中国西南部三江造山帯における地熱地帯及び温泉型金鉱床の 地質と地化学的特徴

王 平安

Pin'an WANG (2001) Geology and geochemistry of geothermal fields and hot-spring type gold deposits in Sanjiang orogen, southwestern China. *Bull. Geol. Surv. Japan*, vol. 52 (8), p. 327–345. 13 figs, 6 tables.

Abstract: Sanjiang orogen is a NS-trending collisional orogenic belt between Indian plate and Yangtze block of the South China plate, and also an important metallogenetic belt in southwestern China. The collision process between Eurasia plate and Indian plate started from Mesozoic times, which resulted in strong and frequent magmatic activities then after. After Cenozoic, the stronger and more frequent tectono-magmatism and volcanic eruptions provided fracture spaces and plenty of heat sources for epithermal activity in this area.

As an active geothermal field, the Rehai geothermal field situates in the southern part of the Sanjiang orogen, and is composed of two sub-scale geothermal fields—the Huanggua-qing-Liuhuang-tang in northeast and Reshui-tang in southwest. Rocks that outcrop in this geothermal field are mainly late Cretaceous granitoids with minor late Tertiary and Quaternary volcanics, sandstone and conglomerate. Strong volcanisms in Pliocene to Pleistocene were recognized and early Pleistocene dacite and andicitic terrestrial volcanics distribute in the Huanggua-qing-Liuhuangtang geothermal field (i.e. Rehai geothermal field in narrow sense). 62 hot spring groups occur along a NS-striking main fault in the Rehai geothermal field. Hydrochemical types of the spring water are mainly Na-Cl-HCO₃ and Na-HCO₃-Cl types ; secondly Na-SO₄ type, Na-Cl type, Ca-Na-HCO₃-SO₄ type and Mg–Ca–HCO₃ type. Temperature of spring water on the surface is $24 \sim 102^{\circ}$ C, and pH value is 2~9.8. Geothermometers of SiO₂, Na/K, Na-K-Ca, and Na-K-Ca-Mg, of the hot spring waters in the Rehai geothermal field, were used to evaluate the reservoir temperature, which yielded results of $>270 \sim 100^{\circ}$ C from below 600 m to the surface. The hydrothermal alteration and gold mineralization process are still going on in that area, and the Lianghe gold deposit was formed between the Zao-tang River and the Xiao-shui River in Liuhuang-tang-Huanggua-qing geothermal area in the northeast sector of the geothermal field. This deposit is about 6 km² in area, with several kinds of spring sinter, hydrothermal alteration and breccia, and is one of the most recently formed hot spring-type gold deposits in China.

Spring sinters are of mainly silica sinter, with limited travertine, efflorescence, flower of sulfur (sublimation sulfur) and gypsum sinter. Silica sinter is composed mainly of chalcedony and opal with minor pyrite, marcasite, coffinite and pitchblende. Gold content is $0.08 \sim 0.4$ g/t in present silica sinter, and $0.1 \sim 0.8$ g/t in fossil silica sinter.

Pyritization, silicification, argillic alteration, propylitization, sericitization, alunitization, zeolitization and adularization are the major hydrothermal alteration types in the geothermal field and the Lianghe Au deposit where acid leaching alteration is widely developed. The alterationmineralization zoning from central part outward across a fault or fracture is as follows : strong silicified gold-bearing quartz zone \rightarrow silicified-argillic altered zone \rightarrow argillic altered zone \rightarrow propylitization zone. Kaolinite, alunite, smectite, illite and dickite were formed by argillic alteration in acid leaching process. Very well-ordered kaolinite in the Rehai geothermal field is found to be the best-ordered in China up to now, which has an Hc value of 1.67. Layered silica caps, fine quartz

Keywords: hot spring, gold deposits, geothermal field, silica sinter, Rehai, Liang-he, Sanjiang orogen, China

¹東京大学工学部学振研究員 (JSPS Fellow, Department of Geosystem Engineering, Graduate School of Engineering, The University of Tokyo. 1-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan)

Permanent address : Institute of Geomechanics, Chinese Academy of Geological Sciences, 11 Minzuxueyuan Nanlu, Haidian District, Beijing, 100081 China

veins and stock work veins penetrating into acid leaching zone, are main appearances of Au mineralization.

Gold ore bodies occur in NS-striking altered fracture zone as steeply dipping veins and complex veins accompanied by hydrothermal breccia. Ores are banded, lamellar, brecciform, and cellular in structure, and are composed of pyrite and marcasite as major metal minerals, and arsenopyrite, galena, sphalerite, chalcopyrite, stibnite, and native gold as minor metal minerals. Gangue minerals are quartz, chalcedony, opal, jasper, with minor kaolinite, alunite, illite, smectite, sericite, fluorite.

Au content in hot spring water, surface sinter, bottom sinter, acid leaching zone, and stockwork quartz veins, is $0.01 \sim 0.16$ ppb, $0.001 \sim 0.63$ ppm, $0.004 \sim 0.17$ ppm, $0.001 \sim 0.73$ ppm, and $0.003 \sim 4.65$ ppm, respectively. Ag content in silica cap reaches $0.001 \sim 54.5$ ppm. Based on the average of Au and Ag content, Au/Ag ratio is always less that $0.1 (1 : 10 \sim 1 : 19)$. $\delta^{18}O_{H_2O}$, δD_{H_2O} , and $\delta^{13}C_{CO_2}$ values of hot spring waters in the Tengchong-Lianghe area are $-12.3\% \sim -5.1\%$, $-68.9\% \sim -55.7\%$, and $-5.2\% \sim -1.6\%$, respectively. δ^{34} S values of hot spring water, native sulfur, and sulfides such as pyrite, are mainly $-2\% \sim +2\%$. Liquid composition of fluid inclusions in quartz from breccia of Liuhuang-tang area is H₂O 72%, H₂S 28% ; vapor composition is CO₂ 67.1%, H₂S 12.6%, and H₂ 20.3%.

The δ^{18} O values for quartz from quartz veins in the Lianghe gold deposit are between 5.0% and 8.8% (averaged 7.3% for 10 samples), and 2.3% ~12.4% (averaged 7.6% for 6 samples) for silicified Pliocene sandstone (whole rock).

Soil and rock geochemical investigation results suggest a tendency of high concentration or anomalies of Bi, Li, Rb, As, Sb, Hg, and Sn in or near hot spring areas, and Mn, Ni, Co, Pb, and Zn around or out of hot spring areas.

1. まえがき

雲南省西部に位置する熱海(Re-hai)地熱地帯は,中 国大陸における著名な現世の地熱地帯である.新生代の 大陸地殻圧縮帯に位置する.この地熱地帯の地質と温泉 水については多くの研究報告がある(Liao et al., 1981; Shen et al., 1982; Tong et al., 1989; Liao et al., 1991; Zheng et al., 1991; Guo and Yin, 1990; Zhu, 1992).両 河(Liang-he)金鉱床は,「中国核工業部雲南地質調査 隊」によって, 1987年に熱海地熱地帯で発見された (Zhuo 1991; Hou and Guo, 1991; Zhu and Yu, 1992). 熱海地熱地帯における金の分布特徴は,過幗穎らによっ て特に詳細に研究された(Guo and Zhu, 1994).両河金 鉱床については,佐藤ほか(1997)が既に邦文誌に紹介 している,筆者はこれまでの研究成果に基づいて,両河 温泉型金鉱床を含む熱海地熱地帯全体の地質的および地 球化学的特徴について紹介する.

2. 三江造山帯の地質構造及び鉱化作用の広域的特徴

2.1 広域地質構造

三江 (San-jang) 造山帯は、中国大陸西南部に位置す る新生代の造山帯であり、インド・プレートとユーラシ ア・プレートの衝突によって形成された、ほぼ南北走向 の構造-マグマ活動帯である(第1,2図).「三江」とは、 怒江 (Nu-jiang River) ータンルウィン川 (Salwen River)、瀾 滄 江 (Lang-cang River) ーメコン川 (Mekong River) 及び金沙江 (Jinsha-jiang River, 長 江上流の重要な支流の一つ)の3つの河川を指す.

