短 報

東北日本火山フロントに沿う
七戸森火山岩，神室岳及び青麻火山の K-Ar 年代

三村弘二


Abstract: Three K-Ar ages were measured on the volcanic rocks along the Quaternary volcanic front of NE Japan. The results are 2.3 Ma on Nanatsumori volcanic rock, 1.7 Ma on Kamurodake Volcano and 0.7 Ma on Aoso Volcano. These data suggest the volcanic front moved to the present location from the east to the west after about 2 Ma. The same movement of the volcanic front is recognized in the Fossa Magna region, central Japan, which is the southern extension of the volcanic front of NE Japan.

要 旨

東北日本第四紀火山フロントに沿う七戸森火山岩，神室岳火山，青麻火山から，各個の K-Ar 年代測定を行い，それぞれ約 2.3 Ma, 1.7 Ma, 0.7 Ma の結果を得た。このことは，東北日本第四紀火山フロントが，約 2 Ma を経て，東側から西へ，現位置に移動したとすれば説明がつく。この動きは，同フロント南方延長にあるフォッサ・マグナ地域と同様である。

1. はじめに

東北日本弧の新生代火山岩について，近年放射年代が蓄積され，火山活動の場の移動についても具体的に論じられつつある（林ほか，1996），第三紀火山岩については，例えば宇都ほか（1989）が論じている。一方，より古い火山活動の場については，2.0 Ma 以降の議論（梅田ほか，1999）がある。しかし，まだ年代測定が不十分，もしくは全く行われていない地域も残されている。

ここでは，東北日本弧の第四紀火山フロントと火山列を横断する 20 万分の 1 地質図幅「仙台」（大沢ほか，1987）地域に分布する火山岩から，第四紀火山フロントに沿う七戸森火山岩，神室岳火山の溶岩及び青麻火山の火砕流堆積物を選び，K-Ar 年代の測定結果を報告し，あわせて東北日本弧における火山フロントの移動年代との関連を論ずる。

2. 地質の概要

地質調査所発行の 20 万分の 1 地質図幅「仙台」地域（大沢ほか，1987）は，東北日本弧東側の海溝に近い青麻火山から，西方背弧側の月山火山に至るまで，東西約 90 km にわたって 4 つの第四紀火山列（中川ほか，1986）をカバーする（第 1 図）。このうち，東端の香馬－恩火火山列では青麻火山（0.38-0.40 Ma：伴ほか，1992），その西の尋常火山列では篝火火山（1.2-1 Ma>：高間ほか，1989，沼宮内ほか，1992），鉱家火山（0.85-0.56 Ma：今田ほか，1989）さらに西側の森吉火山列では白亜火山（0.8 Ma：谷ほか，1975，0.73-0.91 Ma：長澤ほか，1995，0.60-0.99 Ma：石井・斎藤，1997，0.6-0.9 Ma：三村・鹿野，2000），西端の鳥海火山列では月山（0.35 Ma>：西村，1975）などで，代表的な火山の年代値が得られている。

更新世とされる七戸森火山岩（北村ほか，1983）は，上記の青馬－恩火列よりさらに東方を含む，デイサイドと安山岩の溶岩円頂丘からなり，2.01±0.11 Ma（七戸森デイサイド；：八島，1990）の値が得られている。その分布は，鮮新世の宮城凝灰岩を貫いて，長径約 7 km の環状配列を示す（大沢ほか，1987）。

神室岳火山は春森火山列に属し，山形と宮城県の県境沿い稜線を分布する，神室岳火山の主体は，主として安山岩溶岩からなり（吉田，1985），著しい開析を受けて,

Keywords: K-Ar dating, Nanatsumori volcanic rock, Kamurodake Volcano, Aoso Volcano, volcanic front, northeast Japan

1 地球科学情報研究部門（Institute of Geoscience, GSJ）
わずかに溶岩の平坦面が一部残存するのみである。同火山の詳細は、形成年代も共々未解明されている。

青森火山は上記の青森-撫火山列に属し、青森火山列の顕著火山列方に位置する。青森火山は新第三系を基盤として、安山岩及びディサイトの溶岩と玄武岩を噴出した後、山頂にカルデラを生じ、溶岩円頂を形成している（箱崎ほか，1983）。山体は著しい開析を受けており、その後の研磨の程度から、かってこの火山の活動時期は更新世の前半に推定される（箱崎ほか，1983）。

