地形数値データを基にしたリニアメントの抽出2万5千分の1地形図「余市岳」での応用例一

羽坂俊一* 渡辺 寧* 池田国昭*

Hasaka, T., Watanabe, Y. and Ikeda, K. (1991) Extraction of lineaments based on digital geodetic data —An application for 1/25,000 scale map "Yoichidake"—. Bull. Geol. Surv. Japan, vol. 42 (1), p. 11-17, 6 fig.

Abstract : Extraction of lineaments by digital image processing of geodetic data was carried out. Edge enhancement of shaded relief maps made by ray-tracing method is effective for the extraction of lineaments. This procedure is free from subjectivity of the interpreter, and from restriction of light angles as in air-photo. The lineaments extracted from 1/25,000 scale map "Yoichidake" well reflect geologic structures such as faults, intrusions, alteration zones and calderas.

要 旨

地形数値情報を基にしたコンピュータ画像処理によっ て、リニアメントを抽出することを試みた.光源方向の 異なる陰影図を8葉作成し、エッジ強調処理法によって 谷の部分の抽出を行った後これらを合成した.この結果、 太陽光線が南方より照射されるため東西方向のリニアメ ントが強調される航空写真判読法の欠点や、判読者の主 観を取り除き、地質構造を良く反映したリニアメントを 抽出することができた.

1. はじめに

リニアメントは、地図に表現できる程度の地下構造を 反映しているであろう直線的地形特徴であり(O'leary et al., 1976)、その抽出・解析は地質構造を解明するう えで有効な研究手段である. 一般にリニアメントの抽出 は、航空写真・衛星画像・レーダ画像などから肉眼判読 により行われているが、画像上に認められる多数の線状 模様の中からリニアメントのみを抽出するのは難しく、 その認定は判読者の経験や主観などによって影響を受け る要素が大きい. また、航空写真や衛星画像では太陽光 線の方向、レーダ画像ではレーダビームの照射方向によ り地形の表情が異なるため(Yamaguchi, 1985)、こ の違いによっても判読結果に影響が生じてくる.

光源の照射方向による制約を取り除くには,地形数値 データを用いコンピュータ処理により陰影図を作成し, 航空写真の代わりに用いる方法がある.一方,画像から リニアメントを抽出する手法として,機械的な方法であ るエッジ強調処理技法(松野ほか,1975)を用いれば, 肉眼判読による方法に比べより客観的な結果を得ること ができる.ここでは数値地形データを用いた陰影図によ るエッジ強調処理法で,2万5千分の1地形図「余市岳」 (第1図)を対象としてリニアメントを抽出し,地質構 造との相関性を検討した結果,地質構造解析の補助とし て利用できることが明らかとなった.以下文中で「余市 岳」は2万5千分の1地形図「余市岳」を示す.

2. リニアメント抽出方法

2.1 使用データ

一枚の2万5千分の1地形図で表示されている範囲は、 「余市岳」付近では縦横比が約9:10の長方形である. 本処理法では、1つの格子をより正方形に近づけた方が 誤差を減少できるため、「余市岳」を縦90×横100のメ ッシュ(一辺≒100m)で区切り、各格子点の標高を地 形図から読み取って基礎数値データとした.

2.2 陰影図の作成

メッシュで区切られた各格子を1つの微地形面と考え, この地形面と光源要素として与えた入射光の方向・高度 から反射光強度を計算し,処理画像上の対応点にその強 度に応じた明るさを与えることにより陰影図を作成し

Keywords: lineament, digital data, geodetic data, geographic data, shaded relief map, edge enhancement, Hokkaido, Yoichidake

* 北海道支所

地質調查所月報(第42巻第1号)

第1図 2万5千分の1地形図「余市岳」の位置と範囲

た. これには木下・岡庭(1984)の計算方法を参考にし た. 使用したコンピュータ(NEC PC-9801 RA)は, ディスプレイ上で 16 段階の輝度別表示が可能なので, 黒(0)から白(15)までの16 段階の輝度により反射光 の強度を色調表示した. プリンター出力時には各輝度を それに応じたドットの密度で表現した.