三江造山帯は、揚子陸塊とその周縁相、トランス フォーム構造帯、そしてインド・プレート周縁相によっ て構成される(第2図). 揚子陸塊周縁相は, 松潘(Songpan)-甘孜(Gar-ze)と塩源(Yan-yuan)-麗江(Lijiang)と二つの堆積盆地を含む. トランスフォーム構造 帯は、インドシナ亜サイクルの理塘 (Li-tang)-甘孜 (Gar-ze)海溝-島弧盆地褶曲帯, バリスカン-インドシナ 亜サイクルの金沙江海溝-島弧褶曲帯, バリスカン-イン ドシナ亜サイクルの墨江 (Mo-jiang) 海溝-島弧褶曲帯, 昌都 (Chang-du)-思茅 (Si-mao) 中間地塊, 及び瀾滄江 双断層帯を含む. インド・プレート周縁相は, 然烏 (Ran-wu)-保山 (Bao-shan) 及び, 察隅 (Za-yu) -騰沖 (Teng-chong)の比較的に大きい2地塊,そして察隅と 高黎貢山(Gaoligong-shan)の2ナップ変成帯 (metamorphic nappe terrane)を含む.また著名な怒江断層 がその東部を走る(Chen et al., 1991). 両河金鉱床もイ ンド・プレート周縁相に産出する.

三江造山帯は、片岩、片麻岩、ミグマタイト、角閃岩、 珪質頁岩、大理岩などからなる原生代堆積岩と変成岩 類;石炭紀の弱変成の砂岩、粘板岩、炭質泥岩、及び泥 岩、新第三紀の砕屑性堆積岩と塩基性火山岩などから構 成される.第四系は、粗粒の砕屑性堆積岩、及び中性-塩 基性火山岩からなる(第3図).広域的には、原生代広域 変成岩類と、これに貫入する中生代燕山期花崗岩類とが この地域の基盤を構成していると思われる.

花崗岩類は燕山期とヒマラヤ期の2時期に大別される (第3図). Rb-Sr 法と K-Ar 法による放射性年代は梁河 花崗岩の165 Ma を除き128~41 Ma を示す. 梁河花崗 岩の示す年代は、インドシナ期の存在の可能性を暗示

第1図 中国西南部における三江造山帯及び両河金鉱床の位置. Fig. 1 Locations of the Sanjiang orogen and the Lianghe gold deposit in southwestern China.

している. 燕山期に属するものは, 騰沖県の古永 (Guyong) (84~78 Ma), 大ドン厂 (Dadong-chang) (127 Ma), 甲骨山 (Jiagu-shan) (112 Ma), 鉄窰山 (Tieyaoshan) (120 Ma), メン連 (Meng-lian) (115~90 Ma), 明光 (Ming-guang) (143 Ma), 東河 (Dong-he) (128 Ma), 及び梁河県の梁河プルトンである (Lu *et al.*, 1993). 騰沖 (Teng-chong)-梁河 (Liang-he) 地域には 石英閃緑岩から花崗岩に至る深成岩類がストック状に分 布する. ヒマラヤ期のプルトンに属するのは, 騰沖の来

利山 (Laili-shan) (60~41 Ma) と新チイ (Xin-qi) (53

Ma) である.

当地域ではユーラシア・プレートとインド・プレート との衝突が構造-火成作用の発生を誘発しているが、断 層は NS, NE, NW, と E-W 方向に大別出来る. その中 のいくつかの断層構造帯は、現在まで活動を続けてい る. この地域の構造運動は新生代で著しく、第四紀には 全標高差が 360~410 m に達する 3 段階の河岸段丘(河 岸段 II-IV階)を形成した. 特に、断層とマグマ活動が、 浅熱水循環系に必要な裂れ目と豊富な熱源を提供した. また、亜熱帯性気候が、熱水循環系に十分な天水を提供 した.

2.2 三江造山帯の鉱化作用の広域的特徴

2.2.1 三江造山帯の鉱床生成地帯区分

李 永森ら(Li et al., 1986)は三江造山帯を三つの鉱 床生成地帯,すなわち西部のチベット・波密(Bo-mi)- 雲南・耿馬 (Geng-ma) 鉱床生成地帯,中部の三江鉱床 生成地帯,東部の玉樹 (Yu-shu)-義敦 (Yi-dun) 鉱床生 成地帯に区分した.

波密-耿馬鉱床生成地帯は、西はミャンマー国境に達 し、怒江-昌寧(Chang-ning)縫合帯を含む.これはイ ンド・プラットフォームの北縁部分,古生代地向斜帯と テチス(Tethys)中生代地向斜帯の南縁部分から構成さ れる.その地体構造はテチス海-ヒマラヤ山構造地域に 属する.この鉱床生成地帯は、東南アジア錫鉱鉱床生成 地帯の北方延長部に相当するため、三江地域においても 錫鉱床が最も卓越するが、Pb, Zn, Ag, Hg, Be, Nb(Ta) などの鉱物も重要な産物である.鉱床の種類は、火山性 熱水層状鉱床、火山堆積性鉱床、スカルン鉱床、グライ ゼン型鉱床、及び熱水性鉱脈鉱床などである.その中で、 インドシナ亜サイクル期における呷村(Ga-cun)式(黒 鉱型鉱床)は、最も有望である.1987年両河金鉱床がこ の鉱床生成地帯の南端に発見され、火山地熱活動に伴う 浅熱水性金鉱床の潜在の可能性が示された.

2.2.2 三江造山帯の亜級鉱化帯区分

陳 炳蔚ら (Chen *et al.*, 1991) は,三江地域を12の 亜級鉱化帯に分けた.波密-耿馬鉱床生成地帯は,さらに 波密-騰沖稀金属・多金属亜級鉱化帯と,保山 (Baoshan)-耿馬 Pb-Zn-Hg-Sb 亜級鉱化帯に区分された.

波密-騰沖亜級鉱化帯は、三江地域における花崗岩貫 入活動と関連する Sn-W-Li-Nb-Ta-Cu-Pb-Fe, 雲母など

第2図 三江造山帯の構造区分図 (revised from Zheng *et al.*, 1991). Fig. 2 Tectonic demarcation of the Sanjiang orogen in southwestern China (revised from Zheng *et al.*, 1991).

の産出によって特徴づけられる.この亜級鉱化帯は、以下の4地域から構成される.

(1) 西部のペグマタイト脈型鉱床は Li-Be-Nb-Ta 鉱 化作用を伴い,東方へ向けて錫石石英脈型鉱床に変化する.

(2) 中部のグライゼン型 W-Sn 鉱床は花崗岩の周縁 部に発達し,母岩との接触帯において部分的にはスカル ン型 Pb-Zn-Cu 鉱床を生じている.この鉱化作用は主に 燕山期に属すると思われる.ヒマラヤ期においては塩基 性~酸性及びアルカリ岩系のマグマの貫入と噴火があ り、同時に Cu-Pb-Zn-Ta-Be の鉱化作用が生じた. 騰沖 付近には、多数の火山地形が残っている(第3図).ま た、隴川江 (Longchuan-jiang),古永の二つの花崗岩体 周辺地域には、金鉱徴地と砂金鉱徴地がいくつか知られ ており、または、馬鞍山 (Ma'an-shan)花崗岩体の川砂 重鉱物中からは、自然金も発見された.これらの事実は この亜級鉱化帯における金鉱化作用の重要性を示唆する.

第3図 広域的な地質構造と新生代火口の分布 (revised from Zhuo, 1991).

Fig. 3 Sketch map showing regional geology, structure and distribution of Cenozoic volcanic craters in the Tengchong-Lianghe area (revised from Zhuo, 1991).

(3) 東部には, 花崗岩と関連するスカルン型の W-Sn-Fe-Cu-Pb-Zn 鉱床が発達する.

(4) 最東部は高黎貢山変成帯であり,混成岩化作用が 強く,深部相が露出している.ペグマタイト脈が発達し, 雲母,Nb(Ta)鉱物,及び緑柱石鉱物を伴う.

3. 熱海地熱地帯と両河温泉型金鉱床

波密-耿馬鉱床生成地帯は豊富な地熱資源を有してい る.新生代の火山活動によって,騰沖-梁河地域に熱海で 代表される地熱地帯を形成した.両河温泉型金鉱床は, この活地熱地帯に位置し,雲南省西部の騰沖県と梁河県 の両県にまたがっている(第3,4図).

両河金鉱床の鉱化作用は一組の南北方向の断層によっ て規制された熱水系に関連して生成した.この地域には 熱水角礫岩,珪華,熱水変質岩,シリカキャップ,及び 粘土化作用,プロピライト作用などの典型的な温泉変質 作用が認められる. また Hg, Sb, As などの浅熱水性元 素の地化学異常も報告されている(Zheng *et al.*, 1991; Zhuo, 1991; Yao, 1991).