3. 測定試料

測定試料は、七対火山山の溶岩円頂丘と、神奈川火山の溶岩流、及び青森火山の玄武岩流堆積物から各1個を採取した。試料の採取地点を第1図に示し、試料の肉眼及び顕微鏡での観察結果を以下に記す。K-Ar年代の測定は、試料を相分離し、風化部分を取り除いた全岩を、テレディンアイソトープ社に依頼した。

F 21（38° 12’ N, 140° 35’ 22” E）
（七対火山山溶岩円頂丘）
5万分の1地形図「吉原」（北村ほか，1983）の西部、宫城の北北東約2 kmの隠岐山溶岩円頂丘西麓採石場跡、灰色緻密な安山岩で、雲母磁を示す。斑晶として、径2 mm以下の斜長石、紫蘇輝石、不透明鉱物、普通輝石を含む。斑晶は径4 mm程度の集斑状となっていることがあり、一部に輝石変化が認められる。石基は斑晶間状組織で、斑長石、斜長石、不透明鉱物等からなる。

KW 012（38° 13’ 35” N, 140° 28’ 39” E）
（神奈川火山溶岩）
5万分の1地形図「山形」東部、神奈川南方谷谷谷の東北東約500 mの国道沿い、現地性溶岩鉱物、明灰色の安山岩で、径3 mm以下の斑晶として、斜長石、普通輝石、紫蘇輝石、不透明鉱物を含む。斑晶は径3 mmに達する集斑状になっていることがある。石基は斑晶間状組織で、斜長石、単斜輝石、斜長輝石、不透明鉱物、ガ

---310---
ラスからなる。

ZA 23 (38° 26′ 2″ N, 140° 49′ 32″ E)
（青森火山火砕流堆積物本質岩片）

5万分の1地形図「白石」中西部、青森市の南西約3.5 kmの林道沿い、発泡の悪い明灰色のデイサイト岩塊で、斑晶として、径3 mm以下の斜長石、紫蘇輝石、角閃石、石英、不透明鉱物を含む、斜長石はときに径4 mmを越えることがあらう、角閃石は完全にオパシート化し、石英は融解形を示す、斑晶は径4 mmを越える集塊状となっていることがあらう、普通輝石が含まれる、石英は、間粒状組織で、斜長石、斜方輝石、単斜輝石、不透明鉱物などからなる、なお、堆積物中の本質岩片の帯磁方位は集中せず、かなり低温（恐らくは400℃以下）で堆積したことを示す。

4. K-Ar年代測定結果と考察

K-Ar年代測定結果を第1表に示す。

更新世（北村ほか、1983）とされている七沢火山の溶岩円頂丘（F21）は、2.33±0.12 Maと、八島（1990、2.01±0.11 Ma）より若干古めの、鮮新世後期を示した。この溶岩円頂丘は、フラックスゲート磁力計で正帯磁を示すことから、この正帯磁は、ガウスの正帯磁極もしくは松山逆磁極期中の正帯極反転イベントに対比できる。

七沢火山の溶岩円頂丘は、既に述べたように、鮮新世の宮地凝灰岩にとり囲まれた形で、長巻約7 kmの環状配列を示す。一方、軽石凝灰岩を主とする周辺の宮地凝灰岩は、しばしば下位層の巨大岩塊を取り込んでいる（北村ほか、1983）。その周辺は、筆者の観察によれば、成層した凝灰岩質シルト岩もしくは砂岩などの下位層を、ブロック状として含む岩脈などの堆積物である。この宮地凝灰岩は、湖成層の若岩層に整合に覆われている（北村ほか、1983）、その分布南線は北に急の境界で、より下位の新第三系と接する、これらの事実は、ここに鮮新世後期の2.3±0.2 Ma頃に、カルデラが存在したとすると、七沢火山のマグマ桟まりの面に沿うカルデラ溶岩円頂丘群として、岩石学的堆積物を含む周辺の宮地凝灰岩と湖成層の若岩層を、カルデラ内火砕碎石及び堆積物として、不規則なく分けることができる。

