Nanometer-scale structures in a Mn-Mg-Fe Amphibole from Vittinki Group, Western Finland

Franco Mancini*, Katsumi Marumo*, Reijo Alviola**, Norihioko Kohyama*** and Brian Marshall†

Abstract: Samples of Mn-Mg-Fe amphibole from regionally metamorphosed (T=650–700°C, P=4–6 kbars) quartz–Mn-Mg-Fe amphibole veins intercalated with Mn-rich gneiss in the Vittinki Group, western Finland, have been studied by analytical transmission electron microscopy (ATEM). The results show that the Mn-Mg-Fe amphibole is exsolved on a submicroscopic scale and contains abundant lamellae of Mn-rich actinolitic amphibole, consistent with unmixing from an homogeneous amphibole upon cooling. The lamellae are coherently intergrown with the host and occur in two orientations, nearly parallel to (101) and (100) planes of the host, consistent with previously reported lamellar orientation for monoclinic amphiboles. Their exact orientation varies for the ‘100’ set and 6° for the ‘101’ set, indicating exsolution over a large temperature range. Furthermore, the ‘100’ lamellae have widths between 70 and 150 nm, whereas the ‘101’ lamellae show a larger range, 150–700 nm, which do not correlate with the orientation and that presumably reflect local variations in the diffusivity of chemical elements.

High resolution TEM images of the Mn-Mg-Fe amphibole show rare ‘faults’ which consist of triple-chain lamellae (5–10 nm, at most, in the b-direction), in a predominantly ordered double-chain host. In contrast, many Mn-Mg-Fe amphibole grains show topotactic replacement to talc as is evidenced by chemical compositions intermediate between amphibole and talc.

1. Introduction

Metamorphic amphiboles can contain micrometer-to nanometer-scale intergrowths which are too fine-grained to be observed by a conventional petrographic microscope but that can be characterized in detail by a transmission electron microscope (TEM) equipped with an analytical system (AEM). In particular, exsolution or unmixing upon cooling from an homogeneous primary phase originate micrometer-scale exsolution lamellae whose orientation and composition can be used to elucidate the thermal history of metamorphic rocks (e.g. Klein et al., 1996, 1997). Furthermore, solid state replacement reactions produce nanometer-scale lamellae of triple, quadruple, septuple chains, etc., parallel to the amphibole double chain, that have recently received much attention as petrogenetic indicators of metasomatism under crustal conditions (Schumaker and Czank, 1987; Akai, 1988; Akai et al., 1997). Triple-chain lamellae have also been described in natural and synthetic Mn-Mg-Fe amphiboles (e.g. Akai, 1982; Maresch and Czank, 1987), and were identified by high resolution electron imaging (HREM) techniques that allow the observation of minerals at or close to the atomic scale.

In this article we report the results of a TEM-AEM study of a Mn-Mg-Fe amphibole from the Svecofennian Vittinki Group, western Finland. Preliminary investigations (R. Alviola, unpubl.) identified lamellar intergrowths and showed that some of the chemical formulae determined from electron microprobe analysis have too high tetrahedral to octahedral cation ratios.

2. Geologic setting and sample location

The Vittinki Group (VTG), which was sampled for this study, lies within the 1.97–1.88 Ga Svecofennian domain in southwest Finland (Fig. 1). It is part of a tract of supracrustal gneiss, representing the northwestern continuation of the Tampere Schist Belt (TSB), that hosts well-preserved volcano-sedimentary sequences (e.g. Kähkonen, 1994). The Svecofennian...
Fig. 1 a: main geologic units of the Baltic Shield and location of the early Proterozoic island arcs (stippled areas) (modified after Ekdahl, 1993). b: Schematic geologic map of central and south Finland (after A. Simonen). The star indicates the location of the sampled Vittinki Group (VTG). Legend: A=Archean greenstone belt; B=Archean granitoids; C=Karelian supracrustal rocks; D=Svecofennian supracrustal rocks; E=Svekarelian granitoids; F=Rapakivi granites; G=Jotnian sediments, (see text for abbreviations).
domain has been interpreted as a paleosuture (e.g. Hietanen, 1974; Papunen and Gorbunov, 1985; Huhma, 1986; Gaål and Gorbatchev, 1987; Gaål, 1990; BABEL, 1990; Ruotoistenmäki, 1996) which, by analogy with present-day collision zones in the western Pacific, involves subduction of the oceanic Svecofennian plate beneath the Karelian continent and the concurrent development of complex island arc systems (Fig. 1a). The latter include the Pyhäsalmi island arc (PIA) on the continent margin, similar to the modern Japan arc, and the oceanic Tampere-Vasa (TIA) and Orijärvi (OA) island arcs (e.g. Gaål and Gorbatchev, 1987; Gaål, 1990). In the Outokumpu (OTK) district, the 1.97 Ga serpentinites and black schist with Cu-Zn-Ni-Co-Cr-Au mineralisation have been interpreted as ophiolites formed during rifting and sea floor spreading in a back-arc basin located on the western margin of the Karelian craton (e.g. Gaål, 1990; Ekdahl, 1993). In the Tampere and Savo Schist Belts (TSB and SSB respectively), the amphibolites, micaschists and gneisses, together with their tuffaceous intercalations, have been interpreted as volcano-sedimentary deposits formed in back-arc basins (Kähkönen, 1994; Lahtinen, 1996), while the arc and back-arc magmatism are represented by the granites, granodiorites and gabbros of the central Finland granitic complex (CFGC) (e.g. Huhma, 1986; Ekdahl, 1993). In the NNW-SSE trending Raahe-Ladoga zone (R-L) and Vammala Nickel Belt (VNB), the ultramafic-mafic intrusions and associated Ni-Cu deposits supposedly represent tholeiitic magmas that were generated by partial melting of subducted oceanic crust (e.g. Papunen and Gorbunov, 1985; Mäkinen, 1987; Peltonen, 1995); on the other hand, by analogy with island arc-hosted Kuroko-type deposits, the Zn-Cu-Pb massive sulfides, with well-preserved sedimentary structures, are interpreted as the products of a submarine hydrothermal system (Gaål, 1990; Ekdahl, 1993).

