白亜紀-古第三紀花崗岩類に伴う鉱床の鉱化年代-1987年における総括

石原舜三* 柴田 賢** 内海 茂**

ISHIHARA, S., SHIBATA, K. and UCHIUMI, S. (1988) K-Ar ages of ore deposits related to Cretaceous -Paleogene granitoids-Summary in 1987. Bull. Geol. Surv. Japan, vol. 39 (2), p. 81-94.

Abstract : Mica minerals (mostly muscovite) and rocks from 11 ore deposits and mineralized areas were dated by K-Ar method. All the available data indicating mineralization age in the Cretaceous-Paleogene granitic terrain are summarized. The results indicate that (i) the mineralization ages are similar to the K-Ar ages of nearby granitoids, even on Au-Ag and Pb-Zn ore deposits, suggesting their close genetic relationship to felsic plutonic and subvolcanic activities; (ii) magnetite-series ore deposits are younger than ilmenite-series ore deposits in the Chu-goku-western Kinki district and Uetsu district, but both have the same age in northern Kyushu and Chubu districts ; and (iii) an Eocene copper mineralization was confirmed in the Kitakami Mountains.

1. まえがき

西南日本内帯の主要なモリブデン,タングステン鉱床 について,筆者らはかつて鉱化年代の概要を明らかにし たことがある(SHIBATA and ISHIHARA, 1974; ISHIHARA, 1978). その結果は次のようにまとめられる.

- (i)モリブデン鉱床は65-47 Ma を示し、タングステン 鉱床の96-66 Ma とくらべて明らかに若い.
- (ii)それぞれの鉱化時期において、鉱業的に重要な鉱床 はモリブデンⅠ期、Ⅱ期、タングステンⅠ、Ⅱ期と 分けられ、それぞれ2つのピークを持つ。

その後,他研究者や金属鉱業事業団の広域調査などに よって多数のデータが報告された.ここでは筆者らの追 加測定結果を報告すると共に,これまでに報告された年 代データについて論評し,日本の白亜紀-古第三紀鉱床 の鉱化年代について,現時点における総括を試みる.

2. 地質概要と年代測定試料

(1) 佐賀県杉山鉱床 (Be)

佐賀県,佐賀市北西方20kmの背振山塊の杉山付近には ペグマタイト性緑柱石-石英脈鉱床があって,第二次大 戦中に本邦で唯一の稼行実績を持つ.鉱床は母岩の佐賀 両雲母花崗岩と同時代と思われるが,これまで年代測定 は実施されていない.

鉱床の位置を第1図に示す.鉱床付近には花崗岩類が 広く分布し変成岩類などは分布しない.背振山塊では一 *元鉱床部 **技術部 般に磁鉄鉱系花崗閃緑岩類が卓越するが(石原ほか, 1969),杉山付近では佐賀花崗岩体の北西周縁部に相当 するチタン鉄鉱系花崗岩が分布する.

杉山付近の佐賀花崗岩は北部で一部に片状構造を持つ 黒雲母花崗岩,南部で白雲母-黒雲母花崗岩である(第 1図).後者で白雲母が卓越する場合には柘榴石やモナ ズ石が微量造岩鉱物として含まれる.鉱床は主として白 雲母-黒雲母花崗岩を母岩とし,一部の小鉱床はその周 辺に認められる(第1図).

鉱床はペグマタイト鉱床と石英脈鉱床とからなり,前 者が石英,カリ長石を対象として大規模に採掘された. 杉山鉱床が最大で広沢鉱床がこれに次ぐ.石英脈鉱床は 一部にカリ長石を伴い,ペグマタイト性であるが,珪石 として稼行された.鉱脈や盤際変質帯の一部で緑柱石を 伴い,佐嘉鉱山第2鉱体のものは高品位で第二次大戦中 に小規模に稼行された.母岩は白雲母花崗岩,脈際では グライゼン化が一般的である(石原ほか,1969).

年代測定試料(65S-25)は千屯岩鉱床(第1図)の 緩傾斜石英脈の盤際グライゼン化変質岩から分離した白 雲母である.