北回帰線以北に位置する日本では、太陽光線は南方か ら照射されるが、この陰影図によれば各方向から照射さ せることが可能である.また、地形の垂直強調率も任意 に設定できるため、比較的平坦な地域での地形変化も強 調して表現することができる.

この方法により,航空写真などで通常見ることができ る南東の光源と,それに直交する北東に光源を設定した 場合の各陰影図を第2図に示す.光源が南東方向にある 陰影図では,朝里岳と余市岳を結ぶ北東-南西方向の尾 根と,白井岳から北東方向にのびた尾根が強調されて表 現されている(山の位置は第1図参照).光源が北東方 向の陰影図では,北西-南東方向に連続する朝里岳,白 井岳,天狗山の尾根が一段と顕著である.このように, 光源方向を変えることにより地形の特徴をよく把握する ことができる.

2.3 エッジ強調処理

航空写真や陰影図では光源に向いた面は明るく,反対 に向いた面は暗くなる.この明暗の境界が尾根や谷にあ たるエッジ部である.このエッジ部が画像上の線状模様 であり,この部分だけを抽出するのがエッジ強調処理で ある.ここではエッジ強調処理法の一つであるレリーフ 法(松野ほか,1975)を用いた.この方法の原理を白黒 写真を例にして説明する.

同一の対象から作成したポジフィルムとネガフィルム を重ね合わせると、両者は各々の白い部分と黒い部分が 反転しているため、均質になり尾根も谷も見えなくな る.これを任意の方向に相対的にずらすと光を透す間隙 部と黒い部分が重複して光を透さない部分が生じる.こ れらの部分がエッジ部である.コンピュータで処理する 場合も出力結果の表示を印画紙からディスプレイに置き 換えるだけで原理は全く同じである.

コンピュータで図を表示する場合は1つの格子を1ド ット(点)で表している.レリーフ法ではポジ・ネガ両 フィルムのずらす量を正確に与えるのは難しいとされて いるが(松野ほか,1975),コンピュータではずらす量 もドット単位で指定できるため簡単かつ正確に処理する

-12 -

地形数値データを基にしたリニアメントの抽出(羽坂 ほか)

第2図 2万5千分の1地形図「余市岳」の陰影図 矢印は光源の方向(左が南東,右が北東)を示す.

ことができる.しかしドット単位でずらすため,その移動方向は北-北東-東-南東-南一南西-西-北西の8方向に限定される.それぞれの方向に光源を設定して作成した陰影図から,エッジ強調処理により谷の部分を抽出した結果を第3図に示す.この方法により抽出されたリニアメントはデジタイザーを使って読み取り緯度・経度として位置をファイル化し,ダイアグラム作成等の基礎データとした.これを基に作成したローズダイアグラムも第3図に並べて示した.

3. 抽出したリニアメントと地質との関係

3.1 リニアメントの合成

航空写真やレーダ画像の経験から予想されたように, 以上の結果では光源方向にほぼ直交する方向のリニアメ ントが強調され,光源の方向と平行に近いものほど抽出 されにくくなっている.この抽出特性から,ある特定方 向のリニアメントのみに注目したい場合には,第3図の 結果をそのまま利用できる.一方,リニアメントの全体 像を把握するためには,これら8葉の図を全て合成する 必要がある.

前述のファイルを用い各方位毎に抽出されたリニアメ ントを1つの図に合成したものを第4図に示す.実際の 合成図作成過程では,XYプロッター出力時に線の色 や種類を変えてマイラーなどの透明紙に描画することに より光源方向が区別でき,地質図や地形図に重ね合わせ、 て使用できる.