The main closing stage of the Svecofennian orogeny occurred 1.90–1.86 Ga ago (Fig. 2; Ruotoistenmäki, 1996), when the central Finland island arcs and back arc basins were thrust against the Karelian continent. The N-NE thrusting formed recumbent folds (e.g. Simonen, 1980) and was accompanied by granulite facies metamorphism at temperatures of 800–880°C and pressures of 5–6 kbars in the northern PIA arc (Korsman et al., 1994; Korsman, 1988) and temperatures from 600–650°C at 7–8 kbars to 700–720°C at 4–6 kbars in the southern Tampere-Vasa (TIA) arc (e.g. Kilpeläinen and Rastas, 1992; Kilpeläinen et al., 1994). The counterclockwise rotation of the Svecofennian thrusting from NE to N (Fig. 2) explains: (a) the rotation of the TIA arc around the PIA arc (e.g. Ekdahl, 1993; Ruotoistenmäki, 1996); and (b) the oblique collision which formed the NW-trending deep-seated faults and shear zones that possibly controlled the emplacement of Ni-bearing ultramafic-mafic intrusions in the R-L zone and VNB belt (e.g. Gaål, 1990). Field and petrologic data indicate that after the peak metamorphism, the Svecofennides in south-western Finland were rapidly exhumated which have resulted in a nearly isothermal decompression, possibly to pressure of 1–2 kbars (e.g. Kilpeläinen and Rastas, 1992; Mancini et al., 1996). The peak metamorphic upper amphibolite-lower granulite facies mineral assemblages were later overprinted by the hornblende-hornfels assemblages during the M2 retrograde metamorphism at temperature of 530–560°C (e.g. Kilpeläinen and Rastas, 1992).

The Vittinki Group is known for its manganese-bearing horizons. The bedrock is poorly exposed in the area but outcrops of volcanics, chert, and graphite-bearing gneisses with Fe-Mn mineralization have been reported (Saxén, 1925). The ore occurs as concordant layered bodies within biotite-plagioclase gneiss, in turn hosted by quartzites (Törnroos, 1982). The Mn-rich lenses and pods are mainly rhodonite/pyroxmangite rocks with minor amounts of other Mn-minerals (i.e. pyroxene, amphiboles, quartz and Mn-oxides and Mn-sulfides, e.g. alabandite) (Törnroos, 1982). These manganiferous iron formations with abundant silicate facies (i.e. manganiferous cherts) are relatively abundant in the Svecofennides near the boundary of the Archaean craton but less common in the southern part (e.g. Ekdahl, 1993). They have been interpreted as syngenetic deposits of iron, manganese, silica and phosphorous formed at shallow depth in a
back-arc basin about 2.0-1.97 Ga ago (Ekdahl, 1993). It is noteworthy that the quartz-rocks have been interpreted as recrystallized cherts rather than primary clastic sediments (e.g. Tuukki, 1984).

3. Sample description

In the Mn-horizons at Vittinki, Mn-Mg-Fe amphibole occurs as porphyroblasts, small Mn-Mg-Fe amphibole-kanoite/johannsenite patches, or quartz-Mn-Mg-Fe amphibole veins which are less than 10 cm wide. The samples for this study are from a quartz-Mn-Mg-Fe amphibole vein (Fig. 3) in which porphyroblastic and nematoblastic Mn-Mg-Fe amphiboles co-exist with minor Ca-Mg-Mn pyroxenes and Mn-rich tremolitic amphibole, and are dispersed in a quartz matrix. Mn-oxides form boudin-shaped clusters within the quartz-Mn-Mg-Fe amphibole matrix and consist mainly of fine grained cryptomelane/psilomelane (MnO2), with a typical low hardness. The silicate minerals have a slight preferred orientation and thereby define a weak schistosity. Their straight common grain boundaries are indicative of an equilibrium assemblage. Colorless amphiboles and pyroxene, which could not easily be distinguished in thin section, were identified on the basis of their compositions (Table 1). The Mn-Mg-Fe amphiboles have Mn-content ranging 1.26-1.65 apfu and they are mangano-cummingtonite of Leake et al. (1997); they differ significantly with respect to the Mg/Mg+Fe2+ ratio, between 0.56 and 0.92, that presumably reflect variation in the Mg/Mg+Fe2+ ratio of the host rock (in prep.) The K0 [(Mg/Mn)ca-mg-mn pyroxene/(Mg/ Mn)Mn-Mg-Fe amphibole] varies between 0.72 and 1.40. Synkinematic growth is supported by the (100) deformational twinning of Mn-Mg-Fe amphibole, while retrogressive deformation is evidenced by the grain-size reduction of quartz. The Mn-Mg-Fe amphibole crystals host small (≤1μm) quartz inclusions and thin lamellae, that have an orientation consistent with that for “101” exsolution lamellae in clinoamphiboles. Assemblages similar to those described occur in other metamorphosed manganese-bearing sediments at upper amphibolite-lower granulite facies (T=650-700°C at P=4-6 kbars—Kobayashi, 1977; Dasgupta et al., 1988). At Vittinki, the same peak metamorphic conditions are consistent with the extensive development of migmatites in the adjacent garnet+biotite+sillimanite+cordierite-bearing migacneisses.

4. Analytical methods

Two sets of samples were prepared for transmission electron microscopy (TEM). The first set was prepared by ion milling. A disc, 3 mm in diameter, was removed from a thin section using an ultrasonic cutter.

