²³⁸U-²³⁰Th 放射非平衡系による火山噴出物の年代測定

大村明雄** 河合貞行** 玉生志郎***

OMURA, A., KAWAI, S. and TAMANYU, S. (1988) Dating of volcanic products by the radioactive disequilibrium system between ²³⁸U and ²³⁰Th. *Bull. Geol. Surv. Japan*, vol. 39 (9), p. 559-572.

Abstract: The radioactive disequilibrium system between ²³⁸U and ²³⁰Th was observed in some mineral phases of six volcanic products. Four samples of them are the important marker-tephras which provide a certain datum plane in Upper Pleistocene Systems of Japan. As the results of dating by internal isochrons using the (²³⁸U/²³²Th)-(²³⁰Th/²³²Th) diagram, ²³⁸U-²³⁰Th dates of 35 ± 8 ka, 43 ± 8 ka, 80 ± 2 ka, 82 ± 5 ka, 94 ± 8 ka and 218 ± 26 ka, were determined for Handa Pyroclastic Flow, Daisen-Kurayoshi Pumice (DKP), Aso-4 Pyroclastic Flow (Aso-4), Ontake I Pumice (Pm-I), Tateyama D Pumice (DPm), and Yamakawa Tuff Breccia, respectively.

Mineral of titanomagnetite was confirmed to be the most appropriate phase in this method for dating, as pointed out by CONDOMINES *et al.* (1982). It can be used also as different subsystems separated in each grain-size fraction (*e.g.*, 100-200 mesh, 200 mesh-20 micron and 20-8 micron, respectively).

The initial ²³⁰Th/²³²Th activity ratio for Pm-I sample were estimated, from the coordinates of an intersection of the internal isochron and the equiline, to be 0.090 ± 0.018 . This exceptionally low value must be interpreted by the further study on uranium-series disequilibrium in others derived from the Ontake Volcano.

1. まえがき

一次天然放射性核種の一つ²³⁸U ($T_{1/2}$ =4.468×10⁹ 年)は、ウラン壊変系列(あるいは、4n+2系列とも 呼ばれる)の親核種として α 粒子や β ⁻ 粒子を放出し ながら途中種々の放射性核種に壊変していき、最終的に 安定な²⁰⁶Pb となる.この壊変系列中には、半減期の 長さの点からみて、親核種の²³⁸U 以外にも地質年代測 定に利用できる核種がいくつか含まれている、半減期が 75,200年の α 放射体である²³⁰Th (別名、イオニウム あるいはアイオニウム; Io) もそのうちの一つで、おお よそ1万年から20-30万年程度の年代測定に利用できる. この年代域は、¹⁴C 法の適用限界を越え、K-Ar 法では、 測定可能な年代幅の下限に近いため高精度の年代値を得 るのが非常に難しい範囲といえる.この点、²³⁰Th の地 質年代測定における利用価値は高い、事実、後期更新世

** 金沢大学

*** 地殼熱部

以降の深海底堆積物の堆積速度やマンガン・ノジュール の成長速度推定,あるいはサンゴで代表される化石硬組 織を材料とした礁性堆積物など上部更新統の年代決定に 利用されている.

本研究では、造岩鉱物中の²³⁸U と²³⁰Th の放射非平 衡関係を利用し、更新世後期に形成された火山噴出物の 年代決定を試みた.筆者らのこの試みは、本邦の上部第 四系中で多数認知されている"広域示標テフラ"から高 精度の年代値を得ること、および地熱熱源の評価のため の上部第四系火山岩の年代測定を目的とした研究の一端 である.我が国の上部更新統"広域示標テフラ"の形成 年代に関する研究は盛んに行われてきたが、テフラの構 成物そのものから放射年代値が得られたのは、今までの ところ、この²³⁸U⁻²³⁰Th 法とフィッション・トラック (FT) 法のみといって過言ではない.ほかには、例え ば姶良 Tn 火山灰のように、層位的にテフラの直上な いし直下に含まれる材化石や泥炭などの¹⁴C 年代から 噴出年代が推定されているものもある(町田・新井、1983; など).

²³⁸ U-²³⁰ Th 年代測定法が開発されて以来, 既に 20 年 が経過したにも拘わらず, この方法の適用によって形成 年代が明らかにされた火山噴出物の数は国際的に見ても 合計 50 試料には満たず,決して多いとはいえない. そ れには種々の理由が考えられるが,主な理由の一つとし て,多量の試料を処理して 3 種類以上の鉱物相を分離し, それも微量にしか含まれないウランおよびトリウム同位 体を高精度で分析するために必要な量(数 g)を集めな ければならない煩雑さが挙げられる.

火山噴出物を²³⁸U-²³⁰Th 法で年代測定するのに有効 な鉱物の組み合わせはジルコンと火山ガラスであり,火 山ガラスが取り出せない場合は,紫蘇輝石あるいは角閃 石がそれにかわりうるとの指摘がある(福岡・木越, 1970).とはいえ,本邦の更新統テフラの場合,変質に よって,例えば加水ハロイサイトなどに変化していて, 火山ガラスが使用できないことが多い.一方,ジルコン は,普通の火山噴出物中には極めて少量しか含まれてい ないため,それを分離して分析必要量を集めるには多大 な労力を要する.本研究において筆者らは,分離が比較 的容易で火山噴出物中に普遍的に含まれている鉱物種を 選び,それらから²³⁸U-²³⁰Th 年代を求めることを目指 した.

