や環境中での挙動も異なることを示唆している.

土壌地球化学図は,土壌そのものを分析対象として作成 される地球化学図であり,土壌中の元素濃度を直接表示す るため,汚染地域が明瞭に識別できる利点がある.最近,丸 茂ほか(2003)は,土壌・地質汚染評価基本図「5万分の1姉 崎」を作成した.この場合4km²に対して1~2点の試料が採 取され,単に分析データを地図上に投影するのみではなく, 土壌や堆積物中有害金属の存在形態や,土壌汚染の発生 メカニズムにまで言及する意欲的なものである.取得データ の多様性と,土壌試料の特性からやむをえないことではあ るが,この基本図に提示された分析データはその地点の データであって,その周囲の一定面積を代表するデータで はない.

筆者らは,周囲の一定面積を代表する土壌試料の選定 による土壌地球化学図の作成に関する基礎的研究を継続 しており,これまでに関東平野に分布する火山灰質土壌 (寺島ほか,2001a),沖積層土壌(寺島ほか,2001b)の主要 元素,火山灰質・沖積層土壌中の微量有害元素(As,Sb, Pb,Cr,Mo,Bi,Cd,Tl等,寺島ほか,2002),火山灰の影 響が少ない東海・沖縄地域の土壌に関する地球化学的研 究(寺島ほか,2004)を実施した.本論文は,関東平野南部 で新たに採取した土壌柱状試料と表層試料について主・ 微量成分元素を定量し,これまでに得られている成果を加 えて土壌化(以下母岩等が風化して土壌母材が生成し,こ れに植物遺体,微生物等が関与して土壌が生成する過程 を土壌化と言う)に伴う元素の地球化学的挙動,生物濃縮, 人為的影響の評価等について総合的な検討を加えるととも に,周辺の一定面積を代表する土壌試料の選定手法をとり まとめたものである.

2. 地形・地質の概要

関東平野の台地や丘陵には,茶褐色-黄褐色の土層が広 く分布しており、関東ローム層と呼ばれている、ローム層の 上位に分布する黒ボク土(表土,黒土と同義)の成因につい て、古くはローム層の最上位が風化し、これに腐植が加わっ て生成したと考えられてきたが,最近では火山活動が比較 的静穏な時期に,遠方火山の一次的な噴火堆積物,近傍 裸地からの風塵再移動堆積物,大陸起源の広域風成塵等 がゆっくりと堆積し、これに植物由来の腐植が付加されて 形成されたとする堆積生成説(例えば早川,1995;鈴木, 1995; 山野井, 1996)が有力となっており, 筆者らによる化 学組成の検討結果も同様であった(寺島ほか,2001a). 関 東平野における黒ボク土の母材の主要供給源は,北部で は男体山,赤城山等関東北西部の諸火山で,南部では富 士山である.男体山,赤城山等の噴出物が主として安山岩 類であるのに対して,富士山では玄武岩類が卓越する,鈴 木(1995)が求めた過去5万年間に堆積した土層の層厚分 布図によれば,富士山の東方に位置する試料採取地点(第 1図参照,以下Site no.で表示)10, 11, 13付近が最も厚く 約12~13 mであり,富士山から遠いSite 5付近では約2.5 mに減少する.そして,火山から遠く離れた東海地方等では 層厚が1m以下になり、このような地域では火山灰等の直

第1図 黒ボク土(○)と褐色森林土(●)柱状試料の採取地点と表 層試料を採取した5地域(川越,龍ヶ崎,東京東北部,藤沢, 姉崎).

Fig. 1 Sampling sites for core samples of Kuroboku soils (○) and brown forest soils (●). Surface soils are collected from the five subareas, Kawagoe, Ryugasaki, Tokyotohokubu, Fujisawa and Anesaki.

Site	Sample	Locality	Core length	Soil type
No.	No.		(cm)	
1	533962-5101~5112	Tashiro, Okose t., Saitama pref.	100	Brown forest soils
2	533964-5101~5111	Tsukagoshi, Ageo c., Saitama pref.	100	Kuroboku soils
3	533966-5101~5111	Kanasugi, Noda c., Chiba pref.	100	Kuroboku soils
4	St-18 (T)	Omonma, Toride c., Ibaraki pref.	100	Kuroboku soils
5	534060-5101~5111	Usukura, Ryugasaki c., Ibaraki pref.	100	Kuroboku soils
6	533942-5101~5111	Miyadera, Iruma c., Saitama pref.	100	Kuroboku soils
7	533944-5101~5111	Baba, Niiza c., Saitama pref.	100	Kuroboku soils
8	533946-5101~5112	Minamimasuo, Kashiwa c., Chiba pref.	100	Kuroboku soils
9	534040-5101 ~ 5111	Ogiyamashinden, Sakura c., Chiba pref.	100	Kuroboku soils
10	St-21 (T)	Horinouchi, Sagamihara c., Kanagawa pref.	100	Kuroboku soils
11	St-22 (T)	Shinisono, Sagamihara c., Kanagawa pref.	100	Kuroboku soils
12	534020-5101 ~ 5110	Goten, Wakaba-ku, Chiba c., Chiba pref.	90	Kuroboku soils
13	533902-5101~5116	Ochiai, Ayase c., Kanagawa pref.	100	Kuroboku soils
14	533904-5101 ~ 5109	Noukendai, Yokohama c., Kanagawa pref.	70	Brown forest soils
15	534000-5101~5111	Toyonari, Ichihara c., Chiba pref.	100	Kuroboku soils
16	534000-5201~5210	Iwanade, Chonan t., Chiba pref.	90	Brown forest soils
(T). Tom				

第1表	試料の採取場所とその概要.	

Table 1 Locality and sample description of studied soils.

(T): Terashima et al. (2001a)

接的影響は少なく,風塵堆積物の主体はアジア大陸起源の 広域風成塵と考えられている(鈴木,1995).また,関東ロー ム研究グループ(1965)によれば,本研究の対象地域のうち Site 1~9の周辺は関東北西部の諸火山と富士山の両者の 噴出物の影響を受けており,これより南側は主として富士 山起源の噴出物が分布する地域である.一方,山地等では 火山噴出物の大部分は流失する場合が多いとされており (関東ローム研究グループ,1965),今回採取した柱状試料 のうちSite 1, 14, 16がこれに相当すると考えられ,土地分 類基本調查「川越」(埼玉県, 1972),「藤沢」(神奈川県, 1986).「姉崎」(千葉県. 1978)によればいずれも褐色森林 土に分類されている。また、表層土壌に関しても「川越」の 緑色片岩,礫岩,砂岩-泥岩分布域,「藤沢」の凝灰岩分布 域、「姉崎 | の泥質砂岩分布域で採取した試料のほとんど は褐色森林土に区分されている。褐色森林土の分析結果 によれば、土壌の母材は主として岩石等の風化物であり、 一部に火山噴出物等の影響が認められる.

沖積層土壌の母材は,火山噴出物とその風化生成物,河 川由来砕屑物,広域風成塵等である.このうち火山噴出物 とその風化生成物の起源・分布特性等は上記と同様であ る.河川由来砕屑物には,集水域に分布する基盤岩類,堆 積物,土壌等が含まれ,それぞれの寄与率は地形や地質特 性によって変化する(寺島ほか,2001b).山地に近く,集水 域が比較的小さい沖積層土壌では多量の河川由来物質が 含有され,流域に分布する基盤岩類の特徴が顕著に現れ る場合があるが,逆に平野部では基盤岩に由来する砕屑物 よりも流域に分布する火山噴出物の影響が大きく,全体とし て黒ボク土に類似する化学組成を示すこともある.

3. 試料及び分析方法

3.1 柱状試料

実際の土壌地球化学図の作成では,作業効率やコストの 面で分析試料は表層土壌を用いることになろうが,土壌中 元素の地球化学的挙動の解明や元素濃度のバックグラウ ンド値,人為汚染の評価等では柱状試料の分析が必要不 可欠である.上述のように,沖積層土壌の起源物質は複雑 で元素の挙動を支配する要因の解析が難しいため,柱状 試料はいずれも黒ボク土または褐色森林土が分布する地 域で採取することにした.また,試料の採取にあたっては人 為的な影響をさけるために付近に鉱山,精錬所,工場,廃棄 物処分場等がないことを確認し,第1図,第1表の採取地点 を選定した.

Site 1は,埼玉県入間郡越生町田代の厚生年金休暇センターの南南西約300 mに位置する.この地点は,小高い丘の上であり,標高は約115 m,表層地質は古生代の緑色片岩,土壌は褐色森林土である(埼玉県,1972).Site 14は, 横浜市金沢区能見台6丁目の学校の南南東約300 mの丘の上で,標高は約80 mである.表層地質は前期更新世の泥岩で,土壌は褐色森林土である(神奈川県,1988).Site 16は,千葉県長生郡長南町岩撫にあるユートピア笠森の東南東約200 mに位置する.この地点の標高は約150 mで,前記のSite 1,14も同様であるが,周辺よりも比高が高いため周囲の地層からの崩落物の影響はないと考えられる.表層地質は更新世の泥岩で,土壌は褐色森林土である.Site 1,14,16における現在の植生はいずれも落葉樹林であり, 土壌の色調は最表層部が黒褐色で下位に向かって灰-黄褐色に変化する共通した特徴がある.

その他の柱状試料は,いずれも関東ロームの表層に分布

する黒ボク土である.採取地点の植生は常緑樹林と落葉樹林のいずれかであるが,後述するように本研究の対象元素には本質的な影響を与えていないと考えられる.土壌の色調は,上記の褐色森林土に比べて明らかに黒色度が強い. 土壌における黒色度の強弱は,主として腐植物質の含有量に起因するとされており(山野井,1996),これは本研究における全有機炭素の分析結果によっても支持される.本研究で採取した柱状試料には堆積年代が特定できるテフラ層は含まれていないが,鈴木(1995)が求めた最近5万年間に堆積した地層の層厚と,柱状試料の採取地点の関係から見ると黒ボク土に関してはいずれも2万年前以降に堆積したと推定される.

試料の採取地点では,落葉,小枝等を取り除いた後,深 度40~50 cmの穴を掘ってその壁面から深度別に2~10 cm間隔で採取し,更にその穴の下底に半円形オーガ(穴径 3 cm,大起理化工業製)を打ち込むことにより,最長100 cm の柱状試料を得た.採取した深度別試料は各10~20 gで ある.

3.2 表層試料

関東平野南部における土壌の概略を把握するため5万 分の1地形図「川越」,「龍ヶ崎」,「東京東北部」,「藤沢」, 「姉崎 |を選んだ.このうち「東京東北部 |は人口密度が高 く、もっとも市街化された地域の代表として選定した.5万分 の1地形図の南北方向を4等分,東西方向を5等分して20区 画に分割し,各区画内における沖積層と非沖積層の面積を 比較し,多い方をその区画の試料として各区画の中心に近 い地点で採取するようにした.本研究では,20万分の1ス ケールでの土壌地球化学図の作成を念頭においたが,5万 分の1スケールでは5~10倍の密度の試料が必要であろう. また、4.7で述べるように沖積層と非沖積層の区分では不充 分で,非沖積層を黒ボク土と非黒ボク土分布域に分ける必 要がある.土地の利用形態に関しては,沖積層のほとんど は水田として利用されており,大部分は水田土壌を採取し たが,一部は畑地や公園等できるだけ人為的影響が少な いと考えられる地点で採取した.非沖積層では,自然土壌 が分布する常緑樹林または落葉樹林での採取を原則とし, これらが存在しない地域では竹林,畑地,公園等で採取し た.各地点では,落葉,小枝等を取り除いた後,深度0~20 cm部分を約1kg採取した.

3.3 試料の前処理と分析方法

採取した土壌試料は,室温乾燥した後,よく混合し,径2 mmのふるいを通過させて小石,岩石片,植物の根等を除 き,石川式めのう粉砕器で約80メッシュ以下に粉砕し,ビ ニール袋に入れ,分析試料とした.なお,表層試料に関して は20~30gのみを篩い分けて粉砕し,残りは保存試料とした.