(2) 福岡県福岡水鉛鉱床(Mo)

この鉱床は福岡市板付空港の南東方の丘陵地にあっ て、博多区と粕屋郡字美町地内に分布する.鉱床は東部 と西部鉱脈群に分けられ、東部鉱脈群が旧福岡水鉛鉱山 であり、第二次大戦末期に"児玉機関"(代表児玉誉士夫) が海軍の委託を受けて採掘した.昭和19年9月-同20年 4月間に選鉱場を稼動し、22トンの精鉱を生産したが、

地質調査所月報(第39巻第2号)

- 第1図 佐賀県杉山付近のペグマタイトとペグマタイト性石英脈鉱床.石原ほか(1967)に加筆, SN(千屯岩), SA(佐嘉第二鉱床)は ペグマタイト性(含緑柱石)石英脈鉱床, SU, 杉山ペグマタイト,地形図は国土地理院発行1/50,000地形図「浜崎」による.
- Fig. 1 Distribution of pegmatitic (beryl-) quartz vein (SN, Senton-iwa; SA Saga No.2) and pegmatite (SU, Sugiyama and other solid lenses) in the Sugiyama area, Saga Prefecture.

精鉱の銅含有量が高く,鉄鋼添加材として使用不能で あったと言われる.当時の粗鉱品位は0.7-0.8% MoS₂で あった.

西部鉱脈群は採石過程で昭和38年に発見され,太陽鉱 工(㈱により,昭和39年初めから同43年末まで探鉱された. 約1.3kmの立入坑道,3レベルの鏈押坑道,多数のボー リングにより,金属量換算で500トン MoS₂ 以上の可採 鉱量が発見された.鉱石(0.7% MoS₂,30トン)の浮遊 選鉱実験は島根県大東鉱山でおこなわれたが,やや低い モリブデン含有量(脈平均0.32±% MoS₂)と高い銅含 有量(同0.4±% Cu)のために,本格的な採掘に至らず 閉山された.

当地域の地質は三群変成岩類に属する苦鉄質火山岩源 の変成岩類,これに貫入する黒雲母花崗岩,これらを不 整合に覆う夾炭層(粕屋炭田)を含む古第三系から構成 される(松隈,1942).花崗岩にはアプライト岩脈,石 英脈が多く(第2図),三群変成岩類をルーフとする花 崗岩の頂部が露出していることを推定させる.

花崗岩は鉱床付近の観察によると細-中粒黒雲母花崗 岩である. 岩石帯磁率は一般にX=120×10⁻⁶emu/g 程 度であり,磁鉄鉱系花崗岩の値を示す. 2 個の分析値に よるとこの花崗岩は70.8-71.6% SiO₂, 3.4-3.7% K₂O, Na₂O/K₂O =1.14-1.23であり,ナトリウムに富む性質 で特徴づけられる.

, 研の観察によると, 花崗岩は割目に沿って桃色カリウ

ム長石化を受け,脈際では著しい白雲母化を蒙る.緑泥 石化も一般的である.松隈(1942)は珪化,方解石化な ども報告している.

鉱脈は N-S ~ NW, 急傾斜, ほとんど石英からなり, 少量の輝水鉛鉱と黄銅鉱を含む.石英脈は広域的には一 般に不毛であり,一部が輝水鉛鉱,一部では銅鉱脈であ ると伝えられるが(松隈, 1942),探鉱された鉱脈では 脈平均は0.3-0.8% MoS₂, 0.2% Cu 以上である(太陽 鉱工株式会社資料による).第二次大戦後の探鉱鉱脈に ついては一般に Cu > MoS₂ の平均脈品位が得られてお り(第3図),銅に富むモリブデン鉱床として我が国で 唯一のものである.少量鉱物として松隈(1942)は磁鉄 鉱,黄鉄鉱,閃亜鉛鉱,その他モリブデン,銅二次鉱物 を報告している.

年代測定試料(76 FK 16)は東部鉱脈群の研から採取 したもので,石英脈に接する白雲母化母岩から分離した 白雲母である.

(3) 福岡県浮羽郡田主丸町鷹取山北西麓(W),海抜 520 m

上記地域には泥質岩に富む三群変成岩類中に,層理面 に沿って東西方向に花崗岩体 (E-W 8 km, N-S 2 km) が岩株状に分布する.田主丸から南方へ鷹取山へ向けて 林道が通ずる.林道沿いに下部では黒雲母花崗岩が産出 し、上部へ向けて白雲母が増加して最上部では両雲母花 崗岩となる.両雲母花崗岩には時に柘榴石が含まれる.