3.1 熱海地熱地帯の地質概況

熱海地熱地帯は、一般に騰沖県の硫黄塘(Liuhuangtang)-黄瓜チン(Huanggua-qing)を中心とする第4 図の中ほどの範囲であるが、朗蒲・熱水塘(Lang-pu Reshui-tang)をその中に含める研究者もいる(Zheng *et al.*, 1991).この地熱地帯は楕円形の環状構造の中に位 置する.楕円の長軸はほぼ東西方向で、長さが約18 km であり、短軸は南北方向で、長さが約14 km である.そ の面積は、約200 km²である.環状構造内には、原生代 変成岩と古生代堆積岩、さらに白亜紀花崗岩が露出している(第3,4図).

火山岩類としては東部に若干の鮮新世玄武岩がある.

- 第4図 雲南騰沖地域温泉の水化学類型 の分布図(Guo and Yin, 1990). 1:温泉の水化学類型,2:温泉水化 学類型の分布界線,3:温泉,4:新 生代晩期火山,5:新生代の沈積盆 地,6:断層.
- Fig. 4 Distribution map of the different chemical types of hot spring water in the Tengchong area, Yunnan Province (revised from Guo and Yin, 1990).
 1: chemical type of hot spring water, 2: demarcation line of chemical types of hot spring

water, 3: hot spring, 4: Late Cenozoic volcano, 5: Cenozoic sedimentary basin, 6: faults.

西部には更新世前期の石英安山岩と安山岩が広く分布 し,新第三紀鮮新世の粗面玄武岩が少量分布する.「朱星 街・東大坂頭」(Zhuxing-jie Dongdaban-tou)付近に は更新世中期の玄武岩がある(第2図).鄭(Zheng)ら (1991)は,これらを基にしてこの環状構造が火山構造で はなく,早期更新世の鐘状貫入岩の貫入によって造られ たと推論した.地震資料から環状構造の下部には,面積 がほぼ200km²及ぶ無地震区が得られている.このこと から,この鐘状貫入岩はまだ完全に冷却しておらず局部 的にはメルト状態の可能性があり,大量な Clを含む超 臨界流体が裂罅に沿って上昇し,地下水と混合して Na-HCO₃-Cl型の熱水を形成していると推測されてい る. 熱海地熱地帯は,熱水塘と硫黄塘の二つの温泉群からなっている. 二つは共通の溶岩型(magma type)熱源を持っているが,各自に独立した熱水系を形成している. 地熱地帯は北東方向の地域断層による規制を受けると共に,南北方向の断裂系の規制もうける.

熱海地熱地帯の熱水貯留岩は、白亜紀晩期の花崗岩 (68.8 Ma)であるが、帽岩は存在しない.この花崗岩は、 地表では地熱地帯の北部だけに露出する.これはヒマラ ヤ期に属する第三紀中新世の年代を有し、花崗岩質の砂 岩、礫岩及び粘土岩からなる地層(厚さは20~100 m) によって覆われる.その上位には、水平に近い第四紀更 新世前期の安山岩が見られる.黄瓜チンと硫黄塘両地域

第5図 両河金鉱床の地質図 (Li *et al.*, 1986; Liao *et al.*, 1991; Zhuo, 1991; Yao 1991; Hou and Guo, 1991; Guo and Zhu, 1994).

Fig. 5 Geologic map of the Lianghe gold deposit (revised from : Li *et al.*, 1986 ; Liao *et al.*, 1991 ; Zhuo, 1991 ; Yao 1991 ; Hou and Guo, 1991 ; Guo and Zhu, 1994).

に見られる,強烈に変質した花崗岩巨礫は,熱水角礫岩 の一部と推定される. 澡塘河(Zao-tang River)と肖水 河(Xiao-shui River)の河谷に沿って,更新世中期の玄 武岩と安山岩が分布しているが,これらは,地熱地帯東 部の朱星街・東大坂頭における火山溢出の溶岩流が,河 谷に沿って流れて形成したものである.また,地熱地帯 には,局部的に露出した河湖成砂礫岩と,少量の完新世 の堆積物がある.熱水のSiO₂(伝導冷却),Na/K,Na-K-Ca,Na-K-Ca-Mg地化学温度計によると,地熱地帯の 浅層においては,貯留層の平衡温度が100~200°C(平均 温度170°C),300~600mにおいては230~240°C,600m 以下の深層水においては,275°Cである(Tong *et al.*, 1989;Liao *et al.*,1991).

3.2 温泉

熱海地熱地帯には、断層構造に沿って62箇所の温泉 群が分布している (Hou and Guo, 1991). それぞれの温 泉群は数十から数百の大小の泉源を持っている. それら の熱水活動の様式は多様であるが、以下に述べるように 温泉水の温度が高く,流量が大きく,強度の熱水変質を 伴うなどの特徴がある.熱海温泉群(硫黄塘-黄瓜チン温 泉群)はこの地域における有名な温泉群であり、騰沖県 城から西南へ13km (24° 57.5′ N, 98° 26.5′ E), 山岳地帯 の第三紀断層盆地に位置する.中華民国初年である 1912 年時点で,硫黄塘と澡塘河の周辺は,「一弘(Yi-hong) 熱海 | と呼ばれており、この地域の温泉群も「熱海地熱 地帯」と呼ばれるようになった (Liao et al., 1991). 熱海 地熱地帯は、東の忠孝寺(Zhongxiao-si)から西の仙人 澡塘 (Xianren-zaotang) まで, 南の松木チン (Songmuqing) から北の半個山 (Ban'ge-shan) までをさし, 全体 の分布面積は約8.5km²である(第3,4,5図).

この地熱地帯における温泉は、南北方向に近い硫黄 塘-黄瓜チン断層帯に沿って発達し、断層帯から東西に 離れるにしたがい、泉温が低下する.温泉は、低温泉、 沸騰泉、噴泉、噴気帯及び噴気孔など、数多くの様式を 示している.噴気は主に H₂O, CO₂、及び H₂S であるが、 少量の CH, CO, H, NH₄, F, Cl なども含んでいる.湧出地 点における温泉水の温度は 24~102°C である.その内訳 は、40°C 以下の温泉が 29.9%、40~60°C が 37.7%、60~ 80°C が 18.2%、80°C 以上の沸騰泉が 14.3% である.湧出 地点における温泉水の pH は、2~9.8 の間にあり、酸性 泉 (pH=2~6) とアルカリ性泉 (pH=8~9.8) に分ける ことができる.

熱海地熱地帯の温泉水は,主要溶存イオン組成に基づいて Na-Cl-HCO₃型, Na-HCO₃-Cl型, Na-SO₄型,及び Na-Cl型と Na-Ca-HCO₃-SO₄型(冷泉)に分類できる (Liao *et al.*, 1981; Liao *et al.*, 1991; Zhuo 1991; Hou and Guo, 1991). 一方,過ら (Guo and Yin, 1990)によれば,騰沖-梁河地域(約7,200 km²)内の温泉は,大部分

が、Na-HCO₃型の水であるが、水の Na と HCO₃の含有 量および, Na と SiO₂の含有量に基づいて, Na-HCO₃型 の水を4グループに分けることができる(第4,6図;第 1表). 第1と第4のグループの主要溶存成分は, Na, H 及び H₄SiO₄である. 化学熱力学計算によれば, これら は曹長石が CO₂を豊富に含む 60°C の熱水中に溶解して 生じた産物として説明できる。第2のグループは、第1 のグループよりも高い Ca の量を含んでいるが、これは 斜長石が CO₂を豊富に含む 100℃ 程度の熱水中に溶解 した産物として説明できる. 第3のグループは、比較的 に多量のNa,KとCaを含む.これらの成分は下位の母 岩から溶出したものと考えられ、熱水は比較的高い温度 下での熱水変質作用の進行に伴って生じたことを示して いる.一方,熱海と朗浦・熱水塘の温泉水の化学類型は, 主に Na-Cl-HCO3型と Na-HCO3-Cl 型である. 熱海地熱 地帯北部地域の温泉水の化学類型は、主に Mg-Ca-HCO₃ 型(馬鞍山など)と Na-HCO₃-CO₃型(騰沖県城付近)で ある.

3.3 温泉沈澱物 (Sinters)

熱海地熱地帯にみられる温泉沈澱物は,主として珪華 (silica sinter),石灰華(travertine)と凝華(efflorescence or bloom)で構成された泉華層(layered sinter), 泉華帽(silica cap),噴泉塔,及び泉華台地(sinter platform)である.次いで,凝華(efflorescence or bloom), 昇華硫黄と石膏華が一般的である.