試料0.1gをテフロンビーカ(50 ml)に採り,フッ化水素酸4 ml,過塩素酸2 ml,硝酸2 mlで加熱分解し,蒸発乾固し

た後に硝酸(1+1)2.5 mlと精製水約5 mlを加えて加温・溶 解した.ろ紙(5C)を用いてろ過した後,精製水で希釈して 正しく50 mlとした.本溶液中のAl, Fe等の主成分は日本 ジャーレル・アッシュ製IRIS Advantage/AP型ICP発光分 析装置で,その他以下に記述しない微量元素は横河アナリ ティカルシステムズ製HP-4500型ICP質量分析装置を用 い,Imai(1990)の方法で測定した.

Asは混酸分解-連続水素化物発生-原子吸光法(寺島, 1984),Hgは加熱分解-金線捕集-石英セル原子吸光法 (Terashima, 1994),強熱減量(Loss on ignition, LOI)は 重量法(1000℃で2時間加熱した時の減量)で,全炭素,全 硫黄(以下TC, TSと略記)は燃焼-赤外吸収法(Terashima *et al.*, 1983)で測定した.なお,今回分析した全試料に希 塩酸(4M)を作用させた結果,CO₂の発泡が認められなかっ たので,TCの値を全有機炭素(TOC)として表示した.ほと んどの分析項目について岩石標準試料JG-1, JA-1, JB-1a 等を同時に分析した結果,分析誤差は±10%以下で,本研 究目的には充分使用できることが判明した.

4. 結果と考察

4.1 元素濃度の鉛直変化の特徴とその成因

元素濃度の鉛直変化の成因について研究するため,本 研究で分析した全元素等の鉛直濃度分布を第2~4図に, 各Site別の元素濃度の平均値を第2表に示した.第2~4図 にみられる特徴と,東海・沖縄地域の土壌の研究結果(寺 島ほか,2004)から考えて,元素濃度の鉛直変化を支配す る要因としては,土壌化の影響,生物濃縮,母材の起源等 が重要と考えられる.

4.1.1 土壌化の影響

岩石等の風化に伴う元素の挙動に関しては,一般に SiO₂, CaO, MgO, Na₂O, K₂Oが溶脱して減少し, H₂Oが 付加して増加し,Al2O3, TiO2, Fe2O3がSiO2等の溶脱に伴 う相対的な濃度変化で増加するとされている(山田ほか, 1968;金井ほか,1988).また,土壌化では,生物濃縮の直 接的原因である腐植等有機物の蓄積,洗脱と集積(微細鉱 物粒子の下層方向への機械的移動と集積),風化に伴う溶 脱・沈殿・流失等が重要である(松尾,1971).ところで,風 化・土壌化に伴なって増加するH2Oや腐植等の濃度は土 壌断面の最表層部で最高値を示す一般的特徴がある.し たがって,他の要因(生物濃縮や母材の不均質等)が無視 できれば,すべての無機元素は最表層部で低濃度を示す ことが期待される、第2~4図によれば,Al, Ti, Fe, Li, Cs, Tl, Be, Co, Cr, Ni, V, Ga, La, Ce, Th, U, Y, Zr等はいず れも最表層部で低濃度を示し,下位に向かって高濃度にな る一般的な傾向があり,概括的には生物濃縮や母材の不均 質の影響が無視できることを示している.

4.1.2 生物濃縮の影響

生物濃縮は土壌化過程の一部であるが,物理・化学的な

第2図 黒ボク土(○)と褐色森林土(●)柱状試料中主成分元素の鉛直濃度変化. Fig. 2 Vertical variations of the major element concentrations in Kuroboku soils (○) and brown forest soils (●).

濃縮とは区別してこの項で議論する.各種元素の生物濃縮 が知られているが(例えば,Bowen,1979;浅見,2001),日 本に自生する植物中微量元素の値は少なく,また既存デー タの多くは乾燥試料ベースであり,岩石・鉱物の風化物を主 要母材とする土壌中元素濃度との直接対比は困難であっ た.そこで,日本の山野に見られる実際の各種植物を採取 し,灰化した後,各種元素を定量し,得られた結果は既に報 告した(寺島ほか,2004).分析した全植物灰中元素濃度の 平均値(A)と,元素の地殼存在量(B;Wedepohl,1995)か ら植物と地殻における元素存在比(A/B)を計算し(第3表), 以下の結果を得た.

a)濃縮効果が特に大きい元素(A/B=17.8~7.2)

P>Sb>Zn>Cd>Cu>Ca

- b)濃縮効果が認められる元素(A/B=5.2~1.9) Mn>Pb>Bi>Sr>K>Mo>As>Sn
- c) 植物により濃縮効果がある元素(A/B=1.3~1.1) Mg>Ba>Rb,
- d)濃縮効果がほとんど認められない元素(A/B=<0.7) (Si), Ti, Al, Fe, Na, Li, Cs, Be, Sc, Cr, Co, Ni, V, Ga,

La, Ce, Y, Zr, Tl, Th, U

上記の結果と,第2~4図の結果を比較すると,a),b)に分 類された元素のうちCu, Mn, Ca, Kを除く各元素は最表層 部で高濃度を示す傾向があり,生物濃縮の影響を受けてい ると判断される.逆にd)に分類された大部分の元素は最表 層部で高濃度を示しておらず,生物濃縮の影響がないこと を示唆している.生物濃縮の影響があると考えられるCu, Mn, Ca, Kが表層で高濃度を示さない傾向は東海・沖縄地 域の土壌でも認められており,この原因は生物濃縮の効果 よりも土壌化に伴う溶出や,希釈効果の影響が強いためと 考えられた(寺島ほか,2004).なお,最表層部の土壌中で 元素濃度が高値を示す原因として,近年における人為的な 汚染についても検討したが,試料採取地点の状況や元素 の地殼存在量等から判断して本研究で分析した柱状試料 に関しては人為的汚染は無視できると考えられた.ただし, 後述の表層試料では人為的な影響が認められる.

4.1.3 母材の起源

火山噴出物の化学組成は,給源火山の特性や火山の活動時期によって変化するため,母材の不均質を正しく評価

第3図 黒ボク土(○)と褐色森林土(●)柱状試料中微量成分元素の鉛直濃度変化(1). Fig. 3 Vertical variations of the minor element concentrations in Kuroboku soils (○) and brown forest soils (●), (1).

第4図 黒ボク土(○)と褐色森林土(●)柱状試料中微量成分元素の鉛直濃度変化(2). Fig. 4 Vertical variations of the minor element concentrations in Kuroboku soils (○) and brown forest soils (●), (2).

第2表 柱状試料別の成分濃度平均値.

Site	(n)	Al	Ti	Fe	Mn	Ca	Mg	Na	К	P	TOC	S	As	Sb	Co	Cr	Ni	V	Мо	Cu	Zn
No.		%	%	%	ppm	%	%	%	%	ppm	(%)	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Northwest are	a																				
1	12	9.97	0.69	10.21	1544	1.21	3.97	0.31	0.19	406	2.49	0.05	4.3	0.08	74	548	531	296	n.d.	138	120
2	11	10.90	0.51	6.83	1107	0.85	1.28	0.54	0.56	482	5.61	0.15	11.2	0.58	29	42	35	257	1.05	103	117
6	11	10.55	0.69	8.24	1394	0.54	1.16	0.38	0.41	775	n.d.	0.18	8.1	0.73	38	63	50	321	0.99	146	111
7	11	9.94	0.68	7.61	1378	0.90	1.12	0.56	0.40	1015	n.d.	0.15	8.5	0.72	35	61	49	304	1.05	144	138
Northeast are	а																				
3	11	11.65	0.62	7.55	1169	0.81	0.94	0.50	0.56	665	n.d.	0.14	12.1	0.44	32	50	39	309	1.44	129	119
4	10	11.92	0.80	8.07	1491	0.50	0.87	0.58	0.71	n. d .	n.d.	n.d.	11.2	0.70	32	92	55	314	1.71	123	126
5	11	10.73	0.52	6.91	1343	0.72	0.87	0.49	0.56	633	7.61	0.13	9.8	0.45	29	44	34	261	0.79	107	109
8	12	11.36	0.69	8.26	1460	0.57	1.17	0.41	0.48	711	n.d.	0.18	9.4	0.50	35	61	48	327	1.23	139	124
9	11	10.34	0.58	7.45	1359	0.74	0.91	0.46	0.49	749	n.d.	0.13	9.9	0.36	32	49	38	292	0.90	125	104
Southwest are	a																				
10	10	9.19	0.86	8.13	1398	1.66	2.15	0.44	0.18	n.d.	n.d.	n.d.	6.5	0.38	36	84	49	364	1.02	202	99
11	10	9.44	0.80	8.10	1363	2.09	2.28	0.49	0.18	n.d.	n.d.	n.d.	4.7	0.26	34	76	42	324	1.02	172	82
13	16	8.37	0.62	6.67	1224	2.79	1.68	0.86	0.28	1556	8.54	0.13	4.5	0.68	31	43	40	274	0.69	139	95
14	9	8.62	0.45	5.45	900	1.09	0.89	0.78	0.65	287	2.46	0.03	6.2	0.41	21	29	31	171	0.53	52	111
Southeast are	a																				
12	10	10.61	0.59	7.45	1327	0.92	1.06	0.45	0.38	803	n.d.	0.12	7.7	0.37	30	40	36	303	0.96	127	106
15	11	9.59	0.60	6.68	1476	0.99	0.82	0.49	0.40	1400	8.03	0.13	7.8	0.46	31	44	35	299	0.86	133	120
16	10	9.97	0.42	6.17	950	0.65	0.75	0.58	0.64	238	1.93	0.03	5.6	0.13	25	34	26	194	0.44	51	90
All the sample	es (176)	10.17	0.61	7.50	1310	1.11	1.40	0.52	0.43	782	2.30	0.12	8.0	0.47	34	88	74	289	0.95	128	111
Site	(n)	Pb	Bi	Cd	ΤI	Be	Sn	Hg	Li	Rb	Cs	Sr	Ва	Ga	La	Ce	Th	U	Y	Zr	
No.		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Northwest are	a																				
1	12	14	0.21	0.20	0.22	1.14	0.84	0.07	19	10	2.14	50	236	24	12	31	4.3	1.0	16	74	
2	11	25	0.40	0.21	0.36	1.17	2.02	0.10	23	35	3.94	79	179	24	17	38	7.8	1.5	19	90	
6	11	21	0.26	0.26	0.33	1.04	1.79	0.08	19	24	3.27	49	145	24	15	33	4.9	1.3	19	102	
7	11	24	0.30	0.37	0.30	0.95	2.23	0.12	16	21	3.18	79	199	23	15	29	4.3	1.2	18	97	
Northeast are	a																				
3	11	23	0.38	0.23	0.37	1.28	2.31	0.09	22	36	4.05	76	162	26	18	39	7.6	1.6	21	96	
4	10	27	0.58	0.17	0.57	1.32	2.23	n.d.	29	48	4.05	99	310	24	17	36	5.6	1.6	29	105	
5	11	20	0.35	0.21	0.40	1.20	1.58	0.11	24	35	3.83	74	215	23	18	36	7.0	1.5	21	90	
8	12	21	0.32	0.27	0.34	1.15	1.98	0.10	21	31	3.89	53	174	25	18	37	5.7	1.5	21	111	
9	11	18	0.30	0.20	0.34	1.12	1.58	0.09	25	33	3.85	76	167	23	18	36	6.6	1.4	20	94	
Southwest are	ea																				
10	10	15	0.25	0.19	0.23	0.67	1.32	n.d.	10	8	1.25	98	115	20	9	20	1.8	0.6	18	81	
11	10	15	0.21	0.15	0.22	0.64	0.36	n.d.	8	8	1.20	121	137	19	8	19	1.6	0.6	21	74	
13	16	15	n.d.	0.43	0.15	0.60	1.46	0.08	9	10	1.22	190	n. d .	18	9	18	1.8	0.8	17	69	
14	9	25	0.20	0.23	0.32	1.04	1.59	0.11	23	29	2.84	109	63	20	14	27	5.0	1.2	16	63	
Southeast are	a																				
4.0																					
12	10	15	0.26	0.25	0.27	0.94	1.56	0.07	20	22	3.01	82	160	21	14	29	4.2	1.2	19	93	
12	10 11	15 17	0.26 0.29	0.25 0.38	0.27 0.30	0.94 0.85	1.56 1.57	0.07 0.10	20 20	22 24	3.01 2.98	82 96	160 189	21 21	14 16	29 29	4.2 5.1	1.2 1.1	19 20	93 74	
12 15 16	10 11 10	15 17 14	0.26 0.29 0.13	0.25 0.38 0.09	0.27 0.30 0.27	0.94 0.85 0.84	1.56 1.57 0.83	0.07 0.10 0.04	20 20 24	22 24 29	3.01 2.98 2.53	82 96 106	160 189 <u>257</u>	21 21 20	14 16 12	29 29 27	4.2 5.1 <u>5.1</u>	1.2 1.1 <u>1.2</u>	19 20 14	93 74 51	

Table 2 The averaged elemental concentrations for each site core.