2. ²³⁸U-²³⁰Th 年代測定法の原理

ウラン壊変系列は、合計 20 種の核種によって構成されており、最終生成核種である²⁰⁶ Pb のほかはすべて 放射性核種である(第1図). 半減期の長さからみれば、 もっとも短い²¹⁴ Po の1.64×10⁻⁴ 秒から²³⁸ U の4.468 ×10⁹ 年までと多様で、年代測定に利用できる程度の半 減期を有するのは、²³⁸ U ($T_{1/2}$ = 4.468×10⁹ 年)・²³⁴ U (2.48×10⁵ 年)・²³⁰ Th (7.52×10⁴ 年)・²²⁶ Ra (1.6× 10³ 年)および²¹⁰ Pb (22.26 年)の5 核種である.

²³⁸Uは α 壊変によって²³⁴Th に,それが β^{-} 崩壊し て²³⁴Pa へと順次壊変していくが,両娘核種とも短命 (それぞれ, T_{1/2}=24.1日と1.17分)なため,短期間の うちに²³⁴Pa の β^{-} 壊変後²³⁴U が生成される.また, ²³⁴U の半減期は²³⁸U のそれに比べてはるかに短く,そ のため,形成後ウラン・トリウムおよびプロトアクチニ ウムに関して閉鎖系を保持してきた岩石や鉱物中では, ²³⁸U と²³⁴U が放射平衡 (²³⁴U/²³⁸U 放射能比=1)に達 していることが多い.このような岩石や鉱物中の,ウラ ン同位体から成長し,その中に蓄積されていく²³⁰Th 量 [²³⁰Ths] は、次の式で表される.

第1図 ウラン壊変系列 Fig.1 Uranium decay series.

定数と岩石あるいは鉱物が形成されてから現在までの経 過時間である. 一方,形成された時すでに取り込まれて いた ²³⁰ Th 量 [230 Th₀] は α 崩壊によって減衰していく が,その様子は,

 230 Thu = 230 Th₀·e^{-λt}(2) と書ける. 両式の 230 Th に記号として付した s および u は,形成された後その岩石や鉱物中で, ウラン同位体 の壊変によって生成されたものか否かを意味している. すなわち, s は U-supported, u は unsupported を 略して示したものである. したがって,形成後,ある時 間を経過している岩石や鉱物中の全 230 Th [230 Th] は, (1)・(2) 両式で表した 2つの異なった起源によるも のの合量といえる. すなわち,

 230 Th = 238 U·(1-e^{- λ t})+ 230 Th₀·e^{- λ t}.....(4) が得られる. さらに,極めて長命(T_{1/2}=1.40×10¹⁰年) なため,数十万年程度では見掛け上ほとんど変化しない ²³²Th で規格化 (normalize)して,

> ${}^{230}\text{Th}/{}^{232}\text{Th} = {}^{238}\text{U}/{}^{232}\text{Th} \cdot (1 - e^{-\lambda t})$ + ${}^{230}\text{Th}_{0}/{}^{232}\text{Th} \cdot e^{-\lambda t} \dots (5)$

が導ける.

²³⁸ U⁻²³⁰ Th 法では,造岩鉱物試料のウランおよびト リウム同位体組成を明らかにして,(4)あるいは(5) 式のいずれかから,岩石形成以降現在までの経過時間 (両式中の t)を求めることになる.しかしながら,tと ²³⁰ Th₀の2つが未知数のため,両式ともtについて直 接解くことができない.

²³²Th と ²³⁰Th が均質に混合されているマグマからい くつかの鉱物が同時に晶出した場合、すべての鉱物中の ²³⁰Th/²³²Th 放射能比〔初生²³⁰Th/²³²Th 比とよび,以 後 (²³⁰ Th/²³² Th)。と記す〕は等しくなる、しかし、鉱 物種ごとでウラン(²³⁸U)とトリウム(²³²Th)の分配係 数が異なることから, 晶出したそれぞれの鉱物中の ²³⁸U/ ²³²Th 放射能比〔以後(²³⁸U/²³²Th)と記す〕は違うはず である. すなわち, 各鉱物が形成された(t=0)当時の それぞれの (²³⁸U/²³²Th) および (²³⁰Th/²³²Th) を第2 図にプロットすると、横軸と平行(水平)な直線上に並 ぶことになる. このとき, $\binom{^{238}\text{U}}{^{232}\text{Th}}$ と $\binom{^{230}\text{Th}}{^{232}\text{Th}}$ の両値が等しい点は、(²³⁰Th/²³⁸U)=1で、放射平衡関 係を意味することから、放射平衡点(あるいは単に平衡 点; equipoint) といい, このような点を結んで得られ る直線は、放射平衡線(equiline)とよばれる、形成後 の時間経過(tの増加)とともに,²³⁰Thu は減衰し、 ²³⁰Ths が各鉱物中に蓄積されていくことは、すでに述

第2図 各造岩鉱物中の時間経過に伴う²³⁸U/²³²Th お よび²³⁰Th/²³²Th 放射能比の変化とそれらによ って定義される等時線(アイソクロン: isochron)

Fig. 2 Changes of ²³⁸U²³²Th and ²³⁰Th/²³²Th activity ratios in rock-forming minerals with the elapse of time and the isochron defined by them.

べた〔(1)・(2)式〕. 一方,²³⁸Uの半減期が4.468× 10⁹年で,²³²Thのそれ同様,非常に長いため,20-30 万年間における(²³⁸U/²³²Th)の変化は,(²³⁰Th/²³²Th) の変化に比べ,ほとんど無視できるほど小さい.すなわ ち,各点の時間経過にともなう見掛け上の変化は,ほと んど²³⁰Thuの減衰と²³⁰Thsの成長のみによるといっ てよい. 第2図中の破線は²³⁰Thuの減衰による(²³⁰Th/ ²³²Th)₀の減少を,点線は²³⁰Thsの成長によって増加 する(²³⁰Th/²³²Th)の変化を表している.