3.2 リニアメントの強度

こうして合成されたリニアメントの地質学的意義を評 価する場合に、その長さと頻度に着目することは妥当で あろう. すなわち,同一方向に重複して現れる長いリニ アメントは「強い」リニアメントであり,地質構造を良 く反映しているものと考えられる.第5図は第4図に描 かれたリニアメントのローズダイアグラムである. この 地域から抽出されたリニアメントは,全体としては北 西-南東方向のものが少ないものの,特定の優勢方向は 認められない(第5図,(1)).しかしリニアメント長に よる制約を加えると,第5図(2)や(3)に見られるよ うに,主として(a) E-W,(b) N45°-55°E,(c) N15°-20°E,(d) N10°-15°W,(e) N60°-65°W の5方向のリ ニアメントが卓越して抽出されてくる.そこで次節では リニアメントの方向が特徴的にあらわれ,主要な地質構 造を反映していると推定される2 km 以上のものにつ いて,地質構造との関係を検討する.

3.3 リニアメントと地質の相関

第4図に合成されたリニアメントを整理して地質図上 に重ねあわせたものが第6図である.長さ2km 以上の ものを実線で示してある.

(a) E-W 方向のリニアメント:この方向のリニア メントは「余市岳」北縁の小樽内川最上流部-春香沢川 (川の位置は第1図参照)に認められ(第6図, a),そ の東半部は大豊鉱山を横切る東西方向の断層(第6図, 1; 杉本, 1953)と一致する。

(b) N45°-55°Eのリニアメント:この方向のリニ アメントは主として「余市岳」の北東部の小樽内川支流 朝里岳沢川(第6図, b-①)・逆川(第6図, b-②)・ 滑沢川(第6図, b-③)及びそれらの中間(第6図, b) 等に認められる.これらのうち,朝里岳沢川と逆川のも のは北北西-南南東及び西北西-東南東のリニアメントに 地質調查所月報(第42巻第1号)

第3図 光源の方向に依存するリニアメントとそのローズダイアグラム 矢印は光源からの光りの方向を表わす.各陰影図の示す範囲は第1・2図と同じ.

より連結され,北東-南西方向の長径をもつ環状構造を 形成している(第4図,①).この環状構造の内部には 一回り小さい同様の環状リニアメントも認められる(第 4図,②).この環状構造の中心には白井岳溶岩(第6 図,A; 杉本,1953)が分布している.この溶岩の年代 は白井岳山頂付近で7.6±0.6 Ma(野々口, 1989),北 東端部で6.6±0.6 Ma(渡辺,未公表データ)の値を 示している.朝里岳沢川に沿っては北東-南西方向に朝 日沢鉱化帯(通商産業省, 1972)があり強いリニアメン トと一致している.ブーゲー異常では白井岳付近が相対

第4図 8方向の各光源毎に抽出したリニアメントを全て重ね合わせた図 範囲は第1・2図と同じ、①②は本文3-3参照

2 k m <

e de la companya de l

第5図 抽出したリニアメントの長さ別ローズダイアグラム

— 15 —

地質調査所月報(第42巻第1号)

第6図 地質図上にプロットしたリニアメント 実線は長さが2km以上,点線はそれ未満のリニアメント.記号・番号は本文3-3参照.

的に軽いことを示す(通商産業省,1973). これらのデ ータは,この環状構造が中新世後期の白井岳溶岩の噴出 にともない形成された火山カルデラであることを強く示 唆する.朝日沢鉱化帯はカルデラ壁での変質帯と位置づ けることができる.

(c) N15°-20°Eのリニアメント:この方向のリニ アメントは余市岳火山噴出物(杉本,1953)からなる標 高1488 mの余市岳の西方に認められる.余市岳火山噴 出物は複数の溶岩から構成されており、このリニアメン トは溶岩流の一つの境界を表わしている可能性がある.