Fig. 3 Hand sample of a quartz-Mn-Mg-Fe amphibole vein from the Vittinki Group, Finland.
and dimpled to 20–30 microns. It was then glued to a single-aperture copper grid. The beam milling was performed at angles varying between 18° and 8° using 4 keV argon particles. The second set consisted of a small quantity of powdered material crushed and dispersed in water. The resulting suspension was deposited on a carbon holey film supported on a standard mesh grid, 3 mm in diameter.

Electron microscopy was performed with a Philips CM12 transmission electron microscope operated at 100 keV. A Super Twin (ST) objective lens (spherical aberration coefficient Cs=1.2 mm, chromatic aberration Cc=1.2 mm) was used. Energy dispersive X-ray spectra (EDS) were obtained with an EDAX SiLi ultra-thin window detector using a 100-second acquisition time. During analysis, the specimen was tilted about 7° towards the detector, thus yielding a total take-off angle of 23°. The compositions were calculated from the intensities using the method of Cliff and Lorimer (1972). The method states that, for a very thin specimen (<100–200nm), the effects of X-ray absorption and fluorescence can be neglected so that the concentration ratios for any two elements (Ci/Cj) are related to their X-ray intensity ratios (Ii/Ij) by the equation Ii/Ij = kCi/Cj. Relative to Si, k-values were calculated for each element of interest using standards: phlogopite for Mg, K and Al, johannesite for Mn and Ca, enstatite for Mg and Fe, and kaolinite for Al. Compositions of the standards were accurately determined by a JEOL microprobe, equipped with a WDS detector, at a 200 sec⁻¹ counting rate (Appendix

Table 1 EPMA analysis and chemical formulae of Mn-Mg-Fe amphiboles (MnMgFe-amp), Mn-rich tremolitic amphibole (tr) and Ca-Mg-Mn pyroxene (CaMgMn px) in the quartz-Mn-Mg-Fe amphibole vein, Vittinki Group, Finland.

<table>
<thead>
<tr>
<th></th>
<th>MnMg</th>
<th>MnMg</th>
<th>MnMg</th>
<th>tr</th>
<th>tr</th>
<th>CaMgMn</th>
<th>CaMgMn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe-amp</td>
<td>Fe-amp</td>
<td>Fe-amp</td>
<td>Fe-amp</td>
<td>Fe-amp</td>
<td>px</td>
<td>px</td>
</tr>
<tr>
<td>SiO₂</td>
<td>57.00</td>
<td>54.70</td>
<td>51.60</td>
<td>54.10</td>
<td>55.41</td>
<td>51.99</td>
<td>52.00</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.19</td>
<td>0.01</td>
</tr>
<tr>
<td>FeO</td>
<td>3.60</td>
<td>12.00</td>
<td>18.00</td>
<td>6.00</td>
<td>2.02</td>
<td>1.69</td>
<td>1.69</td>
</tr>
<tr>
<td>MnO</td>
<td>12.10</td>
<td>10.20</td>
<td>12.60</td>
<td>6.80</td>
<td>9.41</td>
<td>9.78</td>
<td>9.79</td>
</tr>
<tr>
<td>MgO</td>
<td>24.30</td>
<td>19.20</td>
<td>13.00</td>
<td>18.60</td>
<td>21.07</td>
<td>13.95</td>
<td>13.61</td>
</tr>
<tr>
<td>CaO</td>
<td>1.20</td>
<td>0.60</td>
<td>1.00</td>
<td>9.00</td>
<td>8.19</td>
<td>21.45</td>
<td>21.38</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.24</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>F</td>
<td>1.60</td>
<td>1.10</td>
<td>0.10</td>
<td>0.70</td>
<td>0.87</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.00</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>total</td>
<td>99.80</td>
<td>97.80</td>
<td>96.30</td>
<td>95.20</td>
<td>97.55</td>
<td>99.08</td>
<td>98.66</td>
</tr>
<tr>
<td></td>
<td>23 O</td>
<td>23 O</td>
<td>23 O</td>
<td>23 O</td>
<td>23 O</td>
<td>6 O</td>
<td>6 O</td>
</tr>
<tr>
<td>Si</td>
<td>7.95</td>
<td>7.99</td>
<td>7.94</td>
<td>7.96</td>
<td>7.89</td>
<td>1.98</td>
<td>1.98</td>
</tr>
<tr>
<td>Al</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.42</td>
<td>1.46</td>
<td>2.31</td>
<td>0.74</td>
<td>0.24</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Mg</td>
<td>5.05</td>
<td>4.18</td>
<td>2.98</td>
<td>4.08</td>
<td>4.47</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>Mn</td>
<td>1.43</td>
<td>1.26</td>
<td>1.64</td>
<td>0.84</td>
<td>1.13</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Ca</td>
<td>0.18</td>
<td>0.09</td>
<td>0.16</td>
<td>1.42</td>
<td>1.25</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>Na</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>K</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg/Mn</td>
<td>3.53</td>
<td>3.31</td>
<td>1.81</td>
<td>4.85</td>
<td>3.95</td>
<td>2.54</td>
<td>2.54</td>
</tr>
</tbody>
</table>

¹ Analyst R. Alviola, Geological Survey of Finland

Table 2 Experimental K-values (molecular ratio) of each element respect to Si.

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>1.34(1)¹²</td>
</tr>
<tr>
<td>Al</td>
<td>1.12(0.4)¹</td>
</tr>
<tr>
<td>Si</td>
<td>1.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.90(6)-0.81(5)²</td>
</tr>
<tr>
<td>K</td>
<td>0.95(5)</td>
</tr>
<tr>
<td>Fe</td>
<td>0.72(0.8)</td>
</tr>
<tr>
<td>Mn</td>
<td>0.85(4)-0.83(5)²</td>
</tr>
</tbody>
</table>

¹² calculated with phlogopite and enstatite, respectively.