同一時間内では、²³⁸Uを比較的多く取り込んだ鉱物 中における²³⁰Thsの成長量は、少量しかウランを取り 込まなかったものより多い.放射平衡点は、²³⁰Thuの 減衰量と²³⁰Thsの成長量が等しいため、時間経過とと もに移動することはない.第2図中の平衡点より左側に 在る三角形で表した点は、晶出時に²³⁸U との平衡量よ り多く(過剰; excess)の²³⁰Thuを取り込んだ鉱物を 示している.このような鉱物では、晶出後²³⁰Thuの減 衰量が²³⁰Ths成長量より多いため、(²³⁰Th/²³²Th)は 見掛け上太矢印で示したように下向きの方向に移動する. 平衡点より右側にプロットされている四角形で示される 点のように、当初取り込んだ²³⁰Th量が平衡量より少 ない鉱物では、見掛け上、逆(上)向きに移動する.そ して, このように移動した各点は, 一本の直線(等時線; isochron)を定義することになる. 結局, 先に示した(5)式は, (²³⁰U/²³⁰Th)および(²³⁰Th)を

第3図 (²³³U/²³²Th)-(²³³Th/²³²Th) 等時線の勾配とそれから推定される年代との関係 (斜線部は,本方法による最適 年代領域であることを示す)

Fig. 3 The relationship between slope of (²³⁸U/²³²Th)-(²³⁰Th/²³²Th) isochron and date (t) estimated. (Shaded part indicates the most appropriate range dated by the ²³⁸U-²³⁰Th method)

	笛1 表	年代測定試 業	採集地占の地名	 · · ·	経度および高
--	------	----------------	---------	---	--------

Table 1	Place name, l	latitude,	longitude	and	height	of	the	localities	of
	samples date	d.							

		地 点	
武料名	地 名	緯度および経度	高度 (m)
飯田火砕流	大分県玖珠郡九重町中村	33°09.0'N : 131°13.2'E	850
大山倉吉軽石 (DKP)	石川県金沢市野田山	36°31.5'N : 136°40.0'E	. 175
阿蘇-4火砕流(Aso-4)	大分県直入郡萩町馬背野	32°55.7'N : 131°21.0'E	400
御岳第一軽石 (Pm-I)	長野県木曾郡木曾福島町	35°50.1'N : 137°41.8'E	820
立山D軽石 (DPm)	長野県大町市大町スキー場	36°33.1'N : 137°52.2'E	910
山川凝灰角礫岩	熊本県阿蘇郡小国町岳湯	33°09.0'N:131°08.1'E	680

第4図 年代測定試料採集位置図 (それぞれの星印が、A、飯田火砕流;B、大山倉吉軽石;C、阿蘇-4火砕流;D、御岳第1 軽石;E、立山D 軽石;F、山川凝灰角礫岩の試料採集地点を示す.国土地理院発行1/25,000 地形図「湯坪 [A および F]」 ・「金沢 [B]」・「桜町 [C]」・「木曽福島 [D]」・「大町 [E]」の一部を使用)

Fig. 4 Index map showing the localities of samples dated. (Star marks denote locations of Handa Pyroclastic Flow [A], Daisen Kurayoshi Pumice [B], Aso-4 Pyroclastic Flow [C], Ontake Pm-I [D], Tateyama D Pumice [E], and Yamakawa Tuff Breccia [F], respectively: a part of 1:25,000 topo-map of "Yutsubo [A & F]", "Kanazawa [B]", "Sakura-machi [C]", "Kiso-fukushima [D]", and "Omachi [E]", published from the Geographical Survey Institute of Japan.)

ができる.

t=-1/ λ ·ln (1-m) ………(7) 同時に, (²³⁰Th/²³²Th)₀ も,等時線と放射平衡線との 交点座標から推定することができる.以上の²³⁸U-²³⁰Th 法にとっての最適適用年代範囲は,等時線の勾配と年代 値との関係を示した第3図中の曲線の勾配の比較的急な 1-30万年である.

3. 試料および分析方法

本論で取り扱う火山噴出物は,九重火山起源の山川凝 灰角礫岩および飯田火砕流・大山倉吉軽石(略称; DKP, 以下の記述にはこの略称を用いる)・阿蘇4火砕流 (Aso-4)・御岳第一軽石(Pm-I)・立山D軽石(DPm) の6種類である(第1表および第4図).これらのうち, 後4者は,給源火山から数100km離れた広範な地域 にまで分布を認めることができる本邦第一級の広域示標 テフラとして知られている.ここで使用された山川凝灰 角礫岩試料は,太田ほか(1968)によって定義された山 川凝灰角礫岩層最上位の火砕流堆積物である.その他の 火山噴出物については、それぞれの層位や岩石学的特徴 などがすでに詳しく報告されているので各文献を参照し ていただきたい(小野ほか、1977;町田・新井、1979; 町田ほか、1985;小林ほか、1967;中谷、1973など) なお、DKP については、すでに報告した(OMURA、 1986)ものの、分析データの解析に不備があったので、 再計算した結果を改めて報告する.

先述のように,²³⁸ U⁻²³⁰ Th 法では等時線の勾配から 年代値を求めるため,いくつかの鉱物相に関して(²³⁸ U/ ²³² Th) および (²³⁰ Th/²³² Th) を求め,少なくとも3個 以上のデータ点を得る必要がある.本研究では,比較的 分離しやすいことを理由に,主として苦鉄質鉱物を選ん だ.中でも,とくに磁鉄鉱については,CONDOMINES and ALLEGRE (1980) や CONDOMINES *et al.* (1982) の例にならい,粒径別に分けて分析を行った(第2表).