(d) N 10°-15°W のリニアメント:この方向のリニ アメントは「余市岳」の東部の小樽内川(第6図, d①)に最も強く表れ、そのほか右股川上流(第6図, d②)にも認められる.小樽内川のものは10.9±0.5 Ma 及び9.5±0.7 MaのK-Ar年代(渡辺ほか、1989; 野々口、1989)の得られている定山渓石英斑岩(第6図, B;西川、1981)の迸入方向、及びその北方に位置する 大豊鉱山の鉱脈の方向(杉本、1953)と一致する.

(e) N 60°-65°W のリニアメント:この方向の強い

リニアメントは左股川上流(第6図, e-①)と右股川流 域(第6図, e-②) に認められる. 左股川には 10.3±0.5 Ma(野々口, 1989)のデイサイト(第6図, C),右股 川には 13.9±0.7 Ma(野々口, 1989)の石英閃緑岩 (第6図, D:通商産業省, 1972)が分布し,これらの 岩体の延びの方向がそれぞれこのリニアメントと一致し ている.

以上に述べたように、今回の方法で得られたリニアメ ントの強いものは様々な時代の迸入岩体、鉱化変質帯、 火山カルデラ、断層の方向・位置と一致することから地 質構造を良く反映していると考えられる.

4. 結 論

地形数値データを基に抽出されたリニアメントについ て、その長さと頻度から「強さ」の認識を行うことによ り、地質構造を反映したものを選び出すことができた. この方法の利点としては、従来の方法に比べ、(1)より 客観的な抽出をすることができる、(2)光源の照射方向 の影響を受けない抽出、あるいは故意に光源方向の影響 を強めた解析もできる,(3) リニアメントの「強さ」を 表現できる,(4) 処理が簡単で地形数値データさえあれ ば短時間でリニアメント図が得られる,などを挙げるこ とができる.特に(2)の利点は,火山カルデラの環状 構造のように従来のリニアメント抽出法では捉え難かっ たものの可視化に有効であると考えられる.欠点として は,地形図から読み取った数値データが基になっている ため,航空写真に比べて解像度が落ちる.しかし先に述 べた利点はその欠点を十分に補うものであり,地質構造 解析に有効であると考えられる.

謝辞 本研究を行うにあたり,有益な助言をいただいた 地質調査所北海道支所太田英順応用地質課長,矢島淳吉 地域地質課長に深く感謝の意を表します.

文 献

- 木下 章・岡庭直久(1984) 新しい地図表現(陰影) の試み.国土地理院時報, no. 60, p. 36-39.
- 松野久也・田島大三・星野一男・山田修兵(1975) ERTS 映像による地質構造解析~エッジ 強調処理 (edge enhancement) 技法の 応用. 地質ニュース, no. 245, p. 1-13.
- 西川純一(1981) "定山渓石英斑岩"とその Sr 同 位体比. 岩鉱, 76, p. 285-293.

- 野々口稔(1989) 地熱開発促進調査の地域レポート 〔12〕豊羽地域. 地熱エネルギー, vol. 14, p. 149-184.
- O'leary, D. W., Friendman, J. D. and Pohn, H. A. (1976) Lineament, linear, lineation: Some proposed new standards for old terms. *Geol. Soc. Am. Bull.*, vol. 87, p. 1463-1469.
- 杉本良也(1953) 5万分の1地質図幅説明書「銭函」 北海道開発庁,63p.
- 通商産業省(1972) 昭和 46年度広域調査報告書 「定山溪地域」、32 p.
- ———(1973) 昭和 47 年度広域調査報告書「定 山溪地域」. 51 p.
- 渡辺 寧・岩田圭示・羽坂俊一(1989) 西南北海道
 定山溪地域の中新統と地質構造.地球科学,
 vol. 43, p. 7-15.
- Yamaguchi, Y. (1985) Image-scale and look-direction effects on the detectability of lineaments in rader images. *Remort Sensing Environ.*, vol. 17, p. 117-127.

(受付: 1990年10月17日; 受理: 1990年11月20日)