するのは困難である.しかし,筆者らが関東の北東部-南部 の火山噴出物を主要母材とする土壌について元素濃度の 鉛直変化を検討した結果,最も大きな影響を与えるのはテ フラ層であった(寺島ほか,2002).本研究で分析した柱状 試料には明瞭なテフラ層は認められず,このことが元素濃 度の鉛直変化を相対的に小さくしている.第2,3図のCa, Na,Srの鉛直変化を見ると,2,3の例外を除いて深度60 cmからその上位の30~40 cmに向かって濃度が増加する. この濃度増加は,主として生物濃縮に起因するSb,Pb,Bi 等の濃度増加の傾向(第3図)とは異なるので,母材の不均 質の影響と考えられる.町田(1964,1977),竹迫・加藤 (1983)によれば,今から数千年~1万年前は火山活動が全 般的に静穏で,細粒の堆積物がゆっくりと堆積する環境に あり,その時代の堆積物を関東南部では富士黒土層と言 う.富士黒土層に含有されるCa, Na, Srは,それ以降の堆積 物に比べて明らかに低い傾向があり(寺島ほか,2001a),こ の影響が第2,3図におけるCa, Na, Srの鉛直濃度に現れ ていると考えられる.

火山噴出物を主要母材としないSite 1, 14, 16について は,母材の起源をやや詳しく検討するため,主要元素の深 度別分析値を第4表に示した.まず,LOIの値に注目する と,いずれのSiteでも最下位が最低値(10~12%)であり,上 位に向かって増加する傾向がある(第4表).このことは,最 下位の化学組成が母材のそれに最も近く,土壌化の進行に

iergreen trees ne Pine F ark) (leaf, A) ((ッツ マツ +(皮) (葉A) ((4.81 - 3.64	n trees Pine F マッ 5 (連A) (((葉A) () 3.64		^b ine bine そッ 新B) 6.21	Pine) (cone) マツカナ 19.85	Cedar (bark) (太子 (黄皮) 11.72	Cedar (leaf) (葉) 4.59	J. cypress (bark, A) ビノト (趙皮A) 4.25	J. cypress (bark, B) ヒノキ (樹皮B) 19.15	: J. cypress (leaf) ヒノキ (葉) 4.16	Deciduo Zelkoba (bark) イヤキ (厳政) 2.43	us trees Cherry (bark) サクラ (樹皮) 2.76	Chestnut (bark) クリ (黄皮) 1.45	Oak (bark) (bark) () () () () () () () () () () () () ()	Fallen leav Mixture (A) 著葉混合A 13.96	es Mixture (B) 18.49	Bamboo (trunk) \$7 25.50	Panpas grass (Whole) ススキ 39.41	Turf (Whole) シバ 31.20	Average C (A) 11.97	rustal undance ((B) 28.80	Ratio (A)/(B) 0.4
0.14 0.07 0.11 0.41 0.30 3 3 3 3 0 7 3 7 3 3 0 4 5 2 3	0.07 0.11 0.41 0.30 2.07 2.79 0.04 5.22	0.11 0.41 0.30 2.70 0.04 5.22	0.41 0.30	0.30		0.10	0.09	0.48 9.48	0.08	0.04	0.01	0.02	0.03	0.11	0.09 1.66	0.02	0.01	0.10	0.12 2.52	0.40 7 96	0.3
1.86 1.18 1.62 5.53 3.86	1.18 1.62 5.53 3.86	1.62 5.53 3.86	5.53 3.86	3.86		1.42	1.50	5.93	1.16	0.69	0.17	0.26	0.50	1.53	1.22	0.42	0.25	1.39	1.69	4.32	0.4
0.42 0.64 1.56 0.39 0.10	0.64 1.56 0.39 0.10	1.56 0.39 0.10	0.39 0.10	0.10		0.09	0.22	0.20	0.66	0.11	0.06	0.12	0.59	0.50	0.37	0.11	0.14	0.17	0.36	0.07	5.1
6.26 26.88 22.44 11.23 29.17 4	26.88 22.44 11.23 29.17 4	22.44 11.23 29.17 4	11.23 29.17 4	29.17 4	4	3.62	40.76	12.57	32.03	46.55	42.90	42.04	43.97	29.60	25.88	2.86	3.68	4.57	27.61	3.85	7.2
1.02 3.13 4.93 2.93 1.09 3 0.55 0.49 0.62 1.27 0.81 (0.49 0.62 1.27 0.81 (4.90 2.93 1.09 3 0.62 1.27 0.81 (2.93 1.09 3 1.27 0.81 (0.81			0.35	1.34	0.82	0.28 0.28	0.28	0.58 0.58	0.33	2.38 0.45	3.41 0.57	2.04 0.72	0.11	0.37	2.70 0.58	2.36	0.2
4.12 12.78 14.36 4.07 2.83 2 0.0<	12.78 14.36 4.07 2.83 2	14.36 4.07 2.83 2	4.07 2.83 2	2.83	20	88	1.67	3.15	8.88	1.18	8.55	4.94	6.93	1.84	2.28	10.46	2.72	8.55	5.63	2.14	2.6
0.39 3.06 5.28 1.88 0.92 0 20 10 25 02 50	3.06 5.28 1.88 0.92 0 10 75 07 50	2.28 1.88 0.92 0	1.88 U.92 U	0.92 0	5)	22	0.48	145	60'Z	0.48	0.10	80.0	0.95	1.91	0.91	1.04	0.33	- CC-1	1.40	0.08	1/.8
2.6 2.5 1 15.5 10.9	2.5 1 15.5 10.9	7 15.5 10.9	15.5 10.9	0.0 10.9		3 4	5.8 5.8	20.8	2.4	د 1.3	0.0	0.7	1.3	ი ო ი	2.8	0.3	<u>;</u> 7	1.2	4.3 4.3	0.3	14.4 14.4
46 37 33 190 120	37 33 190 120	33 190 120	190 120	120		28	37	230	20	=	14	17	21	37	28	13	21	33	52	98	0.5
620 1160 860 560 557 12	1160 860 560 557 12	860 560 557 12	560 557 12	557 12	12	20	803	620	1250	3300	2340	2540	1700	1120	1040	136	214	125	1176	333	3.5
662 315 735 760 516 30	315 735 760 516 30	735 760 516 30	760 516 30	516 30	ĕ	90	707	171	486	601	335	1959	2036	631	946	383	247	210	200	584	1.2
8 6 10 26 20	6 10 26 20	10 26 20	26 20	20		2	9	26	7	e			2	œ	L	2	2	80	œ	18	0.5
0.4 0.3 n.d. n.d. 0.9 0	0.3 n.d. n.d. 0.9 0	n.d. n.d. 0.9 0	n.d. 0.9 0	0.9	0 0	4,1	0.6	'n.	0.4	0.7	0.1	0.1	0.2	0.7	0.5	n. D.	0.1	ю. Ч	4.0	2.4	0.2
2.8 2.7 n.d. n.d. 12.2 3	2./ n.d. n.d. 12.2 3	n.d. n.d. 12.2 3	n.d. 12.2 3	12.2		- g	4.0	n.d.	3.0	<u>-</u>	0.0	0.8	4. 0	9.C	9.5 00	л. С	-		0.0 20	100	2 0
13 12 30 37 15	12 30 37 15	30 37 15	37 15	15		ັໝ	21	26	14	- c	2 04	- ~	ით	10	07	° 0	n 0	2 9	12	24	0.5
30 29 49 189 52 2	29 49 189 52 2	49 189 52 2	189 52 2	52 2	~	9	52	83	33	22	15	21	31	28	33	14	9	20	41	56	0.7
200 240 231 501 265	240 231 501 265	231 501 265	501 265	265		66	217	566	128	127	51	28	139	191	156	311	69	86	202	25	8.1
418 984 880 1677 754 2 E	984 880 1677 754 2	880 1677 754 2	1677 754 2	754 2	2	84	1590	1850	648	180	74	144	748	850	731	614	580	573	754	65 1 F	11.6
20 30 n.a. n.a. 12 89 239 n.d. n.d. 136	3.0 n.a. n.a. 12 239 n.d. n.d. 136	n.a. n.a. 12 nd nd 136	n.a. 12 n.d. 136	136		4 CE	4 04		176	7 8 <u>1</u>	125	- 22	114	C 17	43		46		4 88	C 28/	11
7 7 n.d. n.d. 22	7 n.d. n.d. 22	n.d. n.d. 22	n.d. 22	22		16	23	i d	16	-			9	26	18	n d	: -	n d	12	24	0.5
20 12 n.d. n.d. 39	12 n.d. n.d. 39	n.d. n.d. 39	n.d. 39	39		17	15	n.d.	15	2	2	2	5	20	14	n.d.	2	n.d.	13	203	0.1
1.83 1.40 n.d. n.d. 4.48 1	1.40 n.d. n.d. 4.48 1	n.d. n.d. 4.48 1	n.d. 4.48 1	4.48 1	-	.73	1.58	n.d.	1.55	0.62	0.16	0.21	0.50	1.50	1.55	n.d.	0.35	n.d.	1.34	19	0.1
2.69 3.30 n.d. n.d. 6.80 3	3.30 n.d. n.d. 6.80 3	n.d. n.d. 6.80 3	n.d. 6.80 3	6.80 3	с і	.45	3.32	n.d.	3.78	1.14	1.04	0.43	0.94	2.84	2.59	n.d.	1.68	n.d.	2.62		2.4
1.58 1.19 1.41 1.37 1.35 0	1.19 1.41 1.37 1.35 0	1.41 1.37 1.35 0	1.37 1.35 0	1.35 0		.24	1.72	3.30	0.34	0.31	0.04	0.34	1.72	0.65	0.54	0.42	1.06	0.3/	1.00	0.1	10.0
4.20 6.30 4.90 10.10 8.50 7	6.30 4.90 10.10 8.50 7	4.90 10.10 8.50 7	10.10 8.50 7	8.50 7		8	5.10	11.90	3.90	1.10	0.50	0.16	1.20	3.60	4.00	1.20	1.50	3.10	4.35	2.3	1.9
1.48 1.15 n.d. n.d. 3.08 0	1.15 n.d. n.d. 3.08 0	n.d. n.d. 3.08 0	n.d. 3.08 0	3.08	0	95	0.96	n.d.	0.97	0.41	0.35	0.43	0.59	1.30	1.22	n.d.	0.37	D.d.	1.02	3.4	0.3
7 7 n.d. n.d. 21	7 n.d. n.d. 21	n.d. n.d. 21	n.d. 21	21		13	20	n.d.	13	=	4	4	œ	21	17	n.d.	-	n.d.	11	30	0.4
13 12 n.d. n.d. 36	12 n.d. n.d. 36	n.d. n.d. 36	n.d. 36	36		15	20	n.d.	13	12	ო	7	7	25	20	n.d.	2	п.d.	14	60	0.2
0.21 0.04 n.d. n.d. 0.51	0.04 n.d. n.d. 0.51	n.d. n.d. 0.51	n.d. 0.51	0.51		0.12	0.08	n.d.	0.04	0.03	0.04	0.23	0.04	0.23	0.17	n.d.	0.01	n.d.	0.13	0.52	0.3
29 64 24 220 174	64 24 220 174	24 220 174	220 174	174		41	180	218	26	92	6	14	55	40	38	=	16	33	71	14.8	4.8
0.31 0.51 0.25 0.85 1.05	0.51 0.25 0.85 1.05	0.25 0.85 1.05	0.85 1.05	1.05		0.35	0.48	1.05	0.25	0.31	0.06	0.09	0.26	0.29	0.37	0.10	0.18	0.38	0.40	0.085	4.7
1.74 1.37 n.d. n.d. 4.51	1.37 n.d. n.d. 4.51	n.d. n.d. 4.51	n.d. 4.51	4.51		1.88	1.69	n.d.	1.56	0.81	0.17	0.21	0.54	1.57	1.61	n.d.	0.29	n.d.	1.38	8.5	0.2
0.53 0.35 n.d. n.d. 1.29 (0.35 n.d. n.d. 1.29 (n.d. n.d. 1.29 (n.d. 1.29 (1.29 (~	0.45	0.67	n.d.	0.37	0.21	0.06	0.08	0.18	0.48	0.40	n.d.	0.07	n.d.	0.40	1.7	0.2
e; (B): data from Wedepohl (1995); n.d	data from Wedepohl (1995); n.d	om Wedepohl (1995); n.d	epohl (1995); n.d	95); n.d		not det	ermined.														