① 珪華 珪華の形態は,塔状,帽状と層状である. 主に,老滾鍋(Lao-gunguo),大滾鍋(Da-gunguo),眼 鏡泉(Yanjing-quan),及び硫黄鉱・東溝(Liuhuangkuang Dong-gou)などの地域に分布する.色調は,主 に白と灰白であり,まれに黒,灰黒である.珪華の中に は,常に珪化した植物根茎及びそのモールドが含まれ, 大小さまざまの熱水流路のパイプも発達している.その 底部には常に閉鎖,ないし半閉鎖しかけた熱水流路のパ イプが見られる.その直径は数十センチメートルから数 メートルまであり,地面と垂直に岩層(珪華層)を切っ て発達する.パイプの内部には,珪酸岩(玉髄,蛋白石 と微粒状の石英)が取込まれている.珪華の成分は,主 にSiO₂であり,玉髄と蛋白石からなっている.鉱染状に 分布する黄鉄鉱,白鉄鉱,コフィン石とピッチブレンド も少量含まれる.

新しくできた珪華構成鉱物は、主として蛋白石であ り、少量の微粒状の石英と玉髄も含まれる. 含金量は 0.08~0.4 ppm である. 古い珪華の成分は、主として微晶 石英と玉髄であるが、蛋白石が僅かに含まれる. 含金量 は、0.1~0.8 ppm である.

② 石灰華 石灰華は主に澡塘河の川岸に沿って分布 する. 白あるいは乳白色を呈し,層状で,厚さが15~20 cm である. 主な構成鉱物は,含マンガン方解石と霰石

Fig. 6 Trilinear piper plot showing the chemistry of hot spring waters (A), and chemical grouping of Na-HCO₃ type hot spring waters by Na⁺ vs. HCO₃⁻ (B-1) and Na⁺ vs. SiO₂ (B-2) diagrams, Tengchong area, Yunnan Province (revised from Guo and Yin, 1990). 第1表 雲南騰沖-梁河地域における温泉水の化学成分及びグループ区分 (Zhang et al., 1989).

Table 1 Chemical compositions and grouping of hot spring waters from the Tengchong-Lianghe geothermal areas in the Yunnan Province. Values of ion composition in milligram per liter (mg/l) (after Zhang *et al.*, 1989).

グループ	温泉水の名称	Na+	K+	Ca ²⁺	Mg ²⁺	HCO ^{3.}	$\mathrm{CO}_3^{2\text{-}}$	SO_4^{2}	Cl	SiO_2	pН
	シワン脚塘	43.8	0.9	3.3	0.05	56		13.2	1.4	64.3	9.2
	小甸澡塘	42	1	3.4	0.06	78		8	2	50	8.3
笠	上後甸澡塘	51.2	1.3	3.3	0.11	82		21.8	3.5	79.9	9
第一	バー竹澡塘	47	1	6	0.66	112		10	5	70	7.2
<i>910</i> — <i>)</i>	モン連熱水塘	42	1	1.4	0.03	100		14	2	58	7.4
	総府	36.4	1	3.6	0.17	86		13.2	1.7	47.4	7.3
	竄龍澡塘	45.5	0.9	2	0.12	80		21.2	1.4	63	9.1
	北洞澡塘	100	2	7.96	0.21	209		11	7	75	8
	八里大澡塘	112	4	19.2	1.18	264		50	39.9	50	7.5
	石画洞澡塘坡	85	4	12.9	0.03	194		10	7	95	7.7
9N-9	楊家田	88	3	5.7	0.07	169		16	14	83	7.9
	チンロ麻櫟山	120	3	13.6	0.89	281		17	5	70	7.3
	銅廠脚硝塘溝	645	20.3	13.9	5.58	1710		40	52.1	77.3	6.9
	臘幸街男澡塘	350	34	22	3.26	775		32	139	123	7.2
	速慶澡塘	300	17.2	20.5	3.39	750		4.3	31.6	64.3	7.3
	攀枝花硝塘	210	15	2.1	0.3	434		12	45	158	7.8
筠 二	黒石河	290	21	19.9	3.04	719		21	59	115	7.1
ホー	石牆澡塘	470	65	40.4	10.9	1543		2	57	52	7.3
	永安澡塘窪	500	42	13.6	16.6	1518		1	36	50	7.1
	龍安橋	220	14	32.9	35	787		4	18	123	7.3
	蘇江	420	40	24.3	4.02	1087		1	82	45	6.8
	永樂澡塘	45	1	1.1	0.03	62	37	8	2	55	9.4
	上蚌乃	44	1	1.7	0.01	63	37	13	4	46	9.1
第四	戸蚌	62	1	1.1	0.09	75	55	10	4	83	9.5
グループ	碼玉窩澡塘	42	1	1.7	0.03	69	37	10	2	50	9.3
	黄坡温泉	27	1	2.4	0.07	56	12	7	2	43	8.8
	胆扎澡塘	63	2	2.4	0.01	72	28	8	4	83	9.2

である.これら鉱物の半自形-他形結晶が細柱状あるい は繊維状に産出する.

③ 凝華 (efflorescence or bloom) 主に硫黄塘, 澡塘 河, 黄瓜チン, 及び硫黄鉱・大溝 (Liuhuang-kuang Da-gou) などの地域で, 熱泉 ($60 \sim 80^{\circ}$ C), 沸騰泉 (>80 °C), 高温噴泉 (high temperature fountain, > 60° C), 噴気孔周辺の地面及びその付近に分布する.割れ目沿い に, 霜状, 皮状, 薄層状, 繊維状, 及び花束状に産出す る. 構成鉱物は, アルノーゲン, 石膏, ミラビル石, 鉄 明ばん石, Na 明ばん石, K 明ばん石, ローゼン石 (rozenite) などの硫酸塩鉱物と, 少量の岩塩である.

④ 昇華硫黄 主に、3と同じ地域の沸騰泉、高温噴 泉、硫黄質噴気孔とその付近に分布している.主要鉱物 は自然硫黄であるが、主に岩石の割れ目と空隙に分布す る.針状、柱状、膜状、皮状の集合体に加え、大きな空 隙には、高密度の硫黄塊が生成する.

3.4 母岩の熱水変質作用

母岩の変質作用は黄鉄鉱化, 珪化, 粘土化, 及び局部 的に発達したプロピライト化と沸石化作用である.

粒状黄鉄鉱化は、金の鉱化作用との関係が密接であ る.常に白鉄鉱を伴い、金を含む鉱脈の内部及び両側の 母岩中に発達し、変質帯の中心部を形成している.

珪化は,主に,珪質脈,シリカキャップ,酸性溶脱帯, 及び珪化角礫岩として現れる.珪質脈は金を伴い,一般 に複雑に分布する不規則細脈とネットワーク構造を持つ.

溶脱珪化変質帯は、一種の浸透珪化帯 (pervasive silicified alteration) である。それは、深部より上昇してきた鉱化流体に含まれていた H_2S , CO_2 などが地表付近の酸化的な地下水と混合して生じた H_2SO_4 , H_2CO_3

などを含む酸性流体による溶脱作用により生じたものと 考えられる.溶脱珪化変質帯は、主に断層、割れ目に 沿って分布し、断層構造の規制を受けていることが明ら かである.変質の強度は割れ目沿いで高く、周辺へ向け て低下する.また変質分帯は割れ目近傍から側方に向 い、強珪化帯、弱珪化帯、粘土化帯とプロピライト帯へ と累帯配列を示す.

(1) 強珪化帯は、断層変質帯の中心部に位置し、著し い溶脱珪化岩、珪質脈、シリカキャップ、熱水角礫岩な どを産出する.主な変質鉱物は、石英、玉髄、蛋白石で あり、ついでカオリナイト、明ばん石などの粘土鉱物で ある.分布の幅は硫黄塘断層上で最大となり 500 m に達 する.

(2) 弱珪化帯は、強珪化帯の外側に分布し、それと漸移する.シリカ鉱物の種類は強珪化帯と共通するがより 多量の粘土鉱物を含む.粘土鉱物は主にカオリナイト、 イライト-スメクタイト混合層鉱物である.石英量は強 珪化帯よりも少ない.

(3) 粘土化帯は, 珪化帯の両側に分布する. 分布の幅 は, 硫黄塘-黄瓜チン断層の付近で最大となり, 500~800 mに達する. 主な変質鉱物はカオリナイト, ついで明ば ん石, イライト, イライト-スメクタイト混合層鉱物, ス メクタイト, ディッカイト, 絹雲母などである. 粘土化 帯の内部では, 珪化帯側からプロピライト化帯に向け て, 以下の鉱物分帯が認められる. 明ばん石→明ばん石 -カオリナイト→カオリナイト-イライト-(イライト-ス メクタイト) 混合層鉱物変質帯, ないしカオリナイト→ カオリナイト-イライト-(イライト-スメクタイト) 混合 層鉱物変質帯, カオリナイト化-(イライト-スメクタイ ト)の混合層鉱物変質帯, カオリナイトーディッカイト化 変質帯である.