- 第2図 福岡水鉛鉱床の概要. 国土地理院発行1/25,000地形図「福岡南部」に加筆, Eは東部鉱脈群(旧福岡水鉛), Wは西部鉱脈群. 太実 線は鉱脈, 二本線は主要立入坑道.
- Fig. 2 Vein (heavy line), drift (double line) and geology of the Fukuoka-Suien (molybdenum) deposit, Fukuoka Prefecture.

すなわちこの岩体は基本的には黒雲母花崗岩で頂部へ向 けて白雲母が増加すると言う"山陽型"(ISHIHARA, 1978) の特徴を持つ. 岩石帯磁率はX < 26×10⁻⁶ emu/g であり, チタン鉄鉱系の値を示す(石原ほか, 1979).

岩体上部には白雲母-黒雲母ペグマタイトの小岩脈が みられ,測定試料(76 KY 187)は緩傾斜小岩脈(幅7 cm) から分離した白雲母である.

(4) 山口県重徳鉱床(W)

この鉱床は山口県大津郡日置村奥畑の北東方約1kmの 山中にある.古くから銅鉱床として知られ,大正4年に 銅およびタングステンを対象として開坑されたと伝えら れている(平林,1917).鉱業統計によると,採掘は第 一次世界大戦時に最も活発であり,昭和28年にも若干の 生産が記録されている.総精鉱生産量は30トン以下と推 定される. 鉱床付近の地質は阿武層群の火山岩類,それに貫入す る小規模(0.8×1.5km)花崗岩岩株,これらに貫入する 安山岩岩脈からなる(第4図).花崗岩はチタン鉄鉱系 に属する優白色黒雲母花崗岩である.平林(1917)は花 崗岩が火山岩類へ向けて漸次斑状となるとのべている. 鉱床は火山岩ルーフ直下の花崗岩体周縁相に胚胎するも のと考えられる.

鉱床は数条の鉱脈からなり(第4図),走向 N60°E, 傾斜 60°N である.鉱脈は一部でペグマタイト性石英脈, 白雲母を含む.母岩はグライゼン変質を伴う.測定試料 (76 YG 239 B)は9号坑口のグライゼン化花崗岩から 分離した白雲母である.

鉱石鉱物は鉄マンガン重石,黄銅鉱のほか,少量の硫 砒鉄鉱,黄鉄鉱,磁鉄鉱のほか,微量の灰重石,輝水鉛 鉱である(平林,1917).

地質調査所月報(第39巻第2号)

- 第3回 福岡水鉛鉱床の鉱脈別モリブデン, 銅平均含有量(黒円)含有量は太陽鉱工㈱資料による 小白円は世界のポーフィリー型鉱床, 石原ほか(1983)参照
- Fig. 3 Averaged contents for unit vein of MoS₂ and copper (solid circle), Fukuoka-Suien deposit. Small open circle, porphyry-type Cu and Mo deposits.

第4図 山口県重徳鉱床の地質概要 (平林, 1917) Fig. 4 Geologic outline of Jutoku tungsten deposit, Yamaguchi Prefecture.

(5) 鳥取県大倉鉱床 (Pb-Zn)

この鉱床は鳥取県日野郡日野町上石見,大倉山の南麓, 海抜800m付近にある.小規模鉱床はその南西方へ伯備 線地並まで散在する(第5図).

開発の歴史は古く,その発見は戦国時代にさかのぼり, 徳川時代には直轄銀山として稼行されたと伝えられてい る.当時は銀山,山神坑付近,白竜鉱脈群などの鉱床が 稼行されたらしい.