Table 3 The elemental concentrations of selected plant materials ashed at 700°C(after Terashima *et al.*, 2004).

第3表 灰化植物試料中の元素濃度(寺島ほか,2004).

関東平野南部における土壌の地球化学的研究(寺島ほか)

	ź	(mqq)	005	200	414	398	457	384	403	475	881	923	991	31	32	33	30	29	30	32	31	28	25	27	29	28	25	26	25	25	25	
	້ວ໌	(mqq)	787	267	385	354	419	338	346	662	1200	948	926	26	32	36	30	30	31	27	26	26	31	33	48	46	31	41	28	23	30	ļ
i	ar ((mqq)	4 4 5		2 4	15	12	10	13	10	2	2	4	51	47	55	14	10	10	12	11	1	22	20	13	12	12	12	13	13	13	
-	7u	(mqq)	104	110	108	114	118	104	116	123	122	116	96	176	157	162	94	83	83	82	77	82	106	107	92	89	84	82	79	80	85	
4	Cu	(mqq)	101	121	148	134	157	130	130	135	189	152	123	56	56	59	65	65	65	49	33	23	58	65	67	99	53	53	40	38	42	ſ
-			31.3U	20.30	19.85	20.70	19.65	19.00	19.70	18.65	15.05	13.80	12.15	26.50	21.20	17.50	15.30	14.10	14.20	14.20	13.10	10.90	24.50	21.05	18.35	17.55	14.70	14.75	13.50	13.40	13.70	
C C F			9.10 5.50	3.06	2.17	2.95	1.88	1.29	1.60	1.11	0.40	0.42	0.37	7.70	5.41	3.29	1.58	1.11	1.20	1.04	0.50	0.31	6.69	4.56	3.00	1.81	0.78	0.80	0.43	0.50	0.50	
ſ	1 1		200	430	400	400	430	340	330	370	540	420	310	460	420	380	310	300	270	230	110	100	470	430	330	260	160	180	150	150	140	110
1	2 3		0.23	0.2.0	0.22	0.23	0.24	0.22	0.28	0.18	0.05	0.06	0.12	0.58	0.58	0.58	0.56	0.56	0.55	0.68	0.79	0.97	0.60	0.63	0.62	0.60	0.62	0.63	0.69	0.65	0.65	10
			0.00 ac 0	0.38	0.36	0.36	0.33	0.29	0.27	0.19	0.20	0.26	0.38	0.65	0.68	0.70	0.71	0.77	0.77	0.81	0.87	1.02	0.57	0.65	0.63	0.57	0.56	0.58	0.56	0.55	0.52	0 63
	MB (%)	(e) C F C	2.17 2.55	2.66	2.75	2.73	2.99	2.66	2.52	3.98	7.36	8.05	7.18	0.77	0.78	0.82	0.91	0.97	1.02	0.94	0.89	0.93	0.73	0.83	0.84	0.81	0.72	0.72	0.70	0.71	0.67	0 7 0
olls.	6 6		0 01	0.91	0.87	0.89	0.99	0.73	0.69	0.49	1.56	2.37	3.19	1.25	1.09	1.03	1.14	1.30	1.34	1.02	0.79	0.86	0.81	0.88	0.81	0.59	0.52	0.57	0.55	0.53	0.58	0.65
/n torest s	(2000)	0110	1715	1360	1285	1310	1410	1265	1245	1425	1970	1995	1405	992	958	968	977	1010	1015	847	671	631	1095	1145	1115	1110	828	852	797	776	822	957
es of brow		756	8.65	9.18	10.10	9.50	10.60	9.35	9.75	11.05	13.75	11.95	11.10	5.02	5.47	5.84	6.21	6.28	6.19	5.46	4.49	4.11	5.79	6.26	6.32	6.63	6.14	6.19	6.08	5.87	60.9	634
three cor	5		034	0.59	0.57	0.55	0.59	0.70	0.73	0.53	1.25	1.09	0.86	0.43	0.45	0.49	0.52	0.53	0.51	0.43	0.35	0.32	0.46	0.48	0.34	0.50	0.27	0.44	0.43	0.38	0.44	0.46
results for	2	B 68	08.0	10.65	11.80	10.80	12.45	10.90	11.80	10.90	8.01	6.79	7.06	7.66	8.18	8.71	9.25	9.30	9.14	9.14	8.43	7.79	9.26	10.10	10.45	10.45	10.25	10.25	10.00	9.78	9.93	9.23
Analytical	(cm)		- 10 10	7.5	15	25	35	45	55	65	75	85	95		3.5	7.5	15	25	35	45	55	65	2.5	7.5	15	25	35	45	55	65	75	85
Table 4	No o	-	-											14									16									

第4表 褐色森林土柱状試料の分析結果._____

伴って上位の組成を示すようになると解釈できる。Site 1 は,古生代の緑色片岩の風化物を主な母材とする土壌で あるが、最下位におけるMg, Cr. Ni等の濃度が他試料より も明らかに高濃度である、そして、最下位の組成を母材のそ れと仮定し、これが土壌化すると考えれば上位の層準では 4.1.1で述べたようにAl, Ti, Fe等は増加し, Ca, Mg, Na, Kは減少することが期待される.しかし,Al, Ca, Mgについ てはほぼそのようになるが, Ti, Fe, Na, Kについてはその 傾向がない.特に風化に伴って減少するはずのNa, K濃度 が最下位と同じかやや高い事実は,母材の不均質を意味 するであろう.母材の不均質の原因としては,a)本地域の土 壌の源岩と考えられる緑色片岩そのものに不均質が存在し た, b) 土壌化の過程で火山噴出物や広域風成塵等の供給 があったの二つが考えられる.Site 14,16は,ともに更新世 の泥岩の風化物を主要母材とする褐色森林土であり,周辺 で採取した富士山の噴出物を母材とする土壌に比べて Mn, Ca, V, Cu等の濃度が明らかに低い(第2表). この両 者に関しても風化に伴って減少するはずのCa, Mgが上位 に向かって低濃度にならず,Caはやや増加すること,他の ほとんどの試料では表層部で低値を示すCu濃度が最下位 の2倍を越えているなど、母材の不均質を強く示唆してい る、この原因は、土壌化の過程でCa, Mg, Cu等に富む富士 山起源の噴出物の混入があったためと考えられる.

4.2 土壌層位と元素濃度の関係

土壌の成因や起源物質は地域によって異なるため,土 壌の層位区分に関しては必ずしも統一的なものではない が,上位から順にO,A,B,C,R層に区分される(例えば地 学団体研究会,1996).O層は植物遺体が堆積した腐植層 で本研究では分析しなかった.A層は無機質層位の最上部 を構成する多量の腐植を含む暗色から黒色の層,B層はA 層とC層の中間に位置する褐色の層,C層は土壌母材,R層 は母岩である.そしてA層はFe,Al,アルカリ・アルカリ土類 金属等が溶脱した層で,B層はA層で溶脱した元素とA層 から移動してきた腐植等が集積する層とされている(大政, 1977).

ところで,2.で述べたように黒ボク土の成因は火山活動 が比較的静穏な時期に,遠方火山の一次的な噴火堆積 物,近傍裸地からの風塵再移動堆積物,大陸起源の広域 風成塵等がゆっくりと堆積し,これに植物由来の腐植が付 加されて形成されたと考えられる(早川,1995; 鈴木,1995; 山野井,1996).したがって,黒ボク土においては層位区分 は困難であり,このことは溶脱に伴ってA層に対応する表層 部で低値が期待されるNa, K, Ca等の濃度が低くない(第 2図)ことからも明らかである.沖積層土壌の層相変化や元 素の鉛直分布の傾向(寺島ほか,2001b)においてもほとん どの場合にA, B, C層等の層位区分は困難である.第4表の 褐色森林土(Site 1)の分析結果を見ると,AIについては表 層部と下層部が低濃度で,中層部(7.5~65 cm)が高濃度 であり,中層部をB層とみなすことができる.しかし,Fe, Mn,Ti等は中層部の濃度が特に高い傾向はなく,またCa, Mg,Na,K等の鉛直濃度変化においても表層部で溶脱し たこれら元素が中層部に蓄積されているとは考えられな い.同様に,Site 14,16の褐色森林土においても土壌層位 と元素濃度の関係は不明瞭であり,このことは火山噴出物 等大気経由物質の影響を受けた土壌の特徴と考えられる.

理想的な土壌地球化学図としては,深度1m程度までの 土壌を分析対象とすべきであろうが,人為的な汚染の評価 を主目的とする場合,表層部分(深度0~20 cm程度)のみ で充分であろう.深度0~20 cmの土壌で得られる元素濃度 は,下位層準の土壌に比べてやや低い場合(主として生物 濃縮の影響を受けない元素)と高い場合(生物濃縮の影響 がある元素)があることを考慮する必要がある.

4.3 表層試料中の元素濃度と広域分布の特徴

採取した表層土壌を黒ボク土,褐色森林土,沖積層土壌 に区分し,各土壌における元素濃度とその広域分布の特徴 を把握するため,採取地域を川越,龍ヶ崎,東京東北部,藤 沢,姉崎の5地域に区分して平均値を算出し,第5表に示 した.

4.3.1 黒ボク土

前述のように,関東平野南部における火山噴出物の主要 供給源は富士山で,関東中部では富士山のほか関東北西 部の諸火山(浅間,赤城,男体等)からの噴出物の影響があ る. そして富士山の噴出物は関東北西部の諸火山の噴出 物に比べてFe, Ti, Ca, Mg, Cu, V等に富み, K, As, Pb, Tl等に乏しい特徴がある(寺島ほか,2002).また,富士山起 源噴出物の影響は,供給源との距離的な関係から,藤沢地 域の土壌に最も強く反映されると考えられる.そこで実際の 黒ボク土の分析結果を概観すると,藤沢地域ではCa, Mg, Cu濃度は他地域よりも高い傾向がり,K,As,Tlは他地域よ りも低く,これらに関しては富士山起源の噴出物の特性を 反映していると言えよう.藤沢地域の黒ボク土でFe, Tiが 高濃度を示さない理由は不明であるが,一つの可能性とし ては本地域では堆積速度が速いこと,堆積粒子が粗粒で あること等により風化の進行が他地域よりも遅くなり、風化 に伴うFe, Ti等の相対的濃度増加が小さいことが考えられ る.東京東北部では,Cu,Hg,P,Sn等が他地域よりも高濃 度であるが,これは後述するように主として人為的影響で あろう、第6表は、試料採取地点の土地の利用状況による差 を見積もるため,耕作土(主として畑)と非耕作土に分け,非 耕作土については常緑樹林と落葉樹林(少数の竹林,草地 を含む)に区分し、元素濃度の平均値と標準偏差を算出し たものである.KとPは非耕作土よりも耕作土中の濃度が高 く,施肥の影響が現れていると考えられるが,その他の元素 に関しては顕著な濃度差はない.全体的に見て黒ボク土に おける元素濃度の地域変化は小さく(第5表),このことは地 球化学図の作成において少ない分析試料で広い面積がカ