筆者等が用いているウランおよびトリウム同位体分析 のための試料処理方法を,フローチャートの形で示した が(第5図),その詳細については,大村(1988)を参 照していただきたい.試料処理の最終段階で,ウランと

Sample Name	Number of Phases Analyzed	Phases Analyzed*
Handa P. F.	5	Whole Rock • Hornblende • Magnetite 1 • Magnetite 2 • Magnetite 3
DKP	4	Hornblende • Hypersthene • (Glass) • Total Mafic Minerals (Ho + Hy + Magnetite + Biotite)
Aso-4 P.F.	3	Glass • Hornblende • Magnetite
Pm-I	3	Hornblende • Magnetite A • Magnetite B
DPm	6	Whole Pumice • Hypersthene • Hornblende Magnetite A • Magnetite B • Magnetite C
Yamakawa T. B.	6	Whole Rock • Hypersthene • Hornblende • Magnetite 1 • Magnetite 2 • Magnetite 3

	第2表	§ 内的等時線を得るために使用された鉱物相	
Table 2	Mineral p	phases used for definition of the internal isoch	ron.

* 1, 2 and 3 mean grain size of 100 to 200 mesh, 200 mesh to 20 micron and 20 to 8 micron, respectively. A, B, and C, 32 to 60, 120 to 250 and less than 250 mesh, respectively.

Sample Powder	
1	
Treatment with HF and HClO ₄	
Ĵ.	
Dissolution in Dil. HCl	
Ĵ.	
Addition of ²³² U- ²²⁸ Th Spike Solution	
Q	
Hydroxide Precipitation with NH ₄ OH	
Precipitate Supernatant	
l .	
Dissolution in 8 M HC1	
0	
Fe Extraction with Isopropyl Ether	
	,
Anion Exchange	Elution with 0.1 M HCl
1	1
Dilution to 4 HCl	Fe Extraction with DIBK
1	
Cation Exchange	U Extraction with TIOA
1	1
Elution with 0.5 M Oxalic Acid	Backextraction into 0.1 M HC1
0	Į.
Decomposition of Organic Matter	Extraction with TTA
1	
Extracation with TTA	Palting
1	II
Plating	
THORIUM	URANIUM
L	L

- 第5図 ウランおよびトリウム同位体分析のための化学 処理方法
- Fig. 5 The method of chemical treatment for isotopic analysis of uranium and thorium.

トリウム同位体を別々に TTA(テノイル三フッ化アセ トンの4モルベンゼン溶液)中に抽出するが,それを, ホットプレート上であらかじめ温めておいた直径1イン チのステンレス金属円板上に注意深く滴下して蒸発乾固 する.そして,最後に,ガスバーナー炎で不要な有機物 を焼却後測定線源として用いる.

各同位体量および放射能比を a スペクトル法によっ て測定した. この方法では、ウラン同位体比 (²³⁴ U/²³⁸ U 放射能比) が直接測定でき、²³⁸ U と ²³⁴ U との放射平衡 関係という ²³⁸ U⁻²³⁰ Th 法における必要条件を各相が満 足するか否かを直接知ることができる利点がある. ウラ ンおよびトリウムの定量や (²³⁸ U/²³² Th) 値決定のため の化学収率用トレーサーとして、英国 AERE Harwell 研究所で製造され各研究機関に配布された ²³² U⁻²²⁸ Th スパイク溶液 (IVANOVICH *et al.*, 1984) を用いた. なお、本研究では年代値の計算などのために、Uranium-Series Intercomparison Project(略称 USIP: IVANOVICH and WARCHAL, 1981) で申し合わされた 以下の定数を用いている.

²³⁸U : $T_{1/2} = 4.468 \times 10^9 \text{y}, \quad \lambda = 1.551 \times 10^{-10} \text{y}^{-1}$

²³⁴ U	: $T_{1/2} = 2.48 \times 10^5 \text{y}$,	$\lambda = 2.79 \times 10^{-6} y^{-1}$
²³² U	: $T_{1/2} = 7.2 \times 10^1 y$,	$\lambda = 9.6 {\times} 10^{-3} {y}^{-1}$
²³⁰ Th	: $T_{1/2} = 7.52 \times 10^4 y$,	$\lambda = 9.22{\times}10^{-6}{\rm y}^{-1}$
²²⁸ Th	$: T_{1/2} = 1.913 y$,	$\lambda = 3.623 \times 10^{-1} y^{-1}$
224 Ra	: $T_{1/2} = 3.64 days$,	$\lambda = 1.90{\times}10^{-1} d^{-1}$

4. 結果および考察

ウランおよびトリウム同位体に関する分析結果を第3 表にまとめて示す.表中の各値に付した誤差は,計数値 から計算された統計誤差 (1σ) である.

4.1 ウラン同位体比

火山噴出物の²³⁸U-²³⁰Th 年代を得るために,²³⁸U と ²³⁴U の間に永続平衡 (secular equilibrium) が成り 立っているとともに,U/Th 比の異なる3種類以上の 相を用いる必要があることはすでに述べた.その点につ いては,第3表中の²³⁴U/²³⁸U 放射能比値が1.11± 0.10-0.921±0.071 であることから,分析された全相 が両ウラン同位体の永続平衡に関する条件をほぼ満たし ているといえる.このことを確認後,各火山噴出物ごと に,試料中の (²³⁸U/²³²Th) および (²³⁰Th/²³²Th) 値を プロットし,それぞれのデータ点に基づいて内的等時線 (internal isochron) を求めた (第6・7・8・9・10・ 11 図).