なお、これより西隣に位置する船形火山は、およそ0.85 Ma前後に活動を開始した（梅田ほか、1999）とされている。

神室岳火山の雄東部構成を構成する溶岩（KW 012）は、1.67±0.08 Maを示し、地形観察では、神室岳の南部に連なる宝山や額ノ原山、雁戸山などの火山体も神室岳とほぼ同程度の程度を示している。したがって、北部の船形火山から南部の方の襲山の間の緩線に分布するこれら火山体が、神室岳火山とほぼ同程度に活動した更新世前期の火山群であった可能性がある。これらは恐らく、南部の襲山火山群の最古の火山活動（120万年前：沼之内ほか、1992）や、北部の船形火山（0.85 Ma >：今田ほか、1989）のそれよりも、古い構築火山群の火山活動を示すものであるだろう。

青森火山下部の火砕流堆積物（ZA 23）は0.7±0.2 Maと、青森火山について来ていた時代値（0.38±0.4 Ma、伴ほか、1992）より古い値を得た。このことは、同火山が西方の襲山火山群の最古の活動期（120万年前：沼之内、1992）よりは新しく、その活動期（第1期、32万-12万年前：高岡ほか、1989）より以前、南襲山火

第1表 K-Ar年代値。

Table 1 K-Ar ages of volcanic rocks.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Locality number</th>
<th>Rock</th>
<th>Isotopic age (Ma)</th>
<th>40Ar (scc/gm x 10^-5)</th>
<th>%40Ar</th>
<th>%K</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA86-1056</td>
<td>F21</td>
<td>andesite</td>
<td>2.33±0.12 average</td>
<td>.010</td>
<td>42.4</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>KA86-1055</td>
<td>KW012</td>
<td>andesite</td>
<td>1.67±0.08 average</td>
<td>.004 [2]</td>
<td>28.2</td>
<td>0.62</td>
<td>1</td>
</tr>
<tr>
<td>KA86-1054</td>
<td>ZA23</td>
<td>dacite</td>
<td>0.7±0.2 average</td>
<td>.001 [3]</td>
<td>13.0</td>
<td>0.44</td>
<td>1</td>
</tr>
</tbody>
</table>

Note

1. For these samples, we have shown the 40Ar concentration to four places past the decimal. Although we maintain that the 40Ar concentration measurement is significant to only 1 x 10^-9 scc/gm, we have included the fourth digit in brackets for two reasons. First, at these low values, the rounding off error can be a significant fraction of the total 40Ar concentration, and second, for 40Ar values of less than 1 x 10^-7 scc/gm we use four digits in the age calculation. (From the Teledyne Isotope report)
山の第二期活動(50万年ほど前：沼宮内，1992)に先行して、活動を開始していたことを示す。ことにより、同火山は青麻-恐火山列の中で、従来知られていたような一段と若い形成年代の火山ではなく、同火山列の他火山とほぼ同じ間隔を(1 Ma 以降：中川ほか，1986)、活動を開始していたものと考えてよい。


なお、さらに最近の1 Ma 以降では、火山活動域の背弧側(より西方)への拡大(林ほか，1996)が起こっている。また、1.0-0.6 Ma を境に、東北日本の火山フロントは逆に10-20 km 程度、海溝側に移動(梅田ほか，1999)している。

5. まとめ

(1) 東北火山フロントに沿う火山及び火山岩から、七縄火山岩で約2.3 Ma、神室岳火山で約1.7 Ma、青麻火山で約0.7 Ma の K-Ar 年代測定値を得た。

(2) 2.3 Ma には、岩屑など堆積物を伴う二層火山岩の鮮新世カルデラ火山の後カルデラ溶岩円頂丘の年代を示す。

(3) 神室岳火山など東北脊梁の火山は、1.7 Ma に活動していた。

(4) 青麻-恐火山列の青麻火山は0.7 Ma に活動を開始していた。

(5) 以上の活動は、約2 Ma 以降東北日本の火山フロントが東方より西へ位置に移動したことと矛盾しない。

(6) この動きは、東北日本弧の南方伸長に当たるフォサ・マグナ地域でも同様である。

謝辞 元地質調査所所員(現三井金属資源開発 KK)山田直利氏には、年代測定を奨めて頂き、同じく大澤、橋博士からは、試料の一部を提供して頂いた。地球科学情報研究部門松浦浩久、中野、俊男主任研究員には、測定試料を検検印して頂いた。同じく宇都浩三博士には試料の検覧に加えて、初期の段階から達道まで原稿に建設的なご意見を頂いた。同松本久臣博士は編集を担当して下さった。同鹿野和彦博士には、原稿の公表に助力を頂いた。図版の作成には、高田俊男、酒井キミ子協力の助力を得た。以上の方々に感謝する。