大倉鉱山の技術担当であった大岡舛加氏(上石見在) によると昭和初期に伊田某と地元神主とが史実をひもど き30枚鏈を1号坑から探鉱した.昭和15-20年には速水 儀三郎(大阪)が手掘り,木馬によって300トン(Au 6 g /t(?),Ag1kg/t,Pb+Zn37-40%,第1表と比 較)の採掘をおこなった.昭和21-26年には吉本信雄(大 阪)が電気,機械設備を導入し,高品位鉱を約1500トン, 神岡鉱山を主体に売鉱したと言われる.しかし鉱業統計 に記録された生産量は昭和26年4月-同29年12月間の993 トン(Pb11-30%, Zn10-15%, 含有金属量, Pb167ト ン, Zn113トン)であるにすぎない.この時期には第1, 2坑,山神坑などの上部坑で採掘がおこなわれた.最大 の30枚鈍は露頭から南落しの富鉱部を有し,その規模は 幅約50m,落し方向へ150mであった.

当地域の構成岩類は基本的には白亜紀後期-古第三紀 斑栃岩と花崗閃緑岩であり(土井, 1951),前者は中粒 塊状の含黒雲母-角閃石-単斜輝石-かんらん石斑栃岩で あり,後者は中粒黒雲母-角閃石花崗閃緑岩である(服部, 1978).

筆者らの観察によると斑粝岩体西部の宗金-郡家間(第5図)には幅数mの苦鉄質凝灰岩の夾みを持つ破砕石英 閃緑岩(帯磁率X=440-720×10⁻⁶ emu/g)が認められ たが,これらは三群変成岩類に属する可能性がある.鉱 床下方部の観察によると斑粝岩は中粒塊状,X=600-

第5図 鳥取県大倉鉱床付近の地質略図. 土井 (1951) に加筆 Fig. 5 Geologic outline of Okura Pb-Zn deposit, Tottori Prefecture.

-840×10⁻⁶ emu/g,磁鉄鉱系の帯磁率を示す.花崗閃 緑岩は転石しか得られなかったが、細粒閃雲花崗閃緑岩 で、 $\chi = 480 - 650 \times 10^{-6}$ emu/g である。第2坑口の研に みられる同岩は χ < 120×10⁻⁶ emu/g であり低い帯磁率 を示すが、これは変質によるものと思われる. 鉱床付近 の花崗閃緑岩には岩相変化が予想され、なお精査が必要 である.

鉱床は裂か充填性鉱脈鉱床で、斑粝岩の北縁に分布す る、上石見の林道沿いの落石は全て珪長質火山岩類から なり、服部(1978)は大倉山山頂に珪質ホルンフェルス の転石を記載している. これらに大倉山頂部の急傾斜地 形を考慮すると、大倉山山頂部は白亜紀後期火山岩類が ルーフとして残存している可能性が高い. すなわち, 鉱 床は火山岩類, 斑粝岩などのルーフ岩石の近傍, 花崗閃 緑岩の周縁部に存在するものと考えられる.

鉱脈は走向 N20-40°E, 傾斜 70°W, 主要鉱脈は上大 倉山の3条で(第5図)、最東端の第1脈(30枚通)で 最も鉱液が良く,脈幅1mに達する富鉱部は走向方向に 50m, 落し方向(35°S)に100m以上であった. 脈幅は 膨縮が著しいが一般には15cm程度であったようである (土井. 1951), 筆者らによる第2坑口の観察によると, 鉱石は白雲母化、緑泥石化が著しい花崗閃緑岩に方鉛鉱、 閃亜鉛鉱が鉱染するもので、少量の黄銅鉱、黄鉄鉱も認 められた. 鉱石中の石英は少量である. 若干の緑泥石化 もみられる.神岡鉱業所の分析によると,鉱石は著しく 鉛に富む特徴を有し、また銀含有量も高い(第1表). 黄鉄鉱と共存する閃亜鉛鉱のFe含有量は10.9モル%で あり、山陰帯の鉱床としては鉄に富む、若干山陽帯的な 性格を有するといえよう (TSUKIMURA et al., 1987).

年代測定試料(82082705)は第2坑研から採取したも ので、硫化物を含む白雲母化母岩から分離した白雲母で ある.

兵庫県北部の白亜紀後期-古第三紀花崗岩類は一般に 磁鉄鉱系に属するが、宮津岩体の南西方、和田山付近の 花崗岩体は例外的にチタン鉄鉱系に属する(石原ほか. 1981). この岩体は広範囲に低度の熱水変質をうけてい る点でも異色である.新鮮な岩石では微量成分としての 錫含有量が高く,熱水変質岩では低い傾向を示し,明延 鉱床との関連が示唆されている(寺島・石原、1982).