N.B. the standard deviations (in parenthesis) refer to the last digit.
The expression, $k_{X,si} = M_{si}/M_{X} \cdot I_{X}/I_{si}$ (where M_{X}/M_{si} is the mole ratio of the analyzed element relative to Si and I_{X}/I_{si} the intensity ratio), was used because it provides a direct measure of the relative number of atoms in the chemical formula of the analyzed mineral. The intensity ratio (I_{X}/I_{si}) in the expression for $k_{X,si}$ was calculated by least-squares analysis of the plot of I_{X} versus I_{si} (Appendix 2).

The k-values determined (Table 2) are plotted against the characteristic energy of each element in Fig. 4. Compared with the experimental k-values of Cliff and Lorimer (1975) and those calculated by Goldstein et al. (1977), our values, especially for the heavy elements, are rather low (<1.0). We ascribe this to the improved efficiency of X-ray detection.

High resolution TEM (HRTEM) was performed with the Philips CM12 at GSJ and also with the Hitachi 8000 TEM at 200 keV at the National Institute of Industrial Health (NIIH, Tokyo). An intermediate diameter objective aperture was used.

For accurate measurement of the lattice plane spacing, a calibration of the magnification was carried out using a grid with graphitised carbon black as standard.

5. Results

5.1 Exsolution lamellae

5.1.1 Orientation aspects

Two sets of exsolution lamellae in the Mn-Mg-Fe amphibole were observed, “101” and “100” (Fig. 5a,b), corresponding to the two most common lamellar orientations in clinoamphiboles. Chemical analysis confirmed that they are Mn-rich actinolitic amphibole [mangano-ferro-actinolite and manganoo-actinolite of Leake et al., (1997)] (Table 3). The orientations and widths of the lamellae (Table 4) were accurately measured using an ion-milled specimen (VTN3A) cut nearly parallel to the a^*c^* plane. The sample was mounted with the a^*c^* parallel to the tilt axis of the sample holder so that the a^*c^* section could be attained by slightly tilting the goniometer.

The HRTEM images (Fig. 6) show that the lattices of the host and lamellae are continuous across the lamellar interface and adjust by slight rotation of the lattice fringes. According to optimal phase boundary theory (OPB-theory; Bollman and Nissen, 1968), the lamellae are parallel to planes of best dimensional fit between the lattices of the host and exsolved phases; their exact orientation changes slightly with the temperature of exsolution. The Mn-Mg-Fe amphibole studied has a large range of lamellar orientations (Table 4), the angle between the “101” lamellae and the a-axis of the host amphibole varies in the range 20.7–26.1° and that between the “100” lamellae and the c-axis of the host amphibole ranges across 6.5–17.9°, which is therefore consistent with multigenerational
Fig. 5 a: TEM bright field image of the Mn-Mg-Fe amphibole host and the two sets of lamellae taken in a non zone axis orientation. The (100) twin plane is also shown. Note the spotted appearance of the argon-damaged areas (lower left corner). b: Low magnification TEM bright field image of the "1̅01" lamellae showing a great range of lamellar widths. The inset is the a*-c* SAED pattern (selected area electron diffraction) of the same area. Note the splitting of the spots (arrowed) due to the slightly different lattice parameters of the host and exsolved phases.

Table 3 Selected AEM chemical formula of Mn-Mg-Fe amphibole (MnMgFe amp) host and Mn-rich actinolitic amphibole (act) lamellae.

<table>
<thead>
<tr>
<th></th>
<th>MnMgFe-amp</th>
<th>MnMgFe-amp</th>
<th>MnMgFe-amp</th>
<th>act</th>
<th>act</th>
<th>act</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Al</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>total</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Mg</td>
<td>1.88</td>
<td>1.89</td>
<td>1.94</td>
<td>1.98</td>
<td>2.00</td>
<td>2.20</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>2.50</td>
<td>2.59</td>
<td>2.73</td>
<td>2.15</td>
<td>2.17</td>
<td>1.73</td>
</tr>
<tr>
<td>Mn</td>
<td>0.62</td>
<td>0.53</td>
<td>0.34</td>
<td>1.17</td>
<td>1.12</td>
<td>0.79</td>
</tr>
<tr>
<td>total</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>4.72</td>
</tr>
<tr>
<td>Ca</td>
<td>0.35</td>
<td>0.42</td>
<td>0.44</td>
<td>2.00</td>
<td>1.97</td>
<td>2.00</td>
</tr>
<tr>
<td>Mn</td>
<td>1.65</td>
<td>1.58</td>
<td>1.56</td>
<td>-</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>total</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Mg/Mg+Fe²⁺</td>
<td>0.43</td>
<td>0.42</td>
<td>0.41</td>
<td>0.48</td>
<td>0.48</td>
<td>0.55</td>
</tr>
<tr>
<td>Mn/Mn+ Fe²⁺+Mg</td>
<td>0.34</td>
<td>0.32</td>
<td>0.29</td>
<td>0.23</td>
<td>0.20</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Table 4 Lattice parameters and orientation relationships of “(01)” and “(100)” exsolution lamellae in Mn-Mg-Fe amphibole.

<table>
<thead>
<tr>
<th>Mn-Mg-Fe amphibole host</th>
<th>“(01)” and “(100)” Mn-rich actinolitic lamellae</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 9.42(10)</td>
<td>9.67(15)</td>
</tr>
<tr>
<td>b 18.18 (15)</td>
<td>n.m.</td>
</tr>
<tr>
<td>c 5.31(1)</td>
<td>5.30(1)</td>
</tr>
<tr>
<td>β 101.98</td>
<td>104.9</td>
</tr>
</tbody>
</table>

“(01)” ∧ (01) = 1.0-6.5
“(100)” ∧ (100) = 3.7-6.1
“(01)” ∧ “(100)” = 71.35-75.5
c^host ∧ “(100)” = 6.5-17.9
$a^*\text{host}$ ∧ “(01)” = 20.7-26.1

Fig. 6 A near [020] zone high resolution TEM image showing the (110) lattice fringes, $d(110) = 0.84$ nm, that are continuous across the lamellar boundaries, but with a slight rotation of 2.6° (best viewed with the direction of view nearly parallel to the page).

exsolution during the slow post-peak metamorphic cooling (e.g. Klein et al., 1996).