Sample	(n)	AI	Ti	Fe	Mn	Ca	Mg	Na	К	As	Be	Bi	Cd	Co
		%	%	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	ppm
a) Kuroboku soils														
Kawagoe	9	9.58	0.69	6.84	1751	1.01	1.20	0.70	0.80	11.6	1.46	0.39	0.55	31
Ryugasaki	8	8.75	0.49	5.67	1208	0.91	0.75	0.52	0.57	12.2	0.96	0.48	0.39	25
Tokyotohokubu	6	10.09	0.66	7.46	1446	0.98	1.04	0.53	0.58	10.9	0.99	0.48	0.50	30
Fujisawa	8	8.66	0.62	6.85	1269	2.29	1.56	0.79	0.34	4.8	0.61	n.d.	0.37	33
Anesaki	8	10.41	0.62	6.87	1481	1.04	0.89	0.53	0.50	9.5	0.89	0.31	0.39	30
Average	(39)	9.47	0.62	6.70	1438	1.25	1.09	0.62	0.56	9.8	0.99	0.41	0.44	30
b) Brown forest so	ls													
Kawagoe	5	8.99	0.72	7.66	1614	0.88	1.67	0.47	0.41	8.7	1.17	0.37	0.43	47
Fujisawa	3	9.09	0.67	7.12	1377	3.49	1.93	1.20	0.40	4.0	0.62	n.d.	0.28	33
Anesaki	4	8.46	0.35	3.67	663	1.35	0.79	1.33	1.19	7.9	0.93	0.19	0.15	14
Average	(12)	8.84	0.59	6.19	1238	1.69	1.44	0.94	0.67	7.2	0.95	0.22	0.30	33
c) Alluvial soils														
Kawagoe	5	8.29	0.58	5.24	1040	1.09	1.59	1.20	1.36	9.8	1.94	0.37	0.47	26
Ryugasaki	12	8.90	0.35	4.19	809	1.64	0.92	1.19	1.37	14.2	1.16	0.33	0.33	15
Tokyotohokubu	15	8.09	0.43	5.38	915	1.63	1.11	1.11	1.07	12.3	1.07	0.57	0.55	21
Fujisawa	9	9.09	0.62	6.99	916	2.25	1.06	0.97	0.55	7.2	0.87	n.d.	0.41	31
Anesaki	7	8.50	0.36	4.01	725	1.85	0.94	1.36	1.12	7.3	0.88	0.10	0.23	15
Average	(48)	8.56	0.45	5.17	874	1.73	1.08	1.15	1.08	10.8	1.12	0.38	0.41	21
d) All the samples														4.0
Minimum		5.29	0.29	2.93	402	0.30	0.41	0.31	0.21	2.6	0.55	0.05	0.10	10
Maximum		12.20	0.86	9.15	3060	4.09	3.89	1.82	1.69	23.8	2.27	1.60	1.28	/9
Average	(99)	8.93	0.53	5.90	1140	1.54	1.13	0.92	0.83	10.0	1.05	0.38	0.41	26
									-	-				
Sample	(n)	Ĉr	Cu	Hg	Мо	Ni	Р	Pb	Sb	Sn	TI	V	Zn	
Sample	(n)	Cr ppm	Cu ppm	Hg ppm	Mo ppm	Ni ppm	P ppm	Pb ppm	Sb ppm	Sn ppm	TI ppm	V ppm	Zn ppm	
Sample a) Kuroboku soils	(n)	Cr ppm	Cu ppm	Hg ppm	Mo ppm	Ni ppm	P ppm	Pb ppm	Sb ppm	Sn ppm	TI ppm	V ppm	Zn ppm	
Sample a) Kuroboku soils Kawagoe	(n) 9	Cr ppm 62	Cu ppm 104	Hg ppm 0.16	Mo ppm 1.25	Ni ppm 48	P ppm 2432	Pb ppm 29	Sb ppm 1.02	Sn ppm 2.70	TI ppm 0.39	V ppm 269	Zn ppm 161	
Sample a) Kuroboku soils Kawagoe Ryugasaki	(n) 9 8	Cr ppm 62 39	Cu ppm 104 97	Hg ppm 0.16 0.21	Mo ppm 1.25 1.36	Ni ppm 48 31	P ppm 2432 1249	Pb ppm 29 36	Sb ppm 1.02 1.18	Sn ppm 2.70 2.76	TI ppm 0.39 0.37	V ppm 269 229	Zn ppm 161 140	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu	(n) 9 8 6	Cr ppm 62 39 68	Cu ppm 104 97 140	Hg ppm 0.16 0.21 0.28	Mo ppm 1.25 1.36 1.60	Ni ppm 48 31 44	P ppm 2432 1249 3478	Pb ppm 29 36 37	Sb ppm 1.02 1.18 1.43	Sn ppm 2.70 2.76 3.45	TI ppm 0.39 0.37 0.32	V ppm 269 229 293	Zn ppm 161 140 175	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa	(n) 9 8 6 8	Cr ppm 62 39 68 45	Cu ppm 104 97 140 136	Hg ppm 0.16 0.21 0.28 0.15	Mo ppm 1.25 1.36 1.60 0.69	Ni ppm 48 31 44 40	P ppm 2432 1249 3478 1511	Pb ppm 29 36 37 23	Sb ppm 1.02 1.18 1.43 0.81	Sn ppm 2.70 2.76 3.45 2.19	TI ppm 0.39 0.37 0.32 0.14	V ppm 269 229 293 276	Zn ppm 161 140 175 121	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki	(n) 9 8 6 8 8	Cr ppm 62 39 68 45 43	Cu ppm 104 97 140 136 122	Hg ppm 0.16 0.21 0.28 0.15 0.11	Mo ppm 1.25 1.36 1.60 0.69 1.05	Ni ppm 48 31 44 40 34	P ppm 2432 1249 3478 1511 1479	Pb ppm 29 36 37 23 19	Sb ppm 1.02 1.18 1.43 0.81 0.64	Sn ppm 2.70 2.76 3.45 2.19 1.73	TI ppm 0.39 0.37 0.32 0.14 0.29	V ppm 269 229 293 276 298	Zn ppm 161 140 175 121 126	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average	(n) 9 8 6 8 8 (39)	Cr ppm 62 39 68 45 43 51	Cu ppm 104 97 140 136 122 118	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17	Ni ppm 48 31 44 40 34 39	P ppm 2432 1249 3478 1511 1479 1966	Pb ppm 29 36 37 23 19 28	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30	V ppm 269 229 293 276 298 272	Zn ppm 161 140 175 121 126 143	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so	(n) 9 8 6 8 8 (39) ils	Cr ppm 62 39 68 45 43 51	Cu ppm 104 97 140 136 122 118	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17	Ni ppm 48 31 44 40 34 39	P ppm 2432 1249 3478 1511 1479 1966	Pb ppm 29 36 37 23 19 28	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30	V ppm 269 229 293 276 298 272	Zn ppm 161 140 175 121 126 143	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so Kawagoe	(n) 9 8 6 8 8 (39) ils 5	Cr ppm 62 39 68 45 43 51 212	Cu ppm 104 97 140 136 122 118 118	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99	Ni ppm 48 31 44 40 34 39 169	P ppm 2432 1249 3478 1511 1479 1966 1166	Pb ppm 29 36 37 23 19 28 28	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33	V ppm 269 229 293 276 298 272 300	Zn ppm 161 140 175 121 126 143 128	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so Kawagoe Fujisawa	(n) 9 8 6 8 8 (39) ils 5 3	Cr ppm 62 39 68 45 43 51 212 38	Cu ppm 104 97 140 136 122 118 118 118	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.03	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63	Ni ppm 48 31 44 40 34 39 169 34	P ppm 2432 1249 3478 1511 1479 1966 1166 1693	Pb ppm 29 36 37 23 19 28 28 28 14	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14	V ppm 269 229 293 276 298 272 300 296	Zn ppm 161 140 175 121 126 143 128 118	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki <u>Average</u> b) Brown forest so Kawagoe Fujisawa Anesaki	(n) 9 8 6 8 8 (39) ils 5 3 4 4	Cr ppm 62 39 68 45 43 51 212 38 25	Cu ppm 104 97 140 136 122 118 118 143 27	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00	Ni ppm 48 31 44 40 34 39 169 34 18	P ppm 2432 1249 3478 1511 1479 1966 1693 428 428	Pb ppm 29 36 37 23 19 28 28 14 17	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.47	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34	V ppm 269 229 293 276 298 272 300 296 123 240	Zn ppm 161 140 175 121 126 143 128 118 85	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so Kawagoe Fujisawa Anesaki Average	(n) 9 8 6 8 8 (39) ils 5 3 4 (12)	Cr ppm 62 39 68 45 43 51 212 38 25 106	Cu ppm 104 97 140 136 122 118 118 143 27 94	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91	Ni ppm 48 31 44 40 34 39 169 34 18 85	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052	Pb ppm 29 36 37 23 19 28 28 14 17 21	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34 0.28	V ppm 269 229 293 276 298 272 300 296 123 240	Zn ppm 161 140 175 121 126 143 128 118 85 111	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so Kawagoe Fujisawa Anesaki Average c) Alluvial soils	(n) 9 8 6 8 8 (39) ils 5 3 4 (12)	Cr ppm 62 39 68 45 45 45 51 212 38 25 106	Cu ppm 104 97 140 136 122 118 143 27 94	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91	Ni ppm 48 31 44 40 34 39 169 34 18 85	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052	Pb ppm 29 36 37 23 19 28 28 14 17 21	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34 0.28	V ppm 269 229 293 276 298 272 300 296 123 240 150	Zn ppm 161 140 175 121 126 143 128 118 85 111	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so Kawagoe Fujisawa Anesaki Average c) Alluvial soils Kawagoe	(n) 9 8 6 8 8 (39) ils 5 3 4 (12) 5	Cr ppm 62 39 68 45 43 51 212 38 25 106 103	Cu ppm 104 97 140 136 122 118 143 27 94 70	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11 0.19	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91 0.88	Ni ppm 48 31 44 40 34 39 169 34 18 85 93	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052 2152 2152	Pb ppm 29 36 37 23 19 28 28 14 17 21 27	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49 0.86 0.86	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86 2.94	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34 0.28 0.43	V ppm 269 229 293 276 298 272 300 296 123 240 158	Zn ppm 161 140 175 121 126 143 128 118 85 111 143	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so Kawagoe Fujisawa Anesaki Average c) Alluvial soils Kawagoe Ryugasaki	(n) 9 8 6 8 8 (39) ils 5 3 4 (12) 5 12	Cr ppm 62 39 68 45 43 51 212 38 25 106 103 22 25	Cu ppm 104 97 140 136 122 118 118 143 27 94 70 45	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11 0.19 0.19 0.10	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91 0.88 0.84	Ni ppm 48 31 44 40 34 39 169 34 18 85 93 18 85	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052 2152 1452 2152	Pb ppm 29 36 37 23 19 28 28 14 17 21 27 24 77	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49 0.86 0.90 0.86	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86 2.94 2.23 1.223	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34 0.28 0.43 0.43 0.43	V ppm 269 229 293 276 298 272 300 296 123 240 158 133 164	Zn ppm 161 140 175 121 126 143 128 118 85 111 143 115 296	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so Kawagoe Fujisawa Anesaki Average c) Alluvial soils Kawagoe Ryugasaki Tokyotohokubu	(n) 9 8 6 8 8 (39) ils 5 3 4 (12) 5 12 15	Cr ppm 62 39 68 45 43 51 212 38 25 106 103 22 58 58	Cu ppm 104 97 140 136 122 118 143 27 94 70 45 201	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11 0.19 0.10 0.45	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91 0.88 0.84 1.80	Ni ppm 48 31 44 40 34 39 169 34 18 85 93 18 40 27	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052 2152 1452 2370	Pb ppm 29 36 37 23 19 28 28 14 17 21 27 24 75 27	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49 0.86 0.90 2.53 2.73	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86 2.94 2.23 13.23 1.73	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34 0.28 0.43 0.43 0.43 0.43 0.48 0.35 0.15	V ppm 269 229 293 276 298 272 300 296 123 240 158 133 164 296	Zn ppm 161 140 175 121 126 143 128 118 85 111 143 115 286	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so Kawagoe Fujisawa Anesaki Average c) Alluvial soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa	(n) 9 8 6 8 8 (39) ils 5 3 4 (12) 5 12 15 9 7	Cr ppm 62 39 68 45 43 51 212 38 25 106 103 22 58 55	Cu ppm 104 97 140 136 122 118 143 27 94 70 45 201 132	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11 0.19 0.10 0.45 0.16	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91 0.88 0.84 1.80 0.95 0.24	Ni ppm 48 31 44 40 34 39 169 34 18 85 93 18 40 37	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052 2152 1452 2370 1769	Pb ppm 29 36 37 23 19 28 28 14 17 21 27 24 75 20	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49 0.86 0.90 2.53 0.74	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86 2.94 2.23 13.23 1.78 1.78	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.28 0.43 0.43 0.43 0.48 0.35 0.19 0.22	V ppm 269 229 293 276 298 272 300 296 123 240 158 133 164 286	Zn ppm 161 140 175 121 126 143 128 118 85 111 143 115 286 144	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki Average b) Brown forest so Kawagoe Fujisawa Anesaki Average c) Alluvial soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki	(n) 9 8 6 8 8 (39) iis 5 3 4 (12) 5 12 15 9 7 7	Cr ppm 62 39 68 45 43 51 212 38 25 106 103 22 58 55 27	Cu ppm 104 97 140 136 122 118 143 27 94 70 45 201 132 32	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11 0.19 0.10 0.45 0.16 0.45 0.16	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91 0.88 0.84 1.80 0.95 0.64	Ni ppm 48 31 44 40 34 39 169 34 18 85 93 18 40 37 18 20	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052 2152 2152 2452 2370 1769 993	Pb ppm 29 36 37 23 19 28 14 17 21 27 24 75 20 5 20 5 20	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49 0.86 0.90 2.53 0.74 0.51	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86 2.94 2.23 13.23 1.78 1.59 5.52	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34 0.28 0.43 0.43 0.48 0.35 0.19 0.28	V ppm 269 229 293 276 298 272 300 296 123 240 158 133 164 286 144 286	Zn ppm 161 140 175 121 126 143 128 118 85 111 143 115 286 144 92	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki <u>Average</u> b) Brown forest so Kawagoe Fujisawa Anesaki <u>Average</u> c) Alluvial soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki <u>Average</u> D Alwage	(n) 9 8 6 8 8 (39) iils 5 3 4 (12) 5 12 15 9 7 (48)	Cr ppm 62 39 68 45 43 51 212 38 25 106 103 22 55 27 49	Cu ppm 104 97 140 136 122 118 143 27 94 70 45 201 132 32 111	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11 0.19 0.10 0.45 0.16 0.08 0.23	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91 0.88 0.84 1.80 0.95 0.64 1.13	Ni ppm 48 31 44 40 34 39 169 34 18 85 93 18 40 37 18 36	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052 2152 2152 2452 2370 1769 993 1804	Pb ppm 29 36 37 23 19 28 28 14 17 21 27 24 75 20 15 38	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49 0.86 0.90 2.53 0.74 0.51 1.32	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86 2.94 2.23 13.23 1.78 1.59 5.56	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34 0.28 0.43 0.43 0.48 0.35 0.19 0.28 0.35	V ppm 269 229 293 276 298 272 300 296 123 240 158 133 164 286 144 176	Zn ppm 161 140 175 121 126 143 128 118 85 111 143 115 286 144 92 174	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki <u>Average</u> b) Brown forest so Kawagoe Fujisawa Anesaki <u>Average</u> c) Alluvial soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki <u>Average</u> d) All the samples	(n) 9 8 6 8 8 (39) iils 5 3 4 (12) 5 12 15 9 7 (48)	Cr ppm 62 39 68 45 43 51 212 38 25 106 103 22 58 55 27 49	Cu ppm 104 97 140 136 122 118 143 27 94 70 45 201 132 32 111	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11 0.19 0.10 0.45 0.16 0.08 0.23	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91 0.88 0.84 1.80 0.95 0.64 1.13	Ni ppm 48 31 44 40 34 39 169 34 18 85 93 18 40 37 18 36	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052 2152 2452 2370 1769 993 1804	Pb ppm 29 36 37 23 19 28 28 14 17 21 27 24 75 20 15 38	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49 0.86 0.90 2.53 0.74 0.51 1.32	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86 2.94 2.23 13.23 1.78 1.59 5.56	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.33 0.14 0.34 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.45 0.19 0.30 0.31 0.32 0.30 0.33 0.14 0.29 0.30 0.30 0.32 0.30 0.32 0.30 0.32 0.32 0.30 0.32 0.30 0.32 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.30 0.32 0.32 0.30 0.33 0.14 0.29 0.30 0.32 0.33 0.14 0.34 0.35 0.32 0.34 0.35 0.32 0.33 0.14 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.45 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.28 0.35 0.14 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.35 0.14 0.35 0.15 0.28 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.35 0.35 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.14 0.28 0.35 0.14 0.14 0.28 0.14 0.1	V ppm 269 229 293 276 298 272 300 296 123 240 158 133 164 286 144 176	Zn ppm 161 140 175 121 126 143 128 118 85 111 143 115 286 144 92 174	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki <u>Average</u> b) Brown forest so Kawagoe Fujisawa Anesaki <u>Average</u> c) Alluvial soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki <u>Average</u> d) All the samples Minimum	(n) 9 8 6 8 8 (39) ils 5 3 4 (12) 5 12 15 9 7 (48)	Cr ppm 62 39 68 45 43 51 212 38 25 106 103 22 58 55 27 49 15	Cu ppm 104 97 140 136 122 118 143 27 94 70 45 201 132 32 111 16	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11 0.19 0.10 0.45 0.16 0.08 0.23 0.02	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91 0.88 0.84 1.80 0.95 0.64 1.13 0.24	Ni ppm 48 31 44 40 34 39 169 34 18 85 93 18 40 37 18 36 20 20	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052 2152 1452 2370 1769 993 1804 340	Pb ppm 29 36 37 23 19 28 28 14 17 21 27 24 75 20 15 38 8 200	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49 0.86 0.90 2.53 0.74 0.51 1.32	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86 2.94 2.23 13.23 1.78 1.59 5.56 0.90	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34 0.35 0.19 0.28 0.35 0.11 0.20	V ppm 269 229 293 276 298 272 300 296 123 240 158 133 164 286 144 176 86	Zn ppm 161 140 175 121 126 143 128 118 85 111 143 115 286 144 92 174 68	
Sample a) Kuroboku soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki <u>Average</u> b) Brown forest so Kawagoe Fujisawa Anesaki <u>Average</u> c) Alluvial soils Kawagoe Ryugasaki Tokyotohokubu Fujisawa Anesaki <u>Average</u> d) All the samples Minimum Maximum	(n) 9 8 6 8 8 (39) ils 5 3 4 (12) 5 12 15 9 7 (48)	Cr ppm 62 39 68 45 43 51 212 38 25 106 103 22 58 55 27 49 15 605	Cu ppm 104 97 140 136 122 118 143 27 94 70 45 201 132 32 111 132 32 111 16 1600	Hg ppm 0.16 0.21 0.28 0.15 0.11 0.18 0.15 0.08 0.07 0.11 0.19 0.10 0.45 0.16 0.08 0.23 0.02 1.99 0.12	Mo ppm 1.25 1.36 1.60 0.69 1.05 1.17 0.99 0.63 1.00 0.91 0.88 0.84 1.80 0.95 0.64 1.13 0.24 5.79	Ni ppm 48 31 44 40 34 39 169 34 18 85 93 18 40 37 18 36 2406	P ppm 2432 1249 3478 1511 1479 1966 1693 428 1052 2152 1452 2370 1769 993 1804 340	Pb ppm 29 36 37 23 19 28 28 14 17 21 27 24 75 20 15 38 8 338 8	Sb ppm 1.02 1.18 1.43 0.81 0.64 1.00 0.53 0.44 0.47 0.49 0.86 0.90 2.53 0.74 0.51 1.32 0.27 8.68	Sn ppm 2.70 2.76 3.45 2.19 1.73 2.52 2.28 1.43 1.65 1.86 2.94 2.23 13.23 1.78 1.59 5.56 0.90 129.00	TI ppm 0.39 0.37 0.32 0.14 0.29 0.30 0.33 0.14 0.34 0.35 0.19 0.28 0.35 0.11 0.60	V ppm 269 229 293 276 298 272 300 296 123 240 158 133 164 286 144 176 86 384 294	Zn ppm 161 140 175 121 126 143 128 118 85 111 143 115 286 144 92 174 68 938 154	