測定試料(80082632)は兵庫県朝来郡山東町柴,遠坂 トンネル西口の若干の緑泥石化を伴う黒雲母花崗岩であ り、その帯磁率は $\chi = 22 - 91 \times 10^{-6} \text{ emu/g}$ である.

(7) 兵庫県, 坂越大泊鉱床 (Au-Ag)

この鉱床は山陽本線相生駅の南西方、赤穂市丸山に あって播磨灘に面する海岸にあって、ろう石鉱床として 稼行されたが、昭和49年にそれまで放置されていた珪化 岩に高品位の金銀が確認され、一時金ブームをまき起こ したものである. その記載は菊地ほか (1982) にくわし 61

鉱床付近には白亜紀後期の流紋岩質溶結凝灰岩類が広 く分布し、花崗岩質斑岩類の貫入をうける。"ろう石" 変質はここでは石英-カオリナイト-絹雲母の組合せを有 し、その中に雁行する3条の石英脈があって、N40°W、 70°Nの走向傾斜を有する. 石英脈にはエレクトラムと 数種の銀鉱物が含まれ、稼行鉱石に基づく Ag/Au 比は 約9である (菊地ほか, 1982).

測定試料(81060604)は最南東部の第1鉱脈、-30m L坑南部の鉱脈盤際から採取した絹雲母化溶結凝灰岩で ある.

(8) 岐阜県秋神鉱床(Pb-Zn, 豊遙秋採集)

岐阜県を中心に広く分布する"濃飛流紋岩類"とこれ と類以する笠ケ岳流紋岩、大雨見山流紋岩等には小規模 ながらも多数の鉛亜鉛鉱床が分布する(豊ほか,1984). 秋神鉱床はその一つであって、岐阜県大野郡朝日村宮之 前に位置する.

Table 1 Average grades for the ores from Okura deposit									
種類	Au (g/t)	Ag (g/t)	Cu(%)	Pb(%)	Zn (%)				
上鉱1	0.6	702	0.81	61.95	10.8				
雑鉱1	1.0	553	1.33	22.22	15.5				
同 2	0.5	577	0.81	11.58	17.4				
同 3	0.8	660	1.42	26.70	31.6				
同 4	1.4	342	0.85	25.54	28.6				

第1表 大倉鉱床産鉱石の平均品位(土井, 1951)

(6) 兵庫県北部,和田山花崗岩体 (Sn)

神岡鉱業所分析, 1951年9月

鉱床は船山溶結凝灰岩層に貫入する小規模ストック状 (E-W 4km×N-S 1.5km)の花崗閃緑斑岩の周縁部にみ られる裂か充塡性鉱脈で,走向N75°E,幅数mの断層破 砕帯に細脈状に,閃亜鉛鉱,方鉛鉱,黄鉄鉱,黄銅鉱, 石英,方解石が産出する(山田ほか,1985).母岩は著 しい絹雲母化をうける.

測定試料は(A11-16330)は母岩の絹雲母化花崗閃緑 斑岩から水ひによって分離した絹雲母である.

(9) 福島県八茎鉱山(W, Cu, 日鉄鉱業株式会社提供)

八茎鉱床は福島県南東部,石城郡四倉町にあって基本 的には含銅スカルン型鉱床である.鉱床は八茎石灰岩と 下盤粘板岩との境界に沿って石灰岩の基底部を交代した スカルン中に塊状もしくは鉱染状に黄銅鉱,磁鉄鉱,灰 重石がみられ,層状-レンズ状鉱体を構成する(小川・ 志田, 1975).

測定試料(KO 780106)は130mL, W380Bにおける 深部タングステン鉱床に接する粘板岩中に産する灰重石 含有白雲母-石英-緑簾石脈から分離した白雲母である.

(10) 岩手県赤金鉱床(Cu)の石英斑岩

赤金鉱床は基本的には含銅磁硫鉄鉱スカルン鉱床であ り、鉱床は石英斑岩および花崗閃緑岩類周辺の石灰質岩 を母岩とする、石英斑岩には細脈-鉱染状の含金銅鉱化 作用が知られており、磁石山鉱床と呼ばれている(中ほ か、1961).