5.1.2 Chemographic aspects

Representative compositions of the host and lamellae determined for ion-thinned samples are listed in Table 3. The chemical analyses were performed using a small (100-200 nm) beam spot size and a count rate of 100 s⁻¹. Because the “(100)” lamellae have narrow widths, of the order of the spatial resolution of the
Fig. 7 A comparison of Mg/Mg+Fe⁴⁺ and Mn/Mn+Fe⁴⁺+Mg+Ca ratios between Mn-Mg-Fe amphibole host and Mn-rich actinolitic amphibole lamellae. Note the miscibility gap which is defined in terms of the Mn → Ca substitution in the M4 site.

finest probe (~100 nm), only the large "101" lamellae were analyzed. The observation of lattice fringes in the analyzed areas substantiated the "thin-film" approximation, in that the maximum thickness for which microstructures in silicates can be observed at 100 keV is about 200 nm (Champness, 1977).

The structural formulae of the amphiboles (Table 3) were obtained by recalculating the AEM element ratios to 8-silica, as supported by the negligible Al content determined by electron microprobe analysis (EPMA) of amphiboles from Vittinki (Table 1). All Fe was considered bivalent, as suggested by the results of X-ray single crystal and Mössbauer spectroscopy, and the cations were assigned to the various crystallographic sites following the scheme of Robinson et al. (1982). The analysed host Mn-Mg-Fe amphiboles have Mg/Mg+Fe⁴⁺ ratios less than 0.5 (0.38-0.43) (Table 3 and Fig. 7) and therefore they correspond to mangano-grunerite of Leake et al. (1997). They also show distinctly higher Mn/Mn+Fe⁴⁺+Mg+Ca and lower Mg/Mg+Fe⁴⁺ ratios than in Mn-rich actinolitic amphibole lamellae. These ratios define the compositional gap which largely occurs as a result of the Mn(Fe⁴⁺) → Ca substitution in the M4 site of the amphibole structure. Compositional profiles between lamellae were obtained by step-analysis, with an averaging spacing of 200 nm between analysed spots (Fig.

Fig. 8 a: TEM bright field image of the location of the step-scan profile adjacent to an actinolitic lamellae. b: Plot of distance vs. the relative concentration of Ca, Mn, Mg and Fe⁴⁺ in the Mn-Mg-Fe amphibole host.
The results show an almost flat profile, consistent with an equilibrium condition. However, at a distance of about 100 nm from the lamellae, a Ca decrease and a Mn and Fe increase is ascribed to lamellar growth, during which Ca diffused towards, and Mn and Fe away from the lamellae, in agreement with previous studies (e.g. Klein et al., 1997).

For powdered Mn-Mg-Fe amphibole samples free of lamellae, a larger spot size (800-2000 nm) was used; this improved the counting statistic but had the disadvantage of including nanometer-scale talc inclusions (below) resulting in chemical formulae with higher Si/Si + Fe²⁺ + Mn + Mg and Mg/Mg + Ca + Mn + Fe²⁺ ratios than those for Mn-Mg-Fe amphibole.

![Diagram of chemical composition](image)

Fig. 9 A comparison of Mg/Mg + Ca + Fe²⁺ + Mn and Si/Si + Ca + Mg + Fe⁴⁺ + Mn ratios of Mn-Mg-Fe amphibole analyzed with a small beam, ~100-150 nm, and with a large beam, ~800-2000 nm. Note the compositional shift of the latter due to the contribution from nanometer scale talc inclusions (see text for discussion).

![Micrograph of amphibole](image)

Fig. 10 High resolution transmission electron micrograph showing a triple chain slab, equivalent to the Mn-analogue of clinoptilolite, in a regular sequence of double chains. The inset represents the (000)-zone electron diffraction pattern of the same area. In amphibole, light fringes correspond with slab of double chains (low charge density) and dark fringes with the octahedral slab (high charge density) (see also Fig. 12).
obtained using a smaller spot size (Fig. 9). The deviation from the amphibole-talc join is ascribed to submicroscopic quartz inclusions.

5.2 Other fine textures
High resolution TEM images of amphibole were taken at about 150×10^3 magnification and the point-to-point resolution was between 4–5 Å. The HRTEM images (Fig. 10, 11a) are essentially the projection of the charge density of the mineral onto the plane normal to the incident electron beam. At Scherzer focus conditions the light and dark zones respectively correspond to areas of low and high electronic density. Fig. 10 shows the narrow lamellae of triple-chain silicate which occurs as a sporadic fault, less than 1-2 percent. These structures were identified by measuring the spacing of the light fringes which correspond to the chains of Si-tetrahedra (e.g. Akai, 1982). The lamellae, of unit-cell scale width (5-10 nm, at most, in the b-direction), can be considered the manganese-analogue of clinojimthompsonite (Veblen and Burnham, 1978). As discussed by Thompson (1978), the amphibole double chain structure can be visualized as consisting of alternating pyroxene (P) and mica/talc (M) slabs along the b-direction yielding the sequence . . . MPMMPM . . . (Fig. 12a). In the case of triple-chain silicate (e.g. clinojimthompsonite), an extra M slab is imposed on the structure and the sequence becomes . . . MMPMMPMPM . . . (Fig. 12b). The chemical formula of double and triple-chain silicates can be derived by adding up the stoichiometry of the mica (M) slab, AM₄ T₄O₉(OH)₂, and that of the pyroxene (P) slab, M₄T₄ O₁₂, where A = A-site, M = octahedral site and T = tetrahedral site, in the appropriate proportions. Thus amphibole (MP) is:

\[\text{M}_₄\text{T}_₄\text{O}_{1₂} + \text{AM}_₄\text{T}_₄\text{O}_{₁₉}(\text{OH})₂ = \text{AM}_₄\text{T}_₄\text{O}_{₂ₐ}(\text{OH})₂ \]

and clinojimthompsonite (MMP) is:

\[\text{M}_₄\text{T}_₄\text{O}_{₁₂} + 2\text{AM}_₄\text{T}_₄\text{O}_{₁₉}(\text{OH})₂ = \text{AM}_₄\text{T}_₄\text{O}_{₁₇}(\text{OH})₄ \]