4.2 統計誤差の取り扱い

本年代測定法においては、各データ点から内的等時線 の勾配およびそれと放射平衡線との交点座標などを求め なければならないが、このとき問題になるのは、各分析 値に伴う統計誤差の取り扱いである.当然、得られる年 代値は、これらの計数誤差に起因する不確かさを伴うか らである.

複数のデータ点を直線回帰するには、一般に最小二乗 法が利用されている.ただし、一般に用いられる最小二 乗法では、x・y 2変数のうち、一方には誤差を伴わな いものとして取り扱うことが多い.しかしながら、第6-11 図に示した通り、本年代測定法において直線回帰す べきデータ点は、実際上両軸方向に誤差を伴っている. このことを考慮した、x・yの両変数が誤差を含む場合 の最小二乗法は、小嶋・斎藤(1978)の中で小嶋が概説 しているように、YORK (1969)などによって開発され てきた.

本研究でも、その YORK 法を使用し、第 6-11 図に 示した内的等時線の勾配と(²³⁰ Th/²³² Th) 軸切片座標を 計算した.しかし、等時線の縦(⁸⁷ Sr/⁸⁶ Sr) 軸切片がそ のまま初生⁸⁷ Sr/⁸⁶ Sr 比を意味する Rb-Sr 法とは異な り、²³⁸ U-²³⁰ Th における縦(²³⁰ Th/²³² Th) 軸切片は、

-565-

地質調查所月報(第39巻第9号)

第3表 各火山噴出物構成鉱物中のウランおよびトリウム同位体組成

Table 3 Isotopic composition of uranium and thorium in minerals forming each volcanic products.

Sample*	^{2 3 8} U	^{2 3 2} Th	²³⁴ U/ ²³⁸ U	²³⁰ Th/ ²³² Th	²³⁸ U/ ²³² Th
	(ppm)	(ppm)	(act	ivity r	atio)
	<u></u>	🕻 Handa Pyro	clastic Flow 】	·····	
Whole Rock	$0.464 {\pm} 0.016$	1.89 ± 0.05	1.00 ± 0.05	0.794±0.031	$0.764 {\pm} 0.034$
Hornblende	0.104 ± 0.006	0.516 ± 0.024	1.03 ± 0.08	$0.770 {\pm} 0.052$	0.625 ± 0.046
Magnetite 1	0.343 ± 0.013	1.06 ± 0.05	1.08 \pm 0.05	0.915±0.058	1.00 ± 0.06
Magnetite 2	0.364±0.014	1.31 \pm 0.05	1.00 ± 0.05	0.843 ± 0.048	0.865±0.049
Magnetite 3	$0.854 {\pm} 0.029$	5.20 \pm 0.14	0.982 ± 0.041	0.735 ± 0.027	0.511 ± 0.022
		🕻 Daisen Kura	yoshi Pumice]		
Whole Pumice	$1.40~\pm~0.03$	7.89 \pm 0.12	1.02 \pm 0.03	$0.933 {\pm} 0.018$	0.550 ± 0.016
Hypersthene	0.071 ± 0.004	0.295 ± 0.012	1.00 \pm 0.07	0.975±0.061	0.747 ± 0.034
Hornblende	0.073 ± 0.004	$0.263 {\pm} 0.012$	1.01 \pm 0.08	1.04 \pm 0.06	0.861 ± 0.064
Т. М. Т.	$0.112 {\pm} 0.007$	$0.742 {\pm} 0.028$	0.994 ± 0.092	0.896±0.048	0.468 ± 0.036
		🕻 Aso-4 Pyro	clastic Flow 🕽		
Glass	$4.14~\pm~0.13$	14.9 \pm 0.2	0.971 ± 0.028	0.883±0.016	0.861 ± 0.029
Hornblende	0.329 ± 0.014	0.853 ± 0.032	1.03 \pm 0.06	1.06 \pm 0.05	1.20 \pm 0.07
Magnetite	0.451 ± 0.020	1.32 \pm 0.04	1.00 \pm 0.06	0.988 ± 0.036	1.06 \pm 0.06
		🕻 Ontake	Pm – I 】		
Hornblende	0.258 ± 0.019	5.08 \pm 0.12	0.958 ± 0.095	0.126 ± 0.008	0.158 ± 0.012
Magnetite A	0.944 ± 0.029	1.51 ± 0.07	0.986±0.037	1.03 ± 0.06	1.94 ± 0.11
Magnetite B	1.40 ± 0.04	2.98 \pm 0.12	0.995 ± 0.032	0.837 ± 0.045	1.46 ± 0.07
		🕻 Tatey	ama DPm]		
Whole Pumice	$\textbf{2.42}~\pm~\textbf{0.07}$	14.9 ± 0.2	0.994 ± 0.030	0.665 ± 0.015	0.507 ± 0.017
Hypersthene	0.154 ± 0.010	0.821 ± 0.048	1.05 ± 0.09	0.698 ± 0.061	0.583 ± 0.052
Hornblende	0.243 ± 0.014	1.09 ± 0.06	0.920 ± 0.071	0.788 ± 0.061	0.691 ± 0.054
Magnetite A	$0.313 {\pm} 0.012$	1.35 \pm 0.05	1.08 ± 0.06	0.787 ± 0.044	0.721 ± 0.040
Magnetite B	0.221 ± 0.014	0.910 ± 0.050	0.963 ± 0.086	0.798±0.063	0.754 ± 0.064
Magnetite C	0.191 ± 0.016	0.990 ± 0.078	$1.09~\pm~0.13$	0.727±0.086	0.601 ± 0.070
		🕻 Yamakawa T	uff Breccia 】		
Whole Rock	1.43 \pm 0.05	7.24 \pm 0.14	1.01 \pm 0.04	0.637 ± 0.017	0.615 ± 0.024
Hypersthene	0.194 ± 0.013	1.06 ± 0.04	$1.11~\pm~0.10$	0.602 ± 0.035	0.571 ± 0.045
Hornblende	0.0771 ± 0.0080	0.448±0.025	$1.01~\pm~0.15$	0.552 ± 0.050	0.535 ± 0.063
Magnetite 1	0.290 ± 0.017	$0.823 {\pm} 0.051$	1.02 \pm 0.08	1.06 \pm 0.09	1.09 \pm 0.09
Magnetite 2	0.360 ± 0.020	1.21 \pm 0.05	0.964 ± 0.071	0.930 ± 0.057	0.927 ± 0.066
Magnetite 3	0.599±0.026	$\textbf{2.08}~\pm~\textbf{0.09}$	0.989±0.054	0.870 ± 0.050	0.894±0.054