江刺興業㈱砕石場に露出する石英斑岩はこの鉱化石英 斑岩と一群のものと考えられ, "熱水性黒雲母"と思わ れる赤褐色黒雲母を含む. 測定試料.(81 KT 603) は同 砕石場430m L で得られた同岩から分離した黒雲母であ る.

(11) 岩手県門神岩 (Cu)

門神岩は岩手県宮古の西方約7kmにあって、交通は至 便である.その名は、奇形を示す珪長質角礫岩岩脈に対 して与えられたもので、これは若干の銅鉱化作用をうけ ている(石原、1982).

門神岩岩脈は北部北上帯の中古生層,それに逆入する 宮古花崗閃緑岩体の両者を切って N60°E 方向に貫入す る.幅220m,中古生層のセプタを伴い,現露頭は岩脈 の頂部に近いものと思われる.岩脈は著しい岩相変化を 示し,粗-細粒の斜長石斑晶を含有する斑岩と貫入性角 礫岩とからなる.斑岩はカリウムに乏しいデイサイト質 (K₂O 1.4%, SiO₂ 70.3%)である.

角礫岩は岩脈の形成と密接であり,岩脈貫入前,貫入 時,貫入後の3時期に形成された.中古生層,キースラー ガー鉱石,宮古岩体花崗岩類などの異質捕獲岩を含むが, 一般には岩脈自身が角礫の主体である.マトリックスは 破砕されたデイサイトからなるが,一般に再結晶し,微細な緑褐色黒雲母が網状にみたす.他の変質鉱物は絹雲母,方解石である.角礫岩のマトリックスは磁鉄鉱,黄銅鉱,黄鉄鉱を含み,こぶし大サンプルについて,最高0.17%Cu,0.32%Sが得られた.

年代測定試料(KT 631 C)は角礫化細粒デイサイトで あるが異質岩片は含まない.得られた年代は角礫化後マ トリックスに生成した黒雲母の晶出時期を示すものと考 えられる.

3. 結果と考察

年代測定結果を第2表,試料産地を第3表に示す.さ らに鉱化年代の総括を第4表1,2及び第6図に示す.

K-Ar 年代測定の方法は SHIBATA and ISHIHARA (1974) とほぼ同じである. K-Ar 年代計算に用いた定数は, $\lambda_{\beta} = 4.962 \times 10^{-10}$ /y, $\lambda e = 0.581 \times 10^{-10}$ /y, 40 K/K = 0.01167 atom% である (STEIGER and JÄGER, 1977). 論 文中に引用した年代値はすべてこれらの定数によって再 計算したものである.

北九州-西中国地域の測定結果は89-95 Ma であり,今 回の測定値(除八茎・赤金鉱床)のなかで最も古い値を 示す.これらの値は近傍の花崗岩類(河野・植田,1966) とほぼ同様であって,これら鉱床と花崗岩類との成因的 関係を示唆している.モリブデン鉱床とタングステン鉱 床との間に特に有意の年代差は認められないが,福岡水 鉛鉱床は既述のように Cu > Mo でむしろ銅鉱床であっ て,中国-中部地方のモリブデン鉱床とはかなり異った 性格を示す.

一方,中国地方,中部-近畿地方西部では,モリブデン鉱床あるいは山陰帯の磁鉄鉱系花崗岩類が65-70 Ma より若く,タングステン鉱床や山陽帯のチタン鉄鉱系花 崗岩類がこれより古いことが知られていた(SHIBATA and ISHIHARA, 1974;柴田,1979).和田山花崗岩体の黒 雲母年代,79.3±2.5 Ma はその南西方20kmの穴栗花崗 岩複合体(石原ほか,1981)の黒雲母年代,66.3±2.2 Ma (柴田,1979)より明らかに古く,鳥取県東部のチ タン鉄鉱系花崗岩類の値(78.2-80.9 Ma;柴田,1979) と同様であって,これまでの結論を支持するものである.