It can be seen that the ratio of tetrahedral cations to tetrahedral and octahedral cations of clinojimthompsonite, 12/22, is higher than amphiboles, 8/15, therefore triple chain faults can increase the Si/(Si+Mtot) ratio in the analysis. In the present case, however, the scarcity of such faults suggests only a limited effect, if any, on the observed shift in composition (see Fig. 9).

Talc platelets have been observed in many Mn-Mg-Fe amphibole grains. They exhibit a topotactic relationship and contact the Mn-Mg-Fe amphibole parallel to (010) planes. The nanometer-scale size of the platelets, smaller than the selected area aperture, precluded determination of the exact orientation relationship. However, Veblen and Buseck, (1981) give \(b_{\text{talc}}/b_{\text{amph}} \) and \(a^{*}_{\text{amph}}/c^{*}_{\text{talc}} \) for similar intergrowths. Replacement of Mn-Mg-Fe amphibole by talc at Vittinki is explained by the following retrogressive...
reaction (modified from Akai, 1982):

$$(\text{Mn}_{\text{m}}\text{Mg}_{\text{m}}\text{Fe}_{\text{m}}\text{Ca}_{\text{m}})_{\text{M}_4}\text{Si}_8\text{O}_{22}((\text{OH})_{2}+\text{Mg}^{2+}+2\text{H}^+\text{amphibole}}$$

$$\rightarrow 2(\text{Mg}_{\text{m}}\text{Fe}_{\text{m}}\text{Mn}_{\text{m}})_{\text{M}_4}\text{Si}_8\text{O}_{22}((\text{OH})_{2}+\text{Fe}^{2+}+\text{Mn}^{2+}+\text{Ca}^{2+}\text{talc}}$$

Micrometer-scale lamellar twinning is present in most of the Mn-Mg-Fe amphiboles examined. The high resolution electron micrograph taken down [010] (Fig. 11a), shows the twin plane as seen edge-on. The 1.5 nm thick dark border is possibly an artifact due to slight misorientation of the section (Horiuchi, pers. com.). Alternatively, it could be a region of intense lattice distortion accommodating the misfit between adjacent twin domains. Elements I and II of the twin show a change of the contrast images. This is the result of a phase shift between the transmitted electron waves (e.g. McLaren, 1991) and is introduced by a lattice displacement vector, \mathbf{R}, at the twin boundary with component parallel to the electron beam. The left element of the twin has a pattern of dark spots (about 0.45 nm in size) that, when compared with the amphibole structure (Fig. 11b), possibly correspond to the most electron-dense regions of similar size given by the superposition of $2\text{M}_1+2\text{M}_4$ (see Hutchinson et al., 1975); the right element of the twin has instead a pattern of elongated light spots of low electronic density which possibly correspond to the planes of oxygens.

6. Discussion

6.1 Thermal reequilibration

Compared with previously reported examples of Mn-Mg-Fe amphibole coexisting with Mn-pyroxenes and quartz at amphibolite facies (e.g. Peters et al., 1977; Ishida, 1985; Dasgupta et al., 1988), the elevated Ca(M4) (up to 0.44 apfu, Table 3) of some of the analyzed Mn-Mg-Fe amphibole indicates saturation in the actinolite component. The solvus between the Mn-Mg-Fe and Ca amphiboles can be depicted in terms of the exchange of Ca for Mn or Fe in the M4-site with decreasing temperature, and our compositional profile adjacent to the lamellae indicates consistent with this preposition in that Ca diffuse into the actinolite lamellae whereas Mn and Fe diffuse out from the lamellae. During slow post-peak metamorphic cooling, intervals of undercooling resulted in various stages of coherent exsolution, as indicated by the wide range of lamellar orientation. In ferromagnesian-calcic amphibole pairs, the plane orientations of the “[101]” and “[100]” lamellae which are optimal phase boundaries (Bollman and Nissen, 1968), are functions of the differences in the lattice parameters Δa, Δc and $\Delta \beta$ of the host and exsolved phases (e.g. Klein et al., 1996). In particular, the “[100]” lamellar orientation is strongly controlled by the differences in the c lattice parameters, Δc, whereas the “[011]” lamellar orientation is primarily controlled by differences in the monoclinic angle, $\Delta \beta$. Lacking the data on the variation of the lattice parameters with temperature for the Vittinki amphiboles, we cannot estimate quantitatively the exsolution temperatures. However, it is worthy to compare the range of “[011]” lamellar orientations of the studied Mg-Mn-Fe amphibole, 6°, with the “[101]” lamellar orientation of other cummin-
gtonites, 4° (Klein et al., 1996), with exsolution temperatures between 720° and 290°C.