第5表 表層土壌中元素濃度の地域別平均値. Table 5 The averaged elemental concentrations of surface soils for each area.

バーできることを示唆する.

4.3.2 褐色森林土

川越地域の褐色森林土は,他地域のそれに比べてNa, Kに乏しく,Co, Cr, Niに富む特徴がある(第5表).これは緑 色片岩が分布する地域で採取した2試料の元素濃度が反 映された結果であり,礫岩,砂岩-泥岩分布域で採取した3 試料ではこのような特徴は無く,全体の平均値に近い値が 得られた.藤沢地域の凝灰岩分布域の土壌は,Ca,Mg, Cuに富み,K,As,Tl等に乏しい藤沢地域の黒ボク土の特 徴を有する.しかし,Pb,Sb,Sn等は黒ボク土中濃度の1/ 2程度であり,黒ボク土とは主要母材が異なることを示唆し ている.姉崎地域の泥質砂岩分布域の土壌は,Ti,Fe,Mn,

Table 6 Comparison of the e	lementa	l concent	rations o	f the cul	tivated so	oils and	forest s	oils.						
Sample		AI	Ti	Fe	Mn	Ca	Mg	Na	К	As	Be	Bi	Cd	Co
		%	%	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	ppm
Cultivated soils	Avg.	9.65	0.65	6.84	1538	1.18	1.14	0.69	0.75	10.69	1.18	0.39	0.49	30
(n=17)	SD	1.22	0.12	1.39	492	0.48	0.26	0.24	0.29	3.67	0.32	0.15	0.16	6
Non cultivated soils (A)	Avg.	9.05	0.56	6.12	1257	1.50	1.19	0.77	0.57	9.01	0.87	0.34	0.40	29
(n=17)	SD	0.97	0.14	1.44	331	0.81	0.76	0.37	0.31	2.96	0.24	0.13	0.18	14
Non cultivated soils (B)	Avg.	9.14	0.62	6.79	1378	1.39	1.19	0.62	0.45	7.85	0.89	0.42	0.33	33
(n=17)	SD	1.60	0.11	1.18	240	1.16	0.59	0.34	0.14	3.62	0.31	0.11	0.13	7
Sample		Cr	Cu	Hg	Мо	Ni	Р	Pb	Sb	Sn	TI	V	Zn	
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Cultivated soils	Avg.	61	115	0.17	1.27	44	2911	28	1.10	2.57	0.34	270	157	
(n=17)	SD	16	37	0.15	0.39	11	1208	14	0.58	1.03	0.10	69	38	
Non cultivated soils (A)	Avg.	72	106	0.16	1.08	53	1190	25	0.83	2.26	0.30	250	123	
(n=17)	SD	138	42	0.09	0.29	91	598	8	0.37	0.72	0.08	69	27	
Non cultivated soils (B)	A∨g.	60	117	0.15	0.99	53	1151	27	0.69	2.26	0.27	273	128	
(n=17)	SD	61	31	0.10	0.44	69	601	14	0.35	1.11	0.11	55	24	

第6表 耕作地土壌と森林土壌における元素濃度の比較.

(A): Evergreen trees; (B): Deciduous trees, bamboo & grass; Avg.: Average; SD: Standard deviation (1 σ).

Cu, P等の苦鉄質鉱物に多く含有される元素に乏しい傾向 があり,これは主要母材が珪長質であることを示すであろ う.以上,本研究で対象とした褐色森林土の主要な母材は 柱状試料の場合と同様表層地質を構成する岩石等の風化 物と考えられる.

4.3.3 沖積層土壌

沖積層土壌中元素濃度の地域差は,黒ボク土における それよりも大きい傾向がある(第5表).これは、黒ボク土の主 要母材である火山噴出物等の化学組成の地域差が比較的 小さいのに対して,表層地質に由来する河川起源砕屑物に は大きな地域差が存在するためであろう.特徴ある濃度差 としては,川越地域のMg, Cr, Ni濃度が他地域より高いが これは褐色森林土の場合と同様緑色片岩分布域での高値 が原因である、東京東北部におけるCu, Hg, Sb, Sn, Zn等 の高濃度は,市街地の公園等で採取した数試料における 異状な高濃度が原因で,人為的な影響である.墨田区墨田 5丁目の公園で採取した試料では,Cu 1600, Mo 5.79, Pb 338, Sb 8.68, Sn 128.5, Zn 849 ppmの高値が得られた. このように多くの重金属濃度が高い場合,公園内での汚染 ではなく,汚染された土壌が公園の造成等に使用されたと 考えるべきであろう.藤沢,姉崎の両地域はともに富士山起 源の噴出物の影響を受けるが,河川由来砕屑物の組成の 相違を反映してNa, K, Tl等珪長質岩に多い元素は姉崎地 域で,Cd, Co, Cr, Cu, Ni, P, V等苦鉄質岩に多い元素は 藤沢地域で高濃度である(第5表). 今回分析した沖積層土 壌は全体的に細粒,泥質であったが,水田土壌であっても 砂質粒子に富む試料があり、この場合多くの重金属が低濃 度を示す(寺島ほか,2002).