(4) プロピライト化帯の主な変質鉱物は、原岩の苦鉄

質珪酸塩鉱物の緑泥石と緑れん石化である. 一般に原岩の組織を残している. これは母岩の自変質作用で生じた可能性もある.

熱海地熱地帯における溶脱珪化変質帯と脈状の明ばん 石化と沸石化およびその他変質作用との関係は,第2表 のように纏められる(Hou and Guo, 1991). 熱海地熱 地帯中における溶脱珪化を主とする熱水変質作用は,広 域的なカオリナイト化,イライト化-スメクタイト化及 びスメクタイト化を含む粘土化作用から始まった.

カオリナイト化は カオリナイトを主とし,代表的な 鉱物組合せとして,カオリナイト-鱗珪石(tridymite), カオリナイト-アナルサイト,カオリナイト-イライト-スメクタイト-鱗珪石からなる酸性変質である.イライ ト-スメクタイト化はイライト-スメクタイト混合層鉱物 を主とし,代表的な鉱物組合せとしてイライト-スメク タイト混合層鉱物-カオリナイト-蘇珪石,イライト-ス メクタイト混合層鉱物-カオリナイト-蛋白石,イライト-スメクタイト混合層鉱物-カオリナイト-低,イライト-スメクタイト混合層鉱物からなる酸性~弱酸性変質であ る.スメクタイト化はスメクタイトを主とし,スメクタ イト-イライト-スメクタイト混合層鉱物の鉱物組合せか らなる弱アルカリ性変質である(第2表).

晩期の変質タイプは、割れ目に沿って発達した明ばん 石化と沸石化作用であるが、それは、構造的割れ目と空 隙に充塡した酸性熱水流体が、母岩を交代作用して生成 したものである。明ばん石化の代表的な鉱物組み合わせ は、明ばん石-鱗珪石、明ばん石-カオリナイト、明ばん 石-鱗珪石-カオリナイトであり、これらは酸性流体に よって生成したものである。沸石化の変質鉱物組合せ は、沸石-カオリナイト、沸石-鱗珪石であり(第2表)、 これらは酸性-弱アルカリ性熱水から生成した。

熱海地熱地帯中に産する熱水変質生成カオリナイト

第2表 雲南騰沖の熱海地熱地帯における溶脱珪化熱水変質帯の主な変質タイプの特徴(Hou and Guo, 1991).

Table 2	Characteristics	of	main	alteration	types	in	the	Rehai	geothermal	field	in	Tengchong	County,	Yunnan
Province, China (after Hou and Guo, 1991).														

変質タイプ	熱水の性質	代表的な変質鉱物	代表的な鉱物組合せ
沸石化	酸性弱アルカ リ性	沸石	沸石-カオリナイト、沸石-鱗珪石(tridymite)
明ばん石化	酸性	明ばん石	明ばん石-鱗珪石、明ばん石-カオリナイト、明ばん石-鱗珪石-カオリナイト
スメクタイト化	弱アルカリ性	スメクタイト	スメクタイトーイライトースメクタイト混合層鉱物
イライトースメ クタイト化	酸性弱酸性	イライトースメクタイト混 合層鉱物	イライトースメクタイト混合層鉱物-カオリナイト-鱗珪石、イライト-スメクタイト、混合層鉱物- カオリナイト-蛋白石、イライト-スメクタイト混合層鉱物-カオリナイト化、イライト-スメクタイ ト混合層鉱物
カオリナイト化	酸性	カオリナイト	カオリナイト-鱗珪石、カオリナイト-アナルサイト、カオリナイト-イライト-スメクタイト-鱗珪 石

第3表 熱海地熱地帯における温泉,その沈殿物と変質帯の金属元素の平均含有量(Hou and Guo, 1991).単位 は ppm.())はサンプル数.

相対深度	浅所 →	\rightarrow	\rightarrow	\rightarrow	→ 深部
測試対象	温泉水(17)	シンター地表(36)	シンター下部(13)	酸性熱水変質帯(134)	ストックワーク石英脈(148)
Au	0.0000448	0.0103	0.0155	0.0425	0.2225
Ag	0.0004163	0.1434	0.3344	0.4695	3.2655
As	0.0785472	14.4616	49.2840	77.5658	219.0068
Sb	0.0059376	1.4780	7.8546	5.1145	11.9871
Hg	0.0005000	0.1602	0.3262	0.4997	0.6618
Tl	0.0028027	1.7016	3.5371	2.1427	3.2426
Bi	0.0000116	0.0813	0.4497	0.5548	0.1049
U	0.0004133	4.7598	8.4435	7.6186	4.5561

Table 3 Metal analyses of hot spring water and precipitates in the Rehai geothermal field (after Hou and Guo, 1991). Values in parts per million (ppm). Numbers in brackets indicate number of samples.

第4表 熱海地熱地帯における温泉沈殿物と変質岩の金属元素の含有量(Guo and Zhu, 1994).単位は ppm. ()はサンプ ル数.

Table 4 Metal analyses of precipitates and altered rock in the Rehai geothermal field (after Guo and Zhu, 1994). Values in parts per million (ppm). Numbers in brackets indicate number of samples.

	Au		Ag		As		Sb		Hg	
	範囲	平均値	範 囲	平均值	範囲	平均値	範囲	平均值	範囲	平均値
含黄鉄鉱温泉沈 殿物	0.03~19.85	2.73(28)	$0.50 \sim 98.10$	27.01(11)	0.14~61.35	11.38(7)	$0.15{\sim}4.00$	1.75(4)	0.20~15.62	7.01(7)
珪華	$0.005{\sim}4.00$	0.63(45)	$0.5 {\sim} 152.4$	25.8(20)	$0.03 \sim 358.25$	30.89(15)	$0.14 \sim 20.75$	4.64(13)	0.006~4.63	0.97(16)
熱水変質岩	0.023~1.12	0.21(9)	$0.50 \sim 28.98$	5.72(6)	$0.60 \sim 299.50$	33.13(17)	$0.02 \sim 171.25$	10.77(17)	$0.05{\sim}45.40$	4.02(18)

は、これまでに報告された高秩序度のもの;陽山(Yangshan,蘇州市,江蘇省),茂名(Maoming,広東省),砂嶺 子(Shalingzi,宣化県,河北省),白水江(Baishuijiang, 略陽県,陝西省),に較べて高い結晶性を持つ.例えば, X線回折で(021)と(111)のピークを用いるHinckley crystallinity value(Hinkley, 1963)によれば,熱海地 熱地帯ではHc値1.67が得られた(Zhang et al., 1967). これはこれまでの略陽県白水江地域の硬質粘土(1.35, Liu and Guo, 1980),河北省の砂嶺子(1.40),広東省の 茂名(1.30-1.40),江蘇省の陽山(1.10)などを上回るも のであり,最も高い値である.熱海地熱地帯中に見られ る高秩序度カオリナイトは南北系の硫黄塘-黄瓜チン断 層に沿って産出する傾向がある.

3.5 ストック・ワーク石英帯と熱水角礫岩

熱海地熱帯にはストック・ワーク石英帯と熱水角礫岩 が特徴的に産出する.これらは一般に石英-氷長石脈や 低硫化型浅熱水変質の深部に見られると考えられている が、熱海地熱地帯では、熱水角礫岩がストック・ワーク 石英帯の中とその下位に現れる.

熱海地熱帯のストック・ワーク石英帯の上部は,現在 大部分に地表に露出する.露頭の長さは数十メートルか ら数百メートルであり,幅は数十センチメートルから数 メートルまでであるが,最も広いところは,20m以上で ある.ストック・ワーク石英帯は,擬層状と細脈-網脈状 の産状を示し,酸性熱水変質帯の中に方向性を持って産 出する.主な走向は N-S 方向と NE 方向である.ストッ ク・ワーク石英帯の構成鉱物は,主として玉髄,蛋白石, 細粒石英,白鉄鉱,及び黄鉄鉱であり,少量の氷長石と イライトも含まれる.一般に変質岩角礫を含んでいる. 黄鉄鉱の産出形態は,主として立方形であるが,環状, 苺状,及び球状などの集合体もある.白鉄鉱は,おもに 粒状の結晶としてみられるが,ごく一部は板状の集合体 として産出する.