6.2 Mechanism of twinning

The b-component of displacement across the (100) twin plane evidenced by our HRTEM image agrees with the offset along the b-axis in the twinning-assisted transformation from ortho- to clinoamphibole structures (Smilik and Veblen, 1993), which arises from the b/2 component of the n-glade relationship in the (100) plane between the two amphibole lattices. These authors proposed a shearing mechanism similar to that invoked for twinning in pyroxene (e.g. Busek and Iijima, 1974; Smyth, 1974; Coe and Kirby, 1975) (Fig. 13a,b). The mechanism may be construed as a restacking involving half of the octahedral layers; in effect, shearing displaces the oxygen sheets parallel to [001], such that they move from one close packed configuration to the next. In a perfectly packed octahedral layer, the resulting relative displacements of

Fig. 13 a: Schematic mechanism of twin by shearing on (100). The sense of shearing is indicated by the arrows. b: Structure of amphibole C2/m projected down a* showing the proposed atomic displacement. The dominant displacement of oxygens can be visualized as a macroscopic shear of octahedral layers by 1/3[001]. The transformation involves movement of the oxygens from one close packed configuration to the next and has component also along b. Note also the movement of the M2- and M3- cations in one octahedral layer to M1 in the next and vice versa, (modified from Coe and Kirby, 1975).
the oxygen sheets cause the M2 cations in one octahedral layer to move to M1 in the adjacent octahedral layer (in amphibole, also M3 to M1, Fig. 13b) and vice versa (Smyth, 1974), thus yielding a component of displacement parallel to b.

6.3 Implications for the metamorphism

Triple-chain lamellae are uncommon in the Mn-Mg-Fe amphibole from Vittinki, less than 1–2 percent. The stability relations of triple-chain in nature and in general of disordered pyriboles with quadruple, septuple, etc., chains are unknown but several studies (e.g. Nakajima and Ribbe, 1980; Veblen and Buseck, 1981; Akai, 1982; Schumaker and Czank, 1987) have suggested that they form as intermediate phases of the retrograde conversion of amphibole to talc. In any cases, all the natural occurrences of disordered pyriboles are from rocks that have been metamorphosed at $T = 250-600^\circ C$ and moderate pressure, possibly $P \leq 3$ kbars (Veblen and Buseck, 1981; Akai, 1982; Schumaker and Czank, 1987; Akai et al., 1997), Fig. 14. Recently Akai et al. (1997), on the basis of the occurrence of triple chains in supposedly peak-metamorphic orth amphiboles in ultramafic assemblages, have suggested an upper temperature limit of $T = 700^\circ C$ for the formation of disordered pyriboles. However, the matter is controversial because the described post-kyanematic amphibole porphyroblasts with triple chains resemble the randomly oriented anthophyllite nematic lobes overgrowing talc-chlorite assemblages in alpine ultramafic rocks and formed at $T = 600-625^\circ C$ and $P \leq 4$ kbars during alteration at high fCO_2 and low fH_2O (Evans and Tromsdorff, 1974). In addition, the textural relationship of orth amphibole and intergrown sulfides, which was cited as evidence for the formation of the triple chains at peak metamorphism, might instead be the result of sulfide remobilization and replacement of silicates during retrograde metamorphism (e.g. Eckstrand, 1975; Marshall and Mancini, 1994). Thus, the upper limit for triple chain formation is assumed at $T_{max} = 600^\circ C$, Fig. 14, and next we shall discuss the lower temperature limit for retrograde metamorphism of the quartz-Mn-Mg-Fe amphibole veins.

At Vittinki, metasomatic retrogression, involving the gain of Mg and the loss of Ca, Mn and Fe, is implied by topotactic replacement of Mn-Mg-Fe amphibole by talc (above). However, because the talc-isograd is strongly dependent upon XCO_2, it follows that the temperature of talc development will be poorly constrained if the corresponding XCO_2-state is unknown. In the quartz-Mn-Mg-Fe amphibole assemblages at Vittinki, the absence of Mn-bearing carbonates suggests that at peak metamorphism the metamorphic fluids were CO_2-poor (Dasgupta et al., 1988; Gnos et al., 1996). CO_2-poor metamorphic fluids were also present during the replacement of Mn-Mg-Fe amphibole by talc, as no secondary carbonates were formed. This suggestion is compatible with the higher XCO_2 in the adjacent pyroxmangite-rhodonite gneises (in prep.), since Dasgupta et al. (1988) showed that, during metamorphism of Mn-rocks, XCO_2 can vary.

Fig. 14 Estimated metamorphic conditions for the peak (M1) and retrograde (M2) metamorphisms of the quartz-Mn-Mg-Fe amphibole vein at Vittinki, in relation to the stability field of triple chains and disordered pyriboles (adapted from Akai, 1982; Schumaker and Czank, 1987; Akai et al., 1997). The P-T field for the M1 event and the pressure range of 1-2 kbars for the M2 event are based on petrologic and field studies of the regional Svecofennian metamorphism (Korsman, 1988; Kilpeläinen and Rastas, 1992; Kähkönen, 1994; Mancini et al., 1996). The relevant isogrades in the Mn-rich system are from Huebner (1986) and were drawn for the minimum and maximum values of the Mn/Mn+Mg ratios in the Mn-Mg-Fe amphibole formulae (Table 1). Mineral abbreviations: Opx = orthopyroxene, Qtz = quartz, Tlr = Mn-Mg-Fe amphibole, Talc = talc, Ol = olivine.
from place to place and result in the juxtaposition of carbonate-free (low XCO₂) and carbonate-rich (high XCO₂) facies. A low XCO₂ is also indicated in the quartz-Mn-Mg-Fe amphibole veins by the relatively high Ca-content (up to 0.44 Ca apfu) in some of the Mn-Mg-Fe amphibole, as compared with Mn-Mg-Fe amphibole from similar amphibolite-facies assemblages (e.g. Peters et al., 1977). Therefore, if low XCO₂-conditions are assumed, replacement of the Mn-Mg-Fe amphibole by talc at P = 1–2 kbars would have started at temperature of 620–640°C (Huebner, 1986) (Fig. 14), and the paragenesis amphibole + talc constrains the retrogressive M2 metamorphism at T = 500–640°C, these conditions being at or slightly above the upper limit for the formation of non-classic pyribolites (Akai, 1982; Schumaker and Czank, 1987; Akai et al., 1997). We finally note that, whereas an elevated XCO₂ favours the formation of disordered pyribolites (Akai et al., 1997), the inferred low XCO₂ during metasomatic retrogression could also have contributed to the scarcity of triple-chain and disordered pyribolites.