* Magnetite 1, 2, and 3 are 100 to 200 mesh, 200 mesh to 20 micron, and 20 to 8 micron in grain size, respectively. Magnetite A, B and C, 32 to 60, 125 to 250, and less than 250 mesh, respectively. T. M. T. means Total Mafic Minerals.

²³⁸ U-²³⁰ Th 放射非平衡系による火山噴出物の年代測定(大村 ほか)

地質調査所月報(第39巻第9号)

第9図 御岳第1軽石 (Pm-I) の内的等時線とその年代および初生 ²³⁰ Th/²³² Th 放射能比 Fig. 9 Internal isochron of the Ontake-I Pumice (Pm-I), and its date and initial ²³⁰ Th/²³² Th activity ratio.

第11図 山川凝灰角礫岩の内的等時線とその年代および初生²³⁰Th/²³²Th 放射能比

Fig. 11 Internal isochron of the Yamakawa Tuff Breccia, and its date and initial ²³⁰ Th/²³² Th activity ratio.

-569-

先記(5)式中の右辺第2項、すなわち [230 Th $_0$ / 232 Th· e^{- λ}] を意味し、(230 Th/ 23 Th) $_0$ そのものを示している わけではない.そのため、まず YORK 法で等時線の勾配 を計算し、(7)式によって年代(t)を求めた後、次の式で 初生 230 Th/ 232 Th 比を得た.

以前筆者の一人大村が報告した DKP に関する年代 値(OMURA, 1986)の計算においては,上のような各 測定点が有する誤差についての評価が不十分だったので, 再計算を行い,その結果,第7図のような結果を得た. そこで,先に報告した DKP に関する年代値46,000± 3,000年を43,000±8,000年に,1.11とした(²³⁰Th/ ²³²Th)。値を1.10±0.05 に訂正する.

他の試料から求めた年代値は,第6-11 図中に示した 通りであるが,山川凝灰角礫岩のすべてのデータ点は, 誤差の範囲内で放射平衡線(equiline)上にのるともい える(第11図).したがって,山川凝灰角礫岩は²³⁸U-²³⁰Th 法の測定限界を越える,いいかえれば30万年よ り古いものなのかもしれない.しかし,比較的大きい誤 差を伴うとはいえ,YORK 法で内的等時線が定義でき たので,本論では,一応その勾配に基づいて計算した年 代値,218,000±26,000年(第11図)を山川凝灰角礫 岩層最上部火砕流堆積物の形成年代とする.

ところで,最小二乗法による直線回帰においては,

- 1) 二つの変量に関する相関関係の程度,
- 2) データ点個々の誤差の大小,
- 3) データ点の数,

などが、求める直線の信頼性を支配する.上述の YORK 法においても、このことは十分考慮されている.例えば、 個々のデータ点が伴う誤差の大きさについて、各データ 点に含まれる測定誤差の逆数の二乗を重み(ω)として 計算処理を行うようになっている.すなわち、比較的誤 差の小さいデータ点が相対的には重く扱われることにな る.第 6-11 図中の推定年代値に付したように、本研究 で得た²³⁸ U⁻²³⁰ Th 年代値に付した誤差は決して小さく ない.このことは、試料ごとで原因が異なるものの、

1) 求められた各データ点の相関関係が必ずしも十分強 くなかったこと,

2) ウランおよびトリウム含有量が少ないため, *α* スペ クトル法による測定方法では,結果的に各相の統計誤差 を十分小さくすることができなかったこと,

3) 同位体組成を求めたデータ数が多くなかったこと, のいずれかに起因している. 今後は, 測定誤差の小さい 年代値を得るため、これらの原因をできるだけ取り除く 努力が必要と思われる.

4.3 磁鉄鉱の粒径区分による同位体分析

誤差についての検討結果から、本研究では、できるだ け多くのデータ点によって内的等時線を定義することと, CONDOMINES and ALLEGRE (1980) P CONDOMINES et al. (1982) などの方法の有効性を検討する目的で, 磁鉄鉱をいくつかの粒径ごとに分け、それぞれを別の相 として扱うことを試みた、第2表のように、飯田火砕流 および山川凝灰角礫岩については、彼らと同じ粒径範囲 で磁鉄鉱を分け、また Pm-I と DPm 両試料からは、 より粗粒な磁鉄鉱を分離することができたので、別の粒 径範囲に分けて同位体分析を行った. 結論的には, いず れの場合も、異なった粒径域の磁鉄鉱が見掛け上それぞ れ独立した相として、(²³⁸U/²³²Th)・(²³⁰Th/²³²Th) ダ イアグラム上にプロットされたことから、今後上記目的 のために、この方法は極めて有効であることが確認され た、したがって、様々な粒径の磁鉄鉱を含む火山岩試料 については、他の鉱物相を全く使用せず、磁鉄鉱のみで 十分高い精度の²³⁸ U-²³⁰ Th 年代値を得ることができる 可能性もある、磁鉄鉱は、ほとんどの火山岩中に含まれ、 しかも強い磁性を有することから他の鉱物に比べはるか に分離しやすい. この点からも,磁鉄鉱が,火山岩類の 本年代測定法にとって最適の鉱物であるといえる.