一方,大倉鉛亜鉛鉱床では山陰帯の磁鉄鉱系花崗岩類 中の鉱床としては最も古い年代(73.3±2.3 Ma)が得 られた.すなわち,島根県東部の小馬木(Mo, 64.1± 2.5 Ma),清久(Mo, 49.0±1.9 Ma)より明らかに古く, 鳥取県東部の関金(W, Mo, 66.8±2.6 Ma, SHIBATA and ISHIHARA, 1974)にやや近い.この鉱床の母岩であ る花崗閃緑岩については,同鉱床西方3kmの三吉産の同

	Nos. & Locality	Rọck	Mineral	K ₂ O (%)	⁴⁰ Ar rad (10 ⁻⁶ mlSTP/g)	Atm. ⁴⁰ Ar (%)	Age (Ma)
Southwest Japan							
(1) 65 S-25	Sugiyama(杉山), Saga (Be)	Greisenized granite	Muscovite	10.5	30.9	5.7	88.8±2.7
(2) 76 FK 16	Fukuoka(福岡), Fukuoka (Mo)	do.	do.	10.0	31.3	10.6	94.6±3.0
(3) 76 KY 187	Tanushimaru(田主丸), Fukuoka (W)	Pegmatite dikelet	do.	9.85	29.1	5.9	89.2±2.8
(4) 76 YG 239 B	Jutoku(重徳), Yamaguchi (W)	Greisenized granite	do.	5.74	17.1	8.4	89.8±2.8
(5) 82082705	Okura(大倉),Tottori (Pb—Zn)	do.	do.	8.29	20.0	14.4	73.3 ± 2.3
(6) 80082632	Tozaka(遠坂), Hyogo (Sn)	Biotite granite	Biotite	5.30	13.9	10.3	$79.3 {\pm} 2.5$
(7) 81060604	Sakoshi(坂越), Hyogo (Au)	Altered rhyolite	Whole rock	1.12	2.95	22.7	$79.6 {\pm} 2.5$
						21.5	$\frac{79.4\pm2.5}{79.5\pm1.8}$
(8) All-16330	Akigami(秋神), Gifu (Pb—Zn)	Altered porphyry	Sericite	7.95	16.9	11.8	64.5 ± 2.0
					17.0	10.1	65.1 ± 2.0
							64.8 ± 1.4
Northeast Japan							
(9) KO 780106	Yaguki(八茎),Fukushima (W)	Scheelite-bearing vein	Muscovite	8.86	31.6	3.5	107 ± 3
(10) 81 KT 603	Akagane(赤金), Iwate (Cu)	Granodiorite porphyry	Biotite	7.07	26.0	4.0	110 ± 4
(11) KT 631 C	Kadogami(門神), Iwate (Cu)	Low-K dacite	Whole rock	1.11	1.38	14.9	38.4 ± 1.3

第2表 鉱床構成岩石鉱物の K-Ar 年代

Table 2 K-Ar ages of micas and altered rocks from selected mineralized areas in Japan

- 88

1 査 所 月 報 (第 39 巻 第 2

步)

地質調

第3表 分析試料の採取位置

Table 3 Localities of analyzed samples

- (1) 佐賀県佐賀郡富士町杉山南方,千屯岩鉱床.両雲母花崗岩 (チタン鉄鉱系)中の石英脈の盤際グライゼン化変質帯 (33°22'32"N, 130°09'46"E).
- (2) 福岡県粕屋郡宇美町, 博多区桜ヶ丘団地南東端の境界付近. 早良花崗岩(磁鉄鉱系)中のグライゼン化脈際変質岩, 福岡水鉛 鉱床東部鉱脈群のずり(33°33'37"N, 130°28'54"E).
- (3) 福岡県浮羽郡田主丸町鷹取山(802m) 北西麓,海抜520m付近の林道.両雲母花崗岩(チタン鉄鉱系)中の白雲母-黒雲母ペグ マタイト岩脈(幅7cm)(33°18′16″N, 130°43′01″E).
- (4) 山口県大津郡日置村奥畑北東方1km, 重徳鉱山下部坑ずり. グライゼン化花崗岩(34°21′01″N, 131°08′13″E).
- (5) 鳥取県日野郡日南町上石見,大倉鉱山,第二坑ずり. グライゼン-鉱化母岩 (35°07′16″N, 133°21′17″E).
- (6) 兵庫県朝来郡山東町柴,遠坂トンネル西口.和田山花崗岩体(チタン鉄鉱系)の黒雲母花崗岩(35°18′01″N, 134°55′21″E).
- (7) 兵庫県赤穂市丸山、坂越-大泊鉱山、-30mL南部. 絹雲母化母岩(溶結凝灰岩)(34°44′40″N, 134°26′00″E).
- (8) 岐阜県大野郡朝日村宮之前.秋神旧坑からの絹雲母化-鉱化母岩(斑岩)(36°00'31"N, 137°23'41"E).
- (9) 福島県石城郡四倉町,八茎鉱山深部タングステン鉱床,130mL W380B. 粘板岩中の灰重石含有絹雲母-石英-緑簾石脈 (37°09'27"N,140°51'48"E).
- (10) 岩手県江刺市赤金鉱山, 江刺興業㈱採石ピット, 430mL南部. 黒雲母化石英斑岩 (39°10'28"N, 141°20'53"E).
- (11) 岩手県宮古市花原市東方,門神岩採石ピット(山田線北側).角礫化デイサイト(39°37′48″N, 141°52′16″E).