4.4 元素濃度とその存在比の特徴

各種火成岩類における元素の存在量と岩質との関係に ついてTurekian and Wedepohl (1961)の表を概観する と,Fe, Ti, As, Sb, Bi, Cd, Cr, Ni, Cu, Zn等は珪長質岩 よりも苦鉄質岩に多く,逆にNa, K, Be, Tl, Sn, Pb等は苦 鉄質岩よりも珪長質岩に多く含有される傾向がある.そし て,物理・化学的性質が類似する元素は,火成作用や土壌 化過程を通じて類似の挙動を示す場合が多く,土壌中の存 在量や存在比には一定の傾向が存在すると考えられる.一 方,人為的に供給される元素の種類と濃度は自然現象のぞ れとは異なるので,土壌中の2元素間の存在量と存在比を 比較検討することにより,土壌の母材や元素の起源・挙動, 人為的影響等について有用な情報が得られると考えら れる.

第5図は,類似の性質を有する9組(Fe-Ti, Mg-Ca, Na-K, Sb-As, Be-Tl, Cd-Bi, Ni-Cr, Zn-Cu, Sn-Pb)の元素濃度 の関係を柱状試料,表層試料(東京東北部のCd-Bi, Zn-Cu, Sn-Pbは他地域と区別)に区分してプロットしたもので ある、Fe-Tiの関係図では、表層試料よりも柱状試料におけ るFe, Tiの濃度が高いが,これは主として表層試料が腐植 や水分による希釈作用を受けていることによる. Mg-Ca, Ni-Cr関係図において,Site 1の試料は他試料と異なる位 置にプロットされるが,これはSite 1の主要母材が緑色片岩 であることに起因し,Ni,Crの異常な高濃度は人為的な影 響ではない. NaとKの両元素に富む試料は表層試料に限 定される傾向があり,これは沖積層土壌の多くがこの両元 素に富むためである.Sb,Asは同族元素であるにもかかわ らず土壌中存在比には一定の傾向がないが(第5図),これ は主として生物濃縮の効果に差があるためと考えられる. すなわち、第3表によればAsに比べてSbが約7倍濃縮され やすい傾向にあり、このことは第3図における両元素の鉛直 変化の傾向にも現れている.一般の火成岩類では、CuとZn 濃度の間には正の相関が存在する.今回分析した土壌で はCu濃度が増加してもZn濃度は増加しない試料が多い が,これは富士山起源の噴出物の特徴である(Togashi

第5図 柱状試料(○),表層試料(●),東京東北部表層試料(■)中元素濃度の比較.直線は各元素の地殻存在比(Wedepohl, 1995).

Fig. 5 Comparison of the elemental concentrations among the core samples (○), the surface samples (●) and the Tokyotohokubu surface samples (■). Straight line is the crustal abundance ratio (Wedepohl, 1995).

Sample	(n)	Fe	К	As	Be	Bi	Cd	Cr	Cu	Hg	Мо	Ni	Pb	Sb	TI	Zn
		(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	_(ppm)	(ppm)							
Kuroboku soils (A)	187	7.33	0.46	9	1.00	0.34	0.31	53	133	0.109	1.05	41	22	0.63	0.31	118
Alluvial soils (B)	43	5.09	1.08	11	1.13	0.39	0.37	46	75	0.220	1.01	36	28	0.98	0.36	133
River sediments (C)	101	5.10	1.12	9	1.01	0.16	0.18	61	37	0.035	1.16	28	19	0.67	0.38	114
Ratio (A)/(B)		1.44	0.43	0.82	0.88	0.87	0.84	1.15	1.77	0.50	1.04	1.14	0.79	0.64	0.86	0.89
Ratio (B)/(C)		1.00	0.96	1.22	1.12	2.44	2.06	0.75	2.03	6.29	0.87	1.29	1.47	1.46	0.95	1.17

第7表 黒ボク土,沖積層土壌,河川堆積物中元素濃度の比較. Table 7 The averaged elemental concentrations of Kuroboku soils, alluvial soils and river sediments.

and Terashima, 1997). Cd-Bi, Zn-Cu, Sn-Pb関係図(第 5図)において,他の表層試料と区別した東京東北部の試 料中には他の大多数の試料とは異なる高濃度側にプロット される数個の試料があるが,これらは人為的な影響と考えら れる.

4.5 人為的影響の評価

2002年に制定された「土壌汚染対策法」では、一定以上 の有害物質で汚染された土壌については汚染の除去や拡 散防止が義務づけられており、人為的影響の評価が極め て重要である、人為的影響を正しく評価するためには、各元 素のバックグラウンド値を知る必要がある.3.1で述べたよう に柱状試料はいずれも人為的影響がないと考えられる地 点で採取したこと,表層部における濃度増加はすべて生物 濃縮等土壌化における濃度変化で説明できること等から、 柱状試料中の元素はいずれもバックグラウンド値と判断す る.既に述べたように,バックグラウンド値は母材の特性や 生物濃縮の影響の大小で変化するため,柱状試料の最高 値を越える値はすべて人為的影響であるとすることには問 題がある.第5図に見られる柱状試料と表層試料中の元素 濃度の分布状況から判断して,本研究では柱状試料にお ける最大値の1.5倍までをバックグラウンド値として扱うこと にした.各元素別のバックグラウンドの最大値は,As 24.5, Sb 4.5, Cu 320, Zn 290, Pb 110, Cd 1.05, Bi 1.43, Mo 3.75, Sn 7.65, Hg 0.42, Tl 1.05, Be 2.4 ppmである.これ らを越える値,すなわち人為的影響が認められる元素別の 試料数は,Zn,Hgが5,Pb4,Sn3,Cu,Sb,Cd,Bi,Moが 1, As, Be, Tlが0であり,ほとんどが東京東北部の公園,道 路脇の植え込み等で採取された試料である.Zn,Pb,Snは メッキ原料や合金として広く使用されており,特に食品等保 存用の缶からの溶出が考えられる.

4.6 土壌と河川堆積物における元素濃度の比較

山地-盆地が含まれる同一地域(茨城県八郷町周辺)で 採取した黒ボク土,沖積層土壌,河川堆積物の化学組成を 比較した結果,Fe, Cu, Ni, Mo等多くの重金属濃度が黒 ボク土で高く,沖積層土壌で低く,沖積層土壌の化学組成 は河川堆積物のそれに類似する傾向があり,この原因は黒 ボク土の母材が主として火山噴出物であるのに対して,沖 積層土壌では河川由来の基盤岩砕屑物が卓越するためと 考えられた(寺島ほか,2001a,b, 2002).平野部における黒 ボク土,沖積層土壌,河川堆積物の化学組成を比較するた め,黒ボク土については柱状試料と表層試料を合わせ,沖 積層土壌については人為的な影響が考察される5試料を 除外した43試料について平均値を算出した(第7表).河川 堆積物のデータは,全国地球化学図作成のために関東地 域の主要河川から採取された試料であり,鉱山周辺や都市 部における人為汚染が考えられる試料は除外し,101試料 の平均値を求めた(第7表).

まず,黒ボク土(A)と沖積層土壌(B)を比較すると,Fe, Cu以外の重金属の濃度比[(A)/(B)]はいずれも1.15以下 であり,多くの重金属が黒ボク土で高濃度を示す傾向は認 められない.平野部においては沖積層土壌の母材に占める 地層起源の砕屑物が少なく,火山噴出物等が多いためで あろう.つぎに,沖積層土壌と河川堆積物(C)の元素濃度を 比較するとFe,K,As,Be,Mo,Tl,Zn等はほぼ一致して いるが,Bi,Cd,Cu,Hg,Pb,Sb等は[(B)/(C)]比が1.4を 越えており,明らかに沖積層土壌が高濃度である.Bi,Cd等 が沖積層土壌で高濃度を示す理由としては,土壌では生 物濃縮の影響があるが,河川堆積物ではその影響が小さい こと,流水の影響下にあるため微量元素に富む細粒堆積物 が流失しやすいこと等が考えられる.

4.7 土壌地球化学図のための試料選定方法

これまでの研究結果を総括し,一定面積を代表する土壌 試料の選定方法の検討結果を述べる.まず,土地分類基本 調査,地質図等を参考に,対象地域における非沖積層と沖 積層の分布域を把握する.そして可能であれば,非沖積層 地域の土壌を黒ボク土と非黒ボク土(褐色森林土のように 主要母材は表層地質を構成する岩石等の風化物で,これ に若干の火山噴出物等の大気経由物質が付加されて形成 されたすべての土壌を言う)に区分する.

4.7.1 黒ボク土地域

黒ボク土地域では,まず土壌母材を供給した火山等の 特定と母材の均質性,水平方向への分布範囲の把握が重 要である.関東の平野部のように,厚い黒ボク土が分布す る地域では表層部20 cm程度を分析対象とする場合母材 の均質性はほぼ確保されていると考えられるが,丘陵地帯 や山間部では平野部に比べて火山噴出物等の堆積速度 が遅く,表層直下に起源の異なる火山噴出物が存在した り,褐色森林土等が分布するため注意が必要である(寺島 ほか,2001a).また,火山噴出物の粒度は火山近傍では粗 粒で風化に強く,遠く離れると細粒で風化し易い等の特徴 があり,化学組成の変動要因となる.したがって,黒ボク土 が分布する地域においては母材を供給した火山等からの 距離と地形的特徴を考慮して代表的試料が得られるいくつ かの地点を選定する.土地の利用形態は畑,山林,草地,宅 地,市街地等異なり,宅地,市街地の土壌には人為的影響 が考えられ,耕地土壌にも元素によっては人為的影響があ るので,宅地・市街地,耕地(畑,果樹林等),非耕地(山林 その他)の3区分が適当で,この区分は以下の土壌も同様 である.なお,宅地・市街地土壌における人為的影響は試 料の採取地点によって大きく異なるのが普通であり,元素 によっては一定の地域(面積)を代表するデータとしての扱 いは困難で,地点データとしての表示を考慮すべきであ ろう.

4.7.2 非黒ボク土地域

非黒ボク土が分布する地域では,原則として表層地質区 分別に試料を採取する.地域によっては表層地質が複雑 で全部がカバーできない場合もあろうが,その場合は露出 面積が広いものを優先し,その中心部に近く周辺から性質 の異なる母材の混入がない場所を選定する.土地分類基 本調査がなされておらず,黒ボク土と非黒ボク土の区別が 困難な地域では非黒ボク土と同様に表層地質区分別に採 取すべきであろう.

4.7.3 沖積層土壌地域

前述のように沖積層土壌の主要母材は,地層に由来する 河川堆積物と火山噴出物等の大気経由堆積物の混合物 である.そして後者の影響は比較的広い範囲で同一とみな すことができるため,前者を考慮した試料採取を行う.関東 中南部のように,沖積面の形成に関与した河川が大きく,地 層由来堆積物の化学組成が均質化されている地域では, 土壌の粒度組成の相違が化学組成の変動要因となるた め,泥質の水田土壌を一定間隔で採取する.また,過去の 時代に海水の影響下にあった地域では,As,Sb,Mo等の 濃度増加が認められる場合があるため,海水の影響がない 地域とは区別する.山地・丘陵地に近い沖積層では,相対 的に地層由来堆積物の割合が多く,集水域の地質特性が 土壌の化学組成に反映されやすい.集水域の地層分布を 把握して,代表的試料が得られそうな場所を選定するととも に,上,中,下流域等に区分した試料採取が必要である.

5.まとめ

土壌地球化学図の作成に関する予察的研究の総括として,関東南部から新たに採取した柱状・表層土壌について 主・微量成分元素を定量し,元素の地球化学的挙動を研究 して以下の結論を得た.