Acknowledgments: This study received financial support from the STA-Japan Science and Technology program. We thank Dr. S. Horiochi (National Institute for Research in Inorganic Materials) for useful comments and discussions. Dr. S. Hagan improved the English of the manuscript.

References

Huhma, H. (1986) Sm-Nd, U-Pb and Pb-Pb isotopic evidence for the origin of the early

Ruotoistenmäki, T. (1996) A schematic model of the plate tectonic evolution of Finnish bed-
Saxén, M. (1925) On mangan-järnlmufynd-
digheten i Vittinki. Fennia 45, 1-41.
ology of triple- and double chain pyriboles from
Orijärvi, southwest Finland. *Amer. Mineral.*
72, 345-352.
mission and analytical electron microscope
study of exsolution microstructures and
mechanisms in the orthoamphibole antho-
phyllite and gedrite. *Amer. Mineral.,* 78, 511-
532.

polymorphism of enstatite. *Amer. Mineral.*
59, 345-352.

Thompson, J. B. Jr. (1978) Biopyriboles and
polysomatic series. *Amer. Mineral.* 63, 239-
249.

Tuukki, P., (1984) Petrography, mineralogy and
geochemistry of quartz-rich metasediments
in the Simpsoi and other Pohjanmaa schist
districts. *Unpubl. M.Sc. thesis, Univ. of
Oulu,* 132 p (in Finnish).

Tornroos, R. (1982) Properties of alabandite:
144, 107-123.

biopyriboles from Chester, Vermont; the crys-
tal chemistry of jimthompsonite, clinojimth-
ompsonite, and chesterite, and the amphibole-
mica reaction. *Amer. Mineral.,* 63, 1053-1073.

pyriboles and sheet silicates in pyroxene and
uralites: intergrowth microstructures and
reaction mechanisms. *Amer. Mineral.* 66,
1107-1134.

Received May 25, 1998
Accepted September 7, 1998

西フィンランドのビチンキ累層中のマンガン・マグネシウム・鉄角閃石のナノスケール構造

F. Mancini・丸茂克美・R. Alviola・神山宣彦・B. Marshall

要 旨

西フィンランドのビチンキ累層 (Vittinki Group) 中の高マンガン質片麻岩に伴われる、広域変成作用
を受けた石英-マンガン・マグネシウム・鉄角閃石脈の観察を高分解能分析電子顕微鏡で観察・分
析した。その結果、脈の温度低下に伴って生成されたと考えられるサブミクロンサイズのマンガン質
アクチノ角閃石の離溶ラメラが見出された。マンガン質アクチノ角閃石の離溶ラメラは (101) 方向と (100) 方
向のものからなり、 (100) ラメラの方向のばらつきは約 11 度、 (101) のそれは約 6 度である。こうした
ラメラ方向のばらつきはすでに単斜角閃石で知られており、ラメラ形成が広範囲の温度域で行われたこと
を示唆している。 (101) 方向のラメラは幅 150-700 ナノメートル、 (100) 方向のものは幅 70-150 ナノメートル
ほどであり、こうした幅の相違は元素の拡散速度が均一でないことを示唆している。

高分解能透過電子顕微鏡の像観察の結果、マンガン・マグネシウム・鉄角閃石には、幅 5-10 ナノメートル (b 軸方向) の三重帯が二重帯の中にまれに含まれる。一方、マンガン・マグネシウム・鉄角閃
から滑石へのトポタキシーは普遍的に認められ、マンガン・マグネシウム・鉄角閃石の化学組成が角閃
と滑石の中間であることと調和している。
Appendix 1 Electron microprobe analysis\(^1\) of natural standards, enstatite, phlogopite, and johannsenite\(^2\)

<table>
<thead>
<tr>
<th>standard</th>
<th>Enstatite (Bumble)</th>
<th>Phlogopite (N. Korea)</th>
<th>Johannsenite</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>18360</td>
<td>11332</td>
<td>15241</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oxides</th>
<th>wt%</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO(_2)</td>
<td>57.05(80)</td>
<td>43.04(100)</td>
<td>46.75(9)</td>
</tr>
<tr>
<td>TiO(_2)</td>
<td>0.02(1)</td>
<td>0.42(2)</td>
<td>0.00</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>0.06(2)</td>
<td>16.58(30)</td>
<td>0.48(10)</td>
</tr>
<tr>
<td>MgO</td>
<td>33.57(5)</td>
<td>27.10(20)</td>
<td>0.51(300)</td>
</tr>
<tr>
<td>FeO</td>
<td>9.35(10)</td>
<td>1.36(14)</td>
<td>4.18(20)</td>
</tr>
<tr>
<td>MnO</td>
<td>0.07(1)</td>
<td>0.03(1)</td>
<td>27.28(20)</td>
</tr>
<tr>
<td>CaO</td>
<td>0.21(5)</td>
<td>0.00</td>
<td>20.37(20)</td>
</tr>
<tr>
<td>Na(_2)O</td>
<td>0.00</td>
<td>0.44(5)</td>
<td>0.00</td>
</tr>
<tr>
<td>K(_2)O</td>
<td>0.01</td>
<td>10.14(80)</td>
<td>0.00</td>
</tr>
<tr>
<td>total</td>
<td>100.345</td>
<td>99.13</td>
<td>99.588</td>
</tr>
</tbody>
</table>

\(^1\)Analysis by JEOL at GSJ, using WDS spectrometer at 200sec\(^3\) counting time.

\(^2\)Average of 3, 4, 5 analysis respectively.

N.B. the standard deviations (in parenthesis), apply to the last digit.
Appendix 2 Plot of intensity of elements (I_x) versus intensity of silica (I_{Si}) for several standards.