4.4 火山灰試料

放射年代測定において,ある試料の形成年代を知るた めには,形成されてから現在に至るまでの間に変質した 材料を使用することはできない.火山灰試料は,一般に 変質作用を被りやすい非晶質のガラス物質が主要構成物 であることが多いことから,この点深刻である.とくに, 本研究で取り扱った Pm-I 試料については,実体顕微 鏡による観察で変質や表面付着物が認められない比較的 大きい(直径 2-3 cm 以上の)軽石のみを選び,その中 から各相を分離する一方,それ自身を全岩試料として分 析した結果は,

 $(^{230}\,{\rm Th}/^{232}\,{\rm Th})=0.~576\pm\,0.~014$

 $(^{238}U/^{232}Th) = 0.502 \pm 0.019$

であった. これらの値は, 全岩試料が第9図中の内的等 時線から大きく外れる位置にプロットされることを意味 している. この原因を明らかにするため, とくに粒径2 µ以下の部分を沈降法で抽出し, 粉末および定方位薄 片の両者を X 線分析によって検討したところ, 加水ハ ロイサイトの存在が確認され, ガラスの一部が二次的に 変質されていることが明らかになった. 一方, 第7図に 示した DKP 試料の場合, 全岩に関するデータ点が, 誤差の範囲内で等時線上にのるが,軽石表面に少量なが ら泥質物の付着が認められ,それらのすべてを除去でき なかったので,このデータ点は等時線を得るための直線 回帰,すなわち年代値の計算には用いなかった(OMURA, 1986).このように火山ガラスについては,変質や異質 物付着の問題があるため,Aso-4中のガラス試料の準 備においては細心の注意を払い,32 mesh 以上の比較 的粗い粒子のみを選んで,一旦 100 mesh 以下の粒径 に粉砕し,その中から 200 mesh 以下のものを除き, さらに十分な超音波洗浄の後,分析を行った.その結果 が第8 図である.

4.5 初生²³⁰Th/²³²Th比

火成岩の²³⁸U-²³⁰Th 年代測定においては、液相とし てのマグマから岩石が形成された(固化した)年代を求 めることになる. 同時に, 内的等時線と放射平衡線の交 点座標から、各造岩鉱物を晶出させたマグマ中の²³⁰Th/ ²³²Th 比〔先の (²³⁰Th/²³²Th)₀〕を推定することができ る. この (²³⁰Th/²³²Th)。値を用いて、例えば CONDO-MINES et al. (1982) のように、イタリーの Etna 火山 におけるマグマの時間に伴う組成変化を論じた研究例も ある、ここでは、年代測定された試料数も少なく、しか も特定の火山から系統的に噴出物を採集していないので、 そのような議論はできない、ただ、第9図に示したよう に、Pm-Iに関して推定された (²³⁰Th/²³²Th)。が異常 に低いことを強調しておきたい、これまでに報告された 約30個の火山岩試料についての同比に関する推定値は、 CONDOMINES et al. (1982) によって Etna 火山起源 の熔岩試料から得られた 0.80 ± 0.01 を最低とし、最高 値はコスタリカの Irazu 火山からの 1.30±0.08 であ る (ALLEGRE and CONDOMINES, 1976). これらの値 と比べてみても、今回 Pm-I 試料から得られた 0.090± 0.018 という値はいかに低いかが分かる. 今後 Pm-I と 同じ御岳火山起源の他の軽石層についても同比を求め, この異常値の原因を考究する必要がある.

5. ま と め

本研究では6種類の火山噴出物について,構成物中の ²³⁸ U と ²³⁰ Th 間の放射非平衡関係を基に,形成年代の 推定を試みた.その結果,飯田火砕流は35,000±8,000 年前,大山倉吉軽石は43,000±8,000年前,阿蘇-4火 砕流は80,000±2,000年前,御岳第一軽石は82,000± 5,000年前,立山 D 軽石は94,000±8,000年前,そし て,山川凝灰角礫岩層最上部の火砕流堆積物は218,000 ±26,000年前に,それぞれ形成されたという結論を得 た.

これら年代値の信頼性を評価するには、全く異なった 壊変系を利用する方法によって同一試料を独立に年代測 定し、互いに比較することが最良策である、その点、数 万年の放射年代値については、フィッション・トラック (FT)年代値との比較が現在のところ最適であろう、上 記6試料のうち, Aso-4 について, すでに玉生(1979) が 84,000 ± 25,000 年の FT 年代値を報告している. そ れと、今回得られた 80,000 ± 2,000 年の²³⁸ U-²³⁰ Th 年 代値は矛盾しない、他の方法による放射年代値が得られ ていない試料の²³⁸U-²³⁰Th 年代値は、少なくとも、形 成年代が知られている示標テフラとの層位関係と矛盾し ないものでなければならない. 今回検討した試料のうち 山川凝灰角礫岩以外は、町田(1987)により相互の層位 関係が明らかにされているが、その上下関係と本研究で 得られた年代の新旧関係は矛盾しない。ただし、飯田火 砕流は、久住軽石1と同一層と解釈している。

ここで取り扱った²³⁸U-²³⁰Th 法は,まだ解決されな ければならない種々の問題が残されているとはいえ,後 期更新世に形成された火山岩類の年代測定にとって有効 な方法の一つであることは確かである.そこで,本論を 終えるにあたり,この方法を適用するにあたっての前提 条件,必要条件および十分条件をまとめておきたい. <本方法適用のための前提条件>

²³⁸U⁻²³⁰Th 法によって年代測定される火山噴出物は,

1) ²³⁰Th/²³²Th 比が均質なマグマ起源であること.