1)黒ボク土,褐色森林土における元素濃度の鉛直分布を 支配する要因としては,土壌化の影響,生物濃縮,土壌母 材の起源等が重要である.土壌化に伴う水分や腐植の濃 度増加は表層部ほど大きいので,他の要因が無視できれ ば無機元素は表層部よりも下層部で高濃度になるはずで あり,分析した元素のうちAl, Ti, Fe, Li, Cs, Tl, Be, Co, Cr, Ni, V, Ga, La, Ce, Th, U, Y, Zrについてはその傾向 が認められた.

2)日本の山野に自生する松,杉,檜,欅,桜等の樹木と, 竹,ススキ,芝等の植物を灰化して各種元素を定量して平 均値を算出し,地殻存在量と比較して生物濃縮の影響を検 討した.濃縮効果が大きい元素は,P,Sb,Zn,Cd,Cu,Ca, Pb,Bi,Mn,Sr,K,Mo,As,Snであり,これら元素の大部 分は柱状試料の表層部で高濃度を示し,生物濃縮の影響 と解釈された.Mn,Ca,K,Cu等は,表層部で高濃度を示 さない場合があるが,これは生物濃縮の効果よりも土壌化 過程での溶出や,水分等による希釈効果の影響であろう. また,1)で述べたAl,Ti等土壌表層部で低濃度を示す元素 の植物灰中の濃度は地殼存在量よりも低く,生物濃縮の影 響を受けないことが判明した.

3)関東南部の黒ボク土の主要母材は,富士山起源の噴出物であり,関東中部では富士山のほか浅間,赤城,男体等諸火山の噴出物の影響がある.母材の起源を反映して富士山に近い地域の黒ボク土はCa, Mg, Cu等の濃度が他地域よりも高く,K, As, T1等に乏しい傾向がある.耕作土(主として畑)と非耕作土(平地林等)の元素濃度を比較した結果,Kは約1.5倍,Pは約2.5倍耕作土の方が高濃度で施肥の影響が考察された.

4) 褐色森林土の主要母材は,その化学組成の特徴から表 層地質を構成する岩石等の風化物と考えられた.しかし,岩 石の風化・変質のみでは説明できない元素濃度の鉛直変 化があり,土壌化の過程で火山噴出物等起源の異なる物 質の付加があったことを示唆している.

5)沖積層土壌の主要母材は、火山噴出物等の大気経由物 質と河川経由の砕屑物の混合物である。両者の割合は集 水域の規模や地形,地質特性によって変化する.また,多く の重金属類は粗粒土壌よりも細粒土壌中で高濃度を示す。 沖積平野の大部分は水田として利用されており,地球化学 図用の試料は、水田土壌が適切であろう.

6)物理・化学的性質が類似する元素は、火成作用や風化・ 続成作用を通じて類似の挙動を示す場合が多い.一方、人 為的に供給される元素の種類と濃度は自然界におけるそ れとは異なるので、土壌中の性質が類似する2元素の存在 量と存在比を注意深く観察することで、人為的影響の評価 が可能である.

7)平野部における黒ボク土と沖積層土壌中の重金属量を 比較した結果,山間部におけるそれに比べて濃度差が小さ い傾向があり,これは沖積層土壌の母材に占める地層起源 砕屑物の割合が少ないためと考えられた.沖積層土壌と河 川堆積物の起源物質は類似するが,Bi,Cd,Hg等生物濃 縮の影響が大きい元素は土壌中で高濃度を示す.

8) 土壌地球化学図の作成において, 一定地域を代表する

試料の選定方法を提示した.土壌と河川堆積物の化学組 成は必ずしも一致しない.土壌地球化学図は,環境汚染の 評価や元素濃度のバックグラウンド値を判定する資料とし て重要である.

文 献

- 浅見輝男 (2001) 日本土壌の有害金属汚染.アグネ技術 センター,東京,402p.
- Bowen, H. J. M. (1979) Environmental chemistry of the elements. Academic Press, London, 333p.
- 千葉県 (1978) 土地分類基本調查「姉崎·木更津」.
- 地学団体研究会編 (1996) 新版地学事典. 平凡社, 東京, 1443p.
- 早川由紀夫 (1995) 日本に広く分布するローム層の特徴と その成因. 火山, **40**, 177-190.
- Imai, N. (1990) Multielement analysis of rocks with the use of geological certified reference material by inductively coupled plasma mass spectrometry, Anal. Sci., **6**, 389-395.
- 今井 登・岡井貴司・遠藤秀典・田口雄作・石井武政・ 上岡 晃 (1997) 仙台市周辺の地球化学図と環境評 価. 地質ニュース,**513**,26-30.
- 今井 登・岡井貴司・遠藤秀典・石井武政・田口雄作・ 上岡 晃 (2000a)山形市周辺地域の地球化学図. 遠藤秀典編"地質環境アトラス「山形市周辺地域」", 地質調査所,p.37-40.
- 今井 登・寺島 滋・岡井貴司・金井 豊・御子柴真澄・ 上岡 晃・富樫茂子・松久幸敬・谷口政碩・横田節哉 (2000b) 地球化学図による全国的な有害元素のバッ クグラウンドと環境汚染評価手法の高度化に関する研 究.平成11年度環境保全研究成果集,56-1~56-14.
- 今井 登・寺島 滋・岡井貴司・金井 豊・御子柴真澄・ 上岡 晃・富樫茂子・松久幸敬・谷口政碩・横田節哉 (2002)地球化学図による全国的な有害元素のバック グラウンドと環境汚染評価手法の高度化に関する研 究.平成12年度環境保全研究成果集,54-1~54-14.
- 伊藤司郎・上岡 晃・田中 剛・富樫茂子・今井 登. 金井 豊・寺島 滋・宇都浩三・岡井貴司・氏家真澄・ 柴田 賢・神谷雅晴・佐藤興平・坂本 亨・安藤 厚 (1991)地球化学アトラスー北関東一.地質調査所 出版物,35p.
- 神賀 誠・田切美智雄(2003)渡良瀬川および宮田川流 域の河川堆積物と土壌の汚染の現状-足尾銅山と日 立鉱山の閉山後の汚染のレベル.地質学雑誌,109, 533-547.
- 上岡 晃・田中 剛・伊藤司郎・今井 登(1991) 元素の 地表分布パターンとその解析ー北関東の地球化学 図.地球化学,25,81-99.

- 菅 和哉・黒沢邦彦(1987)北部北海道における土壌重金 属の地球化学図.北海道立地下資源調査所調査研究 報告第17号,30p.
- 菅 和哉・黒沢邦彦(1996)北海道中央部における土壌元素の地球化学図.北海道立地下資源調査所調査研究報告第26号,38p.
- 神奈川県 (1986) 土地分類基本調査「藤沢・平塚」.
- 神奈川県 (1988) 土地分類基本調査「横浜・東京西南部・ 東京東南部・木更津」.
- 金井 豊・坂本 亨・安藤 厚 (1988) 関東平野北東部に おける第四紀後期テフラの主成分及び微量成分組 成.地調月報,**39**,783-797.
- 関東ローム研究グループ (1965) 関東ロームーその起源と 性状ー. 築地書館,東京, 378p.
- 町田 洋 (1964) Tephrochronologyによる富士火山とその周辺地域の発達史-第四紀末期について-(その1). 地学雑,**73**,293-308.
- 町田 洋(1977)火山灰は語る,火山と平野の自然史. 蒼 樹書房,東京, 311p.
- 丸茂克美・竹内美緒・江橋俊臣・楡井 久(2003)土壌・地 質汚染評価基本図「5万分の1姉崎」. 独立行政法人 産業技術総合研究所地質調査総合センター.
- 松尾新一郎(監訳) (1971) 風化ーその理論と実態. ラテイス, 東京, 415p.
- 大政正隆 (1977) 土の科学.日本放送出版協会,東京, 225p.
- 太田充恒・今井 登・岡井貴司・遠藤秀典・川辺禎久・ 石井武政・田口雄作・上岡 晃 (2002) 山形市周辺地 域における元素分布の特徴について一山形盆地南部 地域の地球化学図一. 地球化学,**36**, 109-125.
- 太田充恒・今井 登・岡井貴司・遠藤秀典・石井武政・ 田口雄作・上岡 晃・御子柴真澄・寺島 滋(2003) 地球化学図を用いた仙台市周辺地域の元素挙動の 解明と環境評価.地球科学,57,61-72.
- 埼玉県 (1972) 土地分類基本調查「川越」.
- 椎川 誠・金山道雄・滝沢行雄 (1984) 秋田県の地球化学 図. 秋田大学教育学部地学教室, 29p.
- 鈴木毅彦 (1995) いわゆる火山灰土(ローム)の成因に関す る一考察ー中部~関東に分布する火山灰土の層厚分 布-.火山,**40**,167-176.
- 竹迫 総・加藤哲郎(1983)東京西部に分布する黒ボク土 の土壌生成環境について、黒部隆教授退官記念論文 集「火山灰と土壌」,博友社,東京,93-103.
- Tanaka, T., Kawabe, I., Hirahara, Y., Iwamori, I., Mimura, K., Sugisaki, R., Asahara, Y., Ito, T., Yarai, H., Yonezawa, C., Kanda, S., Shimizu, O., Hayashi, M., Miura, N., Mutoh, K., Ohta, A., Sugimura, K., Togami, K., Toriumi, T. and Matsumura, Y. (1994) Geochemical survey of the

Sanageyama area in Aichi Prefecture for environmental assessment. *Jour. Earth Planet. Sci. Nagoya Univ.*, **41**, 1-31.

- 寺島 滋(1984)連続水素化物生成-原子吸光法による 地質試料中のヒ素とアンチモンの定量.分析化学,**33**, 561-563.
- Terashima, S., Yonetani, H., Matsumoto, E. and Inouchi, Y. (1983) Sulfur and carbon contents in recent sediments and their relation to sedimentary environments. *Bull. Geol. Surv. Japan*, **34**, 361-382.
- Terashima, S. (1994) Determination of mercury in one hundred and eighteen geochemical reference samples by cold vapor atomic absorption spectrometry. *Geostandards Newsletter*, **18**, 199-202.
- 寺島 滋・今井 登・岡井貴司 (2001a) 関東平野におけ る土壌の化学組成と土壌地球化学図の作成に関する 基礎的研究. 地調月報, **52**, 9-40.
- 寺島 滋・太田充恒・今井 登・岡井貴司・御子柴真澄・ 谷口政碩 (2001b) 関東平野における沖積層土壌の 化学組成-土壌地球化学図の基礎的研究(第2報)-. 地調研報,**52**, 347-369.
- 寺島 滋・太田充恒・今井 登・岡井貴司・御子柴真澄・ 谷口政碩 (2002) 関東平野の土壌中微量有害元素 (As, Sb, Pb, Cr, Mo, Bi, Cd, Tl)の地球化学的研 究-土壌地球化学図の基礎研究(第3報)-.地調研 報,53, 749-774.

- 寺島 滋・太田充恒・今井 登・岡井貴司・御子柴真澄 (2004) 東海・沖縄地域の非沖積層土壌の母材と元素 の地球化学的研究.地球科学,投稿中.
- Togashi, S. and Terashima, S. (1997) The behavior of gold in unaltered island arc tholeiitic rocks from Izu-Oshima, Fuji, and Osoreyama volcanic areas, Japan. *Geochim. Cosmochim. Acta*, **61**, 543-554.
- Turekian, K. K. and Wedepohl, K. H. (1961) Distribution of the elements in some major units of the earth's crust. *Geol. Soc. America Bull.*, 72, 175-192.
- Wedepohl, K. H. (1995) The composition of the continental crust. Geochim. Cosmochim. Acta, 59, 1217-1232.
- 山田久夫・小坂丈予・浦部和順・中川善兵衛 (1968) 花崗 岩の風化-特に黒雲母の風化変質.地球化学,2,37-38.
- 山本鋼志・田中 剛・川邊岩夫・岩森 光・平原靖大・ 浅原良浩・金 奎漢・Chris Richardson・伊藤貴盛・ Cristian Dragusanu・三浦典子・青木 浩・太田充恒・ 榊原智康・水谷雅治・水谷嘉一・宮永直澄・村山正樹・ 仙田量子・高柳幸央・井上裕介・川崎啓介・高木真理・ 根布悟志・稲吉正実(1998)愛知県豊田市北東部の 領家花崗岩地域の地球化学図.地質雑,**104**,688-704.
- 山野井徹(1996)黒土の成因に関する地質学的検討.地 質雑, **102**, 526-544.

(受付:2003年11月14日;受理:2004年4月28日)