熱海地熱地帯の熱水角礫岩は,層状(bedded),脈状 (vein),筒状(pipe),瘤状(nodular)の形態を呈し,

from the	e Rehai ge	eothermal	field (after	· Tong and	l Zhang, 1	989).					
項目(単位)	A	В	С	D	Е	F	G	Н	Ι	J	K
温度(C)	88	91	95	42	48.5	83	69.5	92	95.8	95.8	23
pH 現地	8	5.5	8	6	7.5	7.5	6.5	7	7.5	7.5	
pH 室内	8	3.1	9.4	7	7	7.5	7.3	7.8	8.55	8.2	6.4
Na (mg/l))	840	58	680	130	180	420	380	440	340	450	5
K (mg/l)	120	23	110	25	30	55	50	63	61	42	4
Ca (mg/l)	0.1	9.43	0.29	2.86	3.4	4.72	2.86	2.72	10.7	0.86	6.43
Mg (mg/l)	0.02	3.21	0.02	0.18	0.21	0.09	0.11	0.22	1.79	0.17	1.83
Li (mg/l)	8.31	0.60	6.20	6.20	2.10	3.90	3.80	3.80	3.40	4.00	0.04
CO ₃ (mg/l)	0	0	261	0	0	0	0	0	37	22	0
HCO3 ⁻ (mg/l)	1160	0	700	250	353	637	606	615	512	522	44
Cl (mg/l)	698	16	559	57	93	256	217	295	269	372	1
SO4 (mg/l)	31	303	11	18	56	38	26	47	24	27	16
F (mg/l)	20	1.2	14	2.2	3.5	8.3	7	7.8	7	9.7	
HBO ₂ (mg/l)	52	3	42	8	11	17	16	19	18	14	
SiO ₂ (mg/l)	450	195	340	105	108	175	163	180	170	118	51
δD (‰)	-63.6	-58.6	-65.8	-56.6	-61.2	-72.6	-60.8	-65.7	-68.4	-68.9	-58.4
δ ¹⁸ O (‰)	-7.15	-5.06	-7.54	-12.25	-9.30	-9.35	-9.03	-8.5	-8.54	-8.47	-8.71

第5表 熱海地熱地帯における一部の温泉の主な化学成分と水素,酸素の同位体組成(Tong and Zhang, 1989). Table 5 Chemical compositions and isotope compositions of hydrogen and oxygen of a part of hot-spring water from the Rebai geothermal field (after Tong and Zhang, 1989)

第6表 雲南省の騰沖-梁河地域における地表水,地下水と温泉水の水素,酸素の同位体組成(‰)(Shen *et al.*, 1982). () はサンプル数.

Table 6 Oxygen and hydrogen isotope compositions (‰) of surface water, underground water and geothermal water from Tengchong-Lianghe area, Yunnan Province (after Shen *et al.*, 1982).

	地表水(6))	地下水(3	3)	熱海地熱地帯の	の温泉(5)	瑞ディエン*地熱地特	帯の温泉 (2)	カルシウム質酸性の温泉(2)	
	範囲	平均值	範囲	平均值	範囲	平均值	範囲	平均值	範囲	平均值
δD	-73.82~-62.10	-65.81	-57.07~-50.33	-53.68	-68.94~-63.57	-66.49	-85.91~-81.44	-83.68	-71.87~-71.02	-71.46
δ ¹⁸ O	-11.02~-8.46	-9.44	-8.48~-7.95	-8.16	-8.50~-7.15	-8.02	-10.76~-8.54	-9.65	-10.46~-9.09	-9.76

*瑞ディエン=Ruidian

硫化鉱物を多く含む.両河金鉱床を構成する主要鉱石タ イプの一つである.

ストック・ワーク石英帯中にごく普通に分布する熱水 角礫岩は、熱水爆発によって形成した。爆発は同一箇所 で4~8回程度発生したことが識別できる。この種の猛 烈な熱水爆発は現在でも観察されており、地域の人々に よって「山が鳴く、地が叫ぶ」と呼ばれている。この種 の爆発は強烈な振動と巨大な共鳴を伴って、大量の砂石 などと共に高温泥水を、温泉口から数メートル以上噴出

する.

3.6 両河金鉱床

(1) 概 要

両河金鉱床の名は、鉱床の南北を東から西へ流れる澡 塘河と肖水河の2つの河川に由来する.鉱床の分布範囲 は、約6km²である.地表において、蛤蟆嘴(Hamazui)、忠孝寺、仙人澡塘と松木チンの4地域が比較的強 く金鉱化されている.発見された含金脈は数十に及ぶ.

survey areas (R_1 , R_2 , R_3) and location of A–B traverse in the Rehai geothermal field (after Zheng *et al.*, 1991).

松木チン地段の浅部においては,探鉱トレンチ,探鉱坑 道,及びボーリング探鉱によって,すでに中型金鉱床規 模に達する金埋蔵量5トンを獲得していると共に,数十 トンの銀の埋蔵量も得られている.若い珪華が,一般的 に高い金含有量を示す.このために,温泉水による変質 作用と金の鉱化作用が現在も進行中てあると推定され る.しかし,鉱床生成の開始は鮮新世末期と考えられる. その根拠は,中新世の地層が鉱床生成構造に切断されて いる,鮮新世末期から更新世までの火山活動が強烈で あったこと,などである.

(2) 鉱体

金鉱体は主に脈状,多くは石英脈として産出し,N-S 走行の断層破砕変質帯の中に産出する.一つの鉱体を含 む断層破砕変質帯内に,常に数条~数十条の金鉱脈があ るが,鉱脈個々の走向はN-S方向とNNE方向である. 多くは55°~87°W傾斜である.ひとつの金鉱脈内では, 多くの単成脈が互いに切り合い複雑な構造をなす.鉱脈 内と鉱脈近傍には,大量の熱水爆発角礫岩が見られる.

金鉱石は、塊状、薄層状、めのう状、角礫状、及び孔 質状(熱水孔と熱気孔)などを呈する.鉱石鉱物は、主 に黄鉄鉱と白鉄鉱、次いで硫砒鉄鉱、方鉛鉱、閃亜鉛鉱、 黄銅鉱、輝安鉱、及び自然金などからなる.脈石鉱物は、 主に、非顕晶質-微顕晶質の石英、玉髄、蛋白石、及び ジャスパーである.その他には、カオリナイト、明ばん 石、イライト、スメクタイトなどの変質粘土鉱物、及び 蛍石と方解石である.自然金は非常に微粒である.両河 鉱床の金鉱石の平均品位は 3.7 g/t、平均 Au/Ag 比は 1/10~1/19 である.

(3) 母岩及び温泉沈殿物の地化学特徴

当地の黄鉄鉱と白鉄鉱のコバルト含有量は高く, それ

第8図 硫黄塘-黄瓜チンの A-B 測線における土壤中の元素濃 度分布 (Zheng et al., 1991). Nr¹:花崗岩の風化堆積層, Nr²:花崗岩質礫岩及び砂岩, Nr³:カオリナイト化花崗岩質砂岩, Nr⁴:カオリナイト化 花崗岩質砂岩と礫岩層リズマイト (rhythmite), γ₅¹:燕 山期の黒雲母花崗岩.

Fig. 8 Pedogeochemical anomalies along A-B traverse in the Liuhuangtang-Huangguaqing geothermal field (after Zheng *et al.*, 1991). Values in parts per million (ppm). N γ^1 : weathered crust of granite, N γ^2 : granitic conglomerate ang sandstone, N γ^3 : kaolinitized granitic sandstone, N γ^4 : rhythmite between kaolinitized granitic sandstone and conglomerite, γ_5^{-1} : Yanshanian biotite granite.

は深所に由来する可能性がある.温泉水,沈殿物,そして変質帯の中において,温泉型金鉱化作用を特徴づける 地化学元素組合せである Au-Ag-As-Sb-Hg-Tlの濃度が 高い.これらの元素には垂直方向の分帯,すなわち深部

第9図 硫黄塘-黄瓜チン地熱地帯における土壤中の元素濃度の平面分布 (Zheng *et al.*, 1991),単位は ppm. Fig. 9 Pedogeochemical anomalies in the Liuhuangtang-Huangguaqing geothermal field, Tengchong, Yunnan (after Zheng *et al.*, 1991). Values in parts per million (ppm).

から浅所に向かって Tl→Hg-Sb→As→Ag-Au が認め られる(第3,4表). 温泉水の金含有量は,0.01~0.16 ppb であるが,シンター(表層),シンター(下部)及び 酸性変質帯内の金含有量はそれぞれ0.001~0.63 ppm, 0.004~0.17 ppm,0.001~0.73 ppm である. 鉱石全体の 中で金品位1 ppm 以上のものは3.6%を占める.ストッ ク・ワーク石英帯内では,金含有量1 ppm 以上は, 13.1%を占める.