文献

足立久男(1991) 関東山地における新生代火山活動

伴・雅雄、大場与志男、石川賢一、高岡宣雄(1992) 青麻-恐火山列、隠岐諸島、恐山、七時雨および青麻火山の K-Ar 年代-東北日本弧第四紀火山の帯状配列の成立時期、地誌，87，39-49。

地質調査所(1992) 100万分の1日本地質図、第3版、地質調査所。

林信太郎、中村和幸、伴・雅雄、佐々木実、山元雅雄、大場司、石川賢一、高岡宣雄(1996) 東北日本の第四紀火山の時空分布(1)- 背弧側への火山活動域の拡大-、火山学会予稿集，no.2，88。

石井六夢、斎藤哲郎(1996) 山形県白鷹火山の K-Ar 年代、山形地質(自然科学)，14，99-108。

兼倉一郎、河内晋平、長尾敬介(1993) 八ヶ岳東方地域の第三紀及び第四紀火山の活動期- K-Ar 年代測定からの推定-、火山学会予稿集，no.2，76。

北村信、大沢稔、中川久夫(1983) 吉岡地域の地質、地質地質研究報告(5万分の1地質図幅)，地質調査所，50p。

今田正、高岡宣雄、大場与志男(1989) 船形火山溶岩の K-Ar年代、地質調査所、総合地質調査報告(1)，33-36。

三村弘二、鹿野和彦(2000) 東北日本、白鷹火山の層序及び歴史、火山，45，13-23。

三村弘二、村田賢、内海茂(1994) 黒富士火山と甲府盆地北方に分布する火山群の火山活動と K-Ar年代、地誌，89，15-20。

中川光弘、福島洋、吉田武義(1986) 青麻-恐火山列：東北日本弧火山フロント、岩誌，81，471-478。

長澤一雄、斎藤哲郎、大場與志男、石井六夢、本田康夫(1995) 白鷹火山の初期および主活動期噴出物の K-Ar年代と火山形成、平成6年度琵琶湖緊急調査報告書-地学-動物-、山形県立博物
物館，39-56。
西村 進(1975) 主として東北地方の Fission-
Track Age(要旨)，マグマ発生の時間的空間
的分布，no. 3, 15-16。
沼宮内信・坂井順一・野崎 弥 仲 雅雄・福永一
哉・大場与志男・斎藤和男(1992) 南蔵王火山
の K-Ar 年代と山体形成史，火山学会予稿集，
no. 1, 49。
大沢 糸・三村弘二・久保和也・広島俊男・村田泰
章(1987) 20 万分の 1 地質図幅，「仙台」，地
質調査所，
霧島 洋・吉田武義・青木謙一郎(1983) 那須北
帯・青森火山の地球科学的研究，郷理研究院報
告，16, 301-308。
高岡宜雄・今野幸一・大場与志男・今田 正(1989)
蔵王火山溶岩の K-Ar 年代測定，地質雑，95，
157-170。
谷 正巳・柴田 賢・谷口政頼・阿部哲彦(1975)
山形盆地周縁の新生代火山岩の年代について，
地質学会 82 年大会講演要旨，211。

梅田浩司・林信太郎・伴 雅雄(1999) 東北日本，
篠森，高松，船形および三吉・篠山火山の K-
Ar 年代，火山，44, 217-222。
梅田浩司・林信太郎・伴 雅雄・佐々木実・大場
司・赤石和幸(1999) 東北日本，火山フロント
付近の 2.0 Ma 以降の火山活動とテクトニクス
の推移，火山，44, 233-249。
宇都浩三・柴田 賢・内海 茂(1989) 東北日本新
第三紀火山岩の K-Ar 年代，その 1，宮城県仙
台地域三流層および高須層，地質雑，95，
865-872。
八島隆一(1990) 東北日本弧における鮮新世火山岩
の K-Ar 年代，阿闘羅山安山岩，青ノ木森安
山岩，七ツ森デイサイト，笹森安山岩，地球
科学，44, 150-153。
吉田三郎(1985) 5 万分の 1 地質図幅「山形—川崎」
および同説明書，山形県，10p。

(受付：2001 年 2 月 13 日；受理：2001 年 7 月 18 日)