岩について71±6 Ma (HATTORI and SHIBATA, 1974) が 得られており,これらは測定誤差の範囲で同時代とみな しうる.

坂越大泊金銀鉱床はその産状から三石付近のろう石鉱 床との関連性が示唆されるが、その鉱化年代79.5±1.8 Ma は三石鉱化区、八木鉱床の年代80.5±3.2 Ma (柴田・ 藤井、1971)と同じである.一方、鉱床近傍の花崗岩の 年代には81 Ma (G 334、河野・植田、1966)が得られて おり、この鉱化作用が近くの花崗岩類と少なくとも熱的 には関係していたことを示している.

濃飛流紋岩地帯の秋神鉛-亜鉛鉱脈鉱床からは64.8± 1.4 Ma が得られたが、これは母岩の花崗閃緑斑岩の年 代(63.1±2.6 Ma、山田ほか、1985)と同じとみなし えて、両者の成因的関係を暗示する。

同様な鉱化年代は、北方、飛驒変成帯に分布する神岡 鉱床群でも得られている.すなわち、神岡鉱床における 杢地および白地鉛亜鉛鉱体のうち、後者の鉱化期を表わ す 絹雲母の K-Ar 年代は63.8-67.5 Ma (長沢・柴田, 1985) であり、上記秋神鉱床の年代と一致する.この事 実は神岡など飛驒帯の鉛-亜鉛鉱床は濃飛流紋岩中に多 数分布する鉛-亜鉛鉱床(豊ほか,1984) と同一生成期 の産物であることを示しており、成因的にも両者が関連 することを暗示する.

濃飛流紋岩類と関連貫入活動に伴う鉱化域において、 この時期の K-Ar 年代は鉛亜鉛に限らず、モリブデン・ タングステン(平瀬, 61.2 Ma, 恵比寿, 65.7 Ma, 福岡, 68.4 Ma) 鉱床のほか, 花崗岩類においても得られてい る(SHIBATA and ISHIHARA, 1974). 白雲母のアルゴン閉 さ温度(350°C)は一般の鉱床生成温度に非常に近い. し たがって K-Ar 年代は鉱化年代を示し, かつ鉱床は花 崗岩類との成因的関係を指示する.

八茎鉱床に関する年代測定資料としてこれまでに坑内 産閃雲花崗閃緑岩の黒雲母について113 Ma が報告され ていた(河野・植田, 1967).今回の結果は107±3 Ma であり,この黒雲母の値に極めて近い.

北上山地の赤金鉱床は人首岩体の東側に隣接する独立 小岩株に伴われるが、人首花崗閃緑岩の黒雲母からは 117と120 Maの年代が得られている(河野・植田,1965). 今回の石英斑岩の黒雲母が示す110±4 Maは上記の年 代に近い.この石英斑岩の値は赤金鉱床全般の鉱化年代 をほぼ示しているものと考えられる.

一方,門神岩の全岩年代38.4±1.3 Ma は北上山地で 一般的な花崗岩類の年代120 Ma ±とは著しく異なるも のであり,宮古市の浄土ヶ浜流紋岩類(51