銀の含有量も高いことはもう一つの特徴である. 温泉 水,シンター(表層),シンター(下部),及び酸性変質 帯の銀含有量は,それぞれ 0.01~0.1 ppb, 0.01~6.02 ppm, 0.086~3.0 ppm,及び 0.001~92.1 ppm であ. 鉱石 は,全体の中で銀品位 30 ppm 以上のものは 1% を占め る. ストック・ワーク石英帯の銀含有量は, 0.001~54.5 ppm であるが, 30 ppm より高いものは, 11.2% である.

熱海地熱地帯,及びその外部にある各種類の岩石内の 金含有量は,砕屑性堆積岩で最も高く,2.4~6.6 ppb で あり,火山岩,花崗岩及び変成岩では 0.6~0.7 ppb と低 い (Zhu *et al.*, 1986).

(4) 温泉水の同位体地化学的特徴

実測された騰沖-梁河地域の温泉水の酸素,水素,及び 炭素の同位体組成は、 $\delta^{18}O_{H_2O}$ が-12.3‰~-5.1‰、 δD_{H_2O} が-68.9‰~-55.7‰、 $\delta^{13}C_{CO_2}$ が-5.2‰~-1.6‰ であ る.炭素同位体比の $\delta^{13}C_{CO_2}$ 値は-4.6‰ と-4.1‰間に集 中した.温泉水、自然硫黄、黄鉄鉱などの δ^{34} S測定値の 57.8% は、-2%~+2‰の75.6% は、-4%~+4‰の間 にある、 $\delta D_{H_{2}0}$ は天水の範囲にある一方、 $\delta^{18}O_{H_{2}0}$ の過半 数は+1~+4‰ 重い方向にシフトすることから、温泉水 は天水を主な起源とする水が岩石と反応したものあるこ とを示唆する(第5,6表).

熱海地熱地域の硫黄塘における熱水角礫岩中の石英内 の流体包有物に対して、レーザー・ラマン・マイクロプ ローブ (laser Raman microprobe)を用いて測定した 結果、液相の成分は、H₂O 72%、H₂S 28% であり、気相 の成分は CO₂ 67.1%、H₂S 12.6%、H₂ 20.3% である (Guo and Zhu, 1994).

(5) 脈石英と母岩の酸素の同位体的特徴

両河鉱床の脈石英の δ^{18} Oは 5.0~8.8 パーミル,平均 7.3 パーミルである.石英脈から 10~50 cm 離れた漸新 世珪化砂岩の全岩 δ^{18} Oは 2.3~12.4 パーミル,平均 7.6 パーミルで,脈石英に近い値を持つ(Zhang *et al.*, 1995).

4. 熱海地熱地帯における微量元素分布の特徴

鄭ら (Zheng *et al.*, 1991; Zhu *et al.*, 1986) は, 熱海 地熱地帯及び付近の 200 km²範囲以内の地域(第7図) における土壤と岩石の試料について, 微量元素の測定を 行った.分析方法は以下のとうりである. Hg は XG-4 型 水銀測量機器, Li, Rb, Cs は炎光原子吸収法, Be, B, P, Cr, Cu, Pb, Zn, W, Mo, Mn, Ag, V, Ti, Ni, Co, Sr, Ba に ついては, スペクトログラフ半定量分析法である.

- 第10図 硫黄塘-黄瓜チンの C-D 測線(第7図参照)における土壤中の元素濃度分布(Zheng et al., 1991).
 1:第四紀堆積層,2:更新世安山岩,3:第三紀堆積岩と火山岩,4:古生代堆積岩,5:早燕山期花崗岩.
- Fig. 10 Pedogeochemical anomalies along C-D traverse in the Liuhuangtang-Huangguaqing geothermal field (after Zheng *et al.*, 1991).

1 : Quaternary sediments, 2 : Pleistocene andesite, 3 : Tertiary sedimentary rocks and volcanic rocks, 4 : Paleozoic sedimentary rocks, 5 : Jurassic granite.

4.1 黄瓜チン-硫黄塘地熱地域(25 km²)における土 壌中の微量元素分布

この地熱地域は、熱海地熱地帯の東北部に位置する.

- 第11 図 硫黄塘-黄瓜チンの E-F 測線(第7図参照)における土壤中の元素濃度分布(Zheng et al., 1991).
 1:更新世安山岩,2:更新世玄武岩,3:第三紀堆積岩と火山岩.
- Fig. 11 Pedogeochemical anomalies along E-F traverse in the Liuhuangtang-Huangguaqing geothermal field (after Zheng *et al.*, 1991).
 - 1: Pleistocene andesite, 2: Pleistocene basalt, 3: Tertiary sedimentary rocks and volcanic rocks.

大きくは熱海地熱地帯に属しているが,一つの小さい独 立した地熱地帯を構成する(Zheng *et al.*, 1991). 海抜 1,460 m に位置する「大滾鍋」では 96.6℃の沸騰泉が湧

第12図 熱海地熱地帯及び周辺地域における土壤中の元素濃度の平面分布(Zheng et al., 1991),単位は ppm.

Fig. 12 Pedogeochemical anomalies in the Rehai geothermal field and the adjacent areas, Yunnan Province (after Zheng *et al.*, 1991). Values in parts per million (ppm).

出する.その周辺では, 珪化作用, 黄鉄鉱化作用, 粘土 化作用及び, 白鉄鉱等の硫化物の産出など母岩の強烈な 熱水変質作用が認められる.また地表近くでは, 硫黄, 硫酸塩鉱物, 重炭酸ソーダ石及び方解石等の鉱物が沈殿 している.この鉱化作用は現在も進行中である.また過 去の熱水活動により沈殿した珪華, 石灰華なども散在する.

第7図に R₃区として示した黄瓜チン-硫黄塘地域 25 km²範囲内より土壌試料を採集し,多元素の微量成分分 析を行った.この区域の EW 測線(第7図の A-B)で は、微量元素の異常分布域が、「硫黄塘」を中心とした熱 水変質帯の帯状分布に対応する傾向が認められる(第8 図).熱水活動が強烈な硫黄塘の近傍において,Bi,Li, Rb,As,Sb,Hg (Snを含む)等の高濃度異常が認められ る一方、その外側には、Mn,Ni,Zn,Co,Pb等の高濃度異 常が認められる.これら2つの元素濃度分布パターン は、熱水活動の温度分布や水理構造等が微量元素の分布 パターンに影響与えていることを示唆する.

上記と同様の特徴は、平面分布においても認められ る. 第9図の左側の2列は、Hg, As, Bi, Li, Rbの分布を 示す. これらの元素は温泉近傍に高濃度中心が分布す る. 一方、右側の2列は、Pb, Zn, Mn, Ni, Co, Baの分布 であり、高濃度中心が不明瞭で、温泉分布域の近傍では むしろ濃度が低下しているようにもみえる.

4.2 熱海地熱地帯付近 60 km²区域, 及び 200 km²区 域内における土壌中の微量元素分布

より広範囲の地化学特性を知るために、第7図で示している R_2 区域 (60 km²) と R_1 区域 (200 km²) 範囲内より土壌試料を採集し、微量元素分析した.

R₂区域は、硫黄塘-黄瓜チンとその南西部に位置する

期蒲・熱水塘との二つの熱水活動地域を含む. この二つ の地域の間には熱水活動は認められない. 後者は前者よ り,熱水活動の強度が少し弱いものの泉温 97~98℃の 沸騰泉が湧出している. R₂区域において, C-Dと E-F 二つの測線(第7図)で測定を行った. C-D測線の朗 蒲・熱水塘の熱水活動区内には, Bi, Sn, Be, Li, Rb, As, Sb, Hg など元素の高異常分布が得られた. 熱水活動区 の両側には, Cu, Zn, Mn, Ni, Co等元素の高異常分布が 得られた(第10 図). E-F 測線において,硫黄塘-黄瓜チ ンの熱水活動区内には, Sn, Be, Li, Rb, As, Sb, Hg の高 異常分布,その両側には, Mn, Zn, Ni, Co, Cu 等元素の 高異常分布が得られた(第11 図). C-Dと E-F 測線に おけるこのような元素分布は, R₃区の A-B 測線におけ る分布と非常に類似している.

R₁区域内では土壌試料を採取し、その微量元素を分析 した.その結果、広域的な微量元素分布も前述した相対 的に小範囲である R₃区域における分布と、類似した特 徴を示している.熱海地熱地域の周辺では、Bi, As, Sb, Hg などの浅熱水性元素の高濃度異常域が認められる. それらの高濃度異常域は、例えば両河金鉱床のように現 在の熱水活動及び過去の温泉活動の分布域にほぼ位置一 致する.熱海地熱地帯の外側には、Pb, Zn, Mn 等の高濃 度異常域が認められる(第 12 図).