2) 求められる年代値(例えば,数万年)に対して無視 できるほど短期間(できれば数100年以内)に晶出した 構成物から成ること.

3) すべての構成物中で,²³⁸U と²³⁴U の間に放射平衡 関係が成り立っていること.

4) 形成されてから現在に至る間,変質されることなく ウランおよびトリウム同位体に関して閉鎖系として保存 されてきた試料であること.

5) 外来結晶など,異質あるいは類質物を含まないこと. <信頼性の高い年代値を得るための必要条件>

 できるだけ多種類の鉱物相から構成されていること.
 各相中の²³⁸U/²³²Th および²³⁰Th/²³²Th 放射能比 測定において,測定誤差を最小にする必要があること.
 <信頼性の高い年代値を得るための十分条件>

全岩中の²³⁸U/²³²Th および²³⁰Th/²³²Th 放射能比
 に関する測定値が,各相の分析によって得られたデータ
 点の回帰直線(内的等時線)と矛盾しないこと.

謝辞 御岳第一軽石および立山 D 軽石の採集に際して は、東京都立大学理学部町田 洋教授に、また、飯田火

地質調査所月報(第39巻第9号)

砕流および阿蘇4火砕流の採集に際しては、環境地質部 小野晃司部長に、各々御教示いただいた.金沢大学理学 部中村健二技官には、本文中の図を作成していただいた. 環境地質部小野晃司部長ならびに技術部金井 豊氏には、 粗稿の校閲をお願いし有益な御助言をいただいた.本論 を終えるにあたり、以上の方々に深く感謝の意を表する. なお、本研究の一部で、文部省科学研究費補助金〔一般 研究(B);課題番号 62470047〕および通産省工業技術 院指定研究新エネルギー技術開発予算を使用した.

文 献

- CONDOMINES, M. and ALLEGRE, C.J. (1980) Age and magmatic evolution of Stromboli volcano from ²³⁰Th-²³⁸U disequilibrium data. *Nature*, vol. 288, p. 354-357.
- , TANGUY, J.C., KIEFFER, G. and ALLEGRE, C.J. (1982) Magmatic evolution of a volcano studied by ²³⁰Th⁻²³⁰U disequilibrium and trace elements systematics : the Etna case. *Geochim. Cosmochim. Acta*, vol. 46, p. 1397–1416.
- 福岡孝昭・木越邦彦(1970) 火山噴出物のイオニウム 年代測定.火山, 2nd Ser., vol. 15, p. 111-119.
- IVANOVICH, M. and WARCHAL, R.M. (1981) Report on the Second Intercomparison Project Workshop, Harwell, 23 to 24 June 1980. 54 p., AERE-R 10044, Harwell, Oxfordshire.
 - ———, KU, T.L., HARMON, R.S. and SMART, P.L. (1984) Uranium Series Intercomparison Project (USIP). Nucl. Instr. Methods Phys. Res., vol. 223, p. 466– 471.
- 小林国夫・清水英樹・北沢和男・小林武彦(1967) 御 岳第一浮石層.地質雑, vol. 73, p. 291-308.

- 町田 洋(1987) 広域火山灰について(コメント). 第四紀研究, vol. 25, p. 265-268.
- ・新井房夫(1979) 大山倉吉軽石層一分布の
 広域性と第四紀編年上の意義.地学雑誌,
 vol. 88, p. 313–330.
- ーーーー・ーーー(1983) 広域テフラと考古学. 第 四紀研究, vol. 22, p. 133-148.
- ・ 一・ 百瀬 貢(1985) 阿蘇4火山灰
 一分布の広域性と後期更新世示標層としての
 意義一.火山,2nd Ser., vol. 30, p. 49-70.
- 中谷 進(1973) 立山火山の地質学的岩石学的研究.金沢大学理学部修士論文,118 p., (MS.).
- 小嶋 稔・斎藤常正(1978) 岩波講座 地球科学 6. 地球年代学, 255 p., 岩波書店, 東京.
- OMURA, A. (1986) Age estimation of the Daisen Kurayoshi Pumice using the ²³⁰Th-²³⁸U radio-active disequilibrium system. *Quaternary Res.* (Daiyonkikenkyu), vol. 25, p. 129-132.
- 大村明雄(1988) ウラン系列年代測定法.地質学論集, no. 29, p. 107-127.
- 小野晃司・松本径夫・宮下三千年・寺岡易司・神戸信 和(1977) 竹田地域の地質.地域地質研究報 告(5万分の1地質図幅),地質調査所,145p.
- 太田良平・松野久也・西村嘉四郎(1968) 熊本県岳の 湯および大分県大岳付近地質調査報告.地調 月報, vol. 19, p. 481-486.
- 玉生志郎(1979) ガラスによるフィッション・トラッ ク年代測定. 放射線の固体飛跡検出法短期研 究会報告,京都大学原子炉実験所,KURRI-TR-190, p. 43-44.
- YORK, D. (1969) Least squares fitting of a straight line with correlated errors. *Earth Planet. Sci. Lett.*, vol. 5, p. 320-324.

(受付:1988年3月29日;受理:1988年5月30日)