4.3 熱海地熱地帯とその周辺における岩石の微量元 素分布

熱水変質岩の原岩の微量成分含有量を知るために,熱 海地熱地帯とその周辺 130 km²の区域から採取した岩石 試料を分析した.測定は熱水塘と硫黄塘と二つの熱水活 動の集中区域を横断する G-H 測線で,採集された岩石

第13 図 硫黄塘-黄瓜チンの G-H 測線(第7図参照)におけ

- る岩石中の元素濃度分布 (Zheng et al., 1991). Fig. 13 Pedogeochemical anomalies along G-H traverse
- in the Liuhuangtang-Huangguaqing geothermal field (after Zheng *et al.*, 1991).

について行った(第7図). 測線の長さは13.5 km であ り, NE-SW 方向である.分析の結果,岩石中の元素濃 度分布は土壌中のそれと大体一致しているが,土壌中よ りもやや複雑で,特に Hg, Bi, Pb と B 等の元素につい て,その傾向が強い.例えば,Bi, Sn, Be, B, Li, Rb, As, Sb, Hg 等の高濃度異常域が熱水塘と硫黄塘との二つの 熱水活動地域に集中的に出現する(第8,13 図).この二 つの地域の間にも同様に若干の高異常があるが,熱水活 動の地表兆候はまだ知られていない.一方,Co, Ni, Zn, Mn,Pb 等元素の高異常分布地域は主に地熱地帯の両側 及びその外側に位置し,内部においては微弱な異常分布 を示すに過ぎない.

これらの岩石中の微量元素の濃度分布の傾向をまとめ ると、熱水活動の活発な地域内においては、元素の濃度 分布が熱水活動と断層の組合せによって規制される一 方、その範囲外では、主に断層による規制を受けている と言える.上述した微量元素の分布パターンは、断層、 熱水活動、変質、及び金鉱化作用の間の内在的な関係を 示している.したがってこれらの資料は、今後の熱海地 熱地帯における温泉型金鉱床の探査に、重要な指針を与 えるものである.

謝辞 本報文は,筆者が地質調査所滞在中(1998.9-2000.8)に中文で書かれた.和文原稿の作成に当り,王 一令氏,張 兆吉博士にご盡力いただいた.また地質調 査所石原舜三博士,青木正博博士,関 陽児氏からも有 益なコメントをいただいた.以上の方々に厚くお礼申し 上げる.

文 献

- Chen, B. W., Li, Y. S., Qu, J. C., Wang, K. Y., Ai, C. X. and Zhu, Z. Z. (1991) On the main Geotectonic problems in the Sanjiang region and their relations to metallization. *Geol. Pub. House, Beijing*, 110 p. (中国語,英文要旨)
- Guo, G.Y. and Yin, C. (1990) The chemical model of thermal spring water of HCO₃-Na type, Tengchong. *Acta Scientiarum Naturalium, Universitatis Pekinensis*, **26**:700-710. (中 国語,英文要旨)
- Guo, G. Y. and Zhu, M. X. (1994) The distribution characteristics of trace elements in the Rehai geothermal field in Tengchong County, Yunnan. Acta Scientiarum Naturalium Universitatis Pekinesis, **30**, 625-634. (中国 語,英文要旨)
- Hinckley, D.N. (1963) Variability in 'Crystallinity' values among the kaolin deposits of the coastal plain of Geogia and South Carolina. *Clays and Clay Minerals*, 11: 229–235.
- Hou, Z. L. and Guo, G. Y. (1991) The Tengchong-Lianghe geothermal system and hot springtype gold mineralization in Yunnan Province. *Geol. Review*, **37**, 243-249. (中国語,英文 要旨)
- Li, Y. S., Zhou, W. Q., Chen, W. M., Shi, Q. Q. and Chen, Z. F. (1986) The metallogenetic characteristics and the distribution patterns of major ore deposits in Nujiang-Lancangjiang-Jinshajiang region. *Geol. Pub. House*,

Beijing, 163 p. (中国語, 英文要旨)

- Liao, Z. J., Zhang, Z. F. and Guo, G. Y. (1981) Geology and geochemistry of Rehai (Hot Sea) geothermal field in Tengchong, Yunnan Province, China. *Proc. of The New Zealand Geothermal Workshop*, 19–24.
- Liao, Z. J., Shen, M. Z. and Guo, G. Y. (1991) Characteristics of the geothermal reservoir in the Rehai (Hot Sea) field in Tengchong County, Yunnan Province. *Acta Geologica Sinica*, 1, 73-85. (中国語,英文要旨)
- 劉 長齡,郭 奕清(1980) 白水江硬質粘土,我 国已知結晶最好的高嶺石. 科学通報,11:528. (中国語)(Liu, C.L. and Guo, Y.Q. (1980) The Baishuijiang blue bind—kaolinite with the highest crystallinity value in China. Chinese Science Bulletin, 11:528)
- Lu B. X., Wang, Z., Zhang, N. D., Duan, J. Z., Gao, Z. Y., Shen, G. F., Pan, C. Y. and Yao, P. (1993) Granitoids in the Sanjiang region and their metallogenic specialization. *Geol. Pub. House, Beijing*, 328 p. (中国語,英文要旨)
- 佐藤興平・孟 憲国・卓 維栄(1997) 中国雲南 省騰冲の温泉型金鉱床. 地質ニュース, 513, 44-55.
- Shen, M. Z, Ni, B. L. and Hou, F. G. (1982) Hydrogen and oxygen isotopic study of hydrocirculation in Tengchong geothermal area, Yunnan Province. Proceedings of Research in Geology, Dept. Geol., Peking Univ., 187-191. Peking Univ. Press, Beijing. (中国語, 英文要 旨)
- Tong, W. and Zhang, M. T. edited (1989) Geotherm in Tengchong area. Scientific Investigation Series of the Tibet-Qinghai Plateau. *Science Press, Beijing.* (中国語)
- Yao, Z.Y. (1991) Possibility for prospecting hot spring type gold deposits. *East China Scientific and Technological Information*, 1, 22-23. (中国語)
- Zhang, L. G., Chen, Z. S., Liu, J. X., Yu, G. X., Wang,
 K. F., Wang, B. C., Xu, J. F., Zheng, W. S., Li, D.
 Y., Li, H. and Hou, D. Y. (1995) The theory

and ore-prospecting utilizations of two-stage water-rock interaction. *Geol. Pub. House, Beijing*, 231 p. (中国語,英文要旨)

- Zhang, T.L., Wang, Z.L. and Hu, Y.Z. (1997) Very well-ordered kaolinite from the Tengchong active hot spring in China. *Acta Petrologica Mineralogica, vol.* 16, supp., 136–138, 131. (中国語)
- Zhang, Z.F, Liu, S.B. and others (1989) Geochemistry of geothermal fluids in the Tengchong area. in: Tong, W. and Zhang, M.T. (eds.), Geotherm in Tengchong area. Scientific Investigation Series of the Tibet-Qinghai Pleteau. *Science Press, Beijing*, 81-100. (中国語)
- Zheng, Y.X., Zhang, M.T., Zhu, B.Q., Zhu, L.X. and Shi, C.Y. (1991) A study on traceelement zoning in the Rehai geothermal field, Tengchong, Yunnan Province. *Scientia Geologica Sinica*, 2, 137-147. (中国語,英文要 旨)
- Zhu, B. Q. and Yu, H. (1992) A preliminary study on gold mineralization in high temperature hot spring areas. *Geophysi. Geochemi. Exploration,* 16, 87–96. (中国語)
- Zhu, B. Q., Zhang, J. M, Zhu, L. X. and Zheng, Y. X. (1986) Mercury, arsenic, antimony, bismuth and boron as geochemical indicator for geothermal areas. *Jour. Geochemi. Exploration*, 25: 379–388.
- Zhu, M. X. (1992) Evidence of ancient hydrothermal activity and the relation to gold mineralization in the Rehai geothermal system, Yunnan, China. In: Kharaka and Maest (eds.), Water-Rock Interaction, Balkema, Rotterdam, 1633–1636.
- Zhuo, W.R. (1991) The discovery of Lianghe thermal-spring gold deposit in the western Yunnan Province and its geological characteristics. *Earth Sciences—Jour. China Univ. Geosciences*, 16: 189–197. (中国語,英文要旨)

(受付: 2001年1月5日; 受理: 2001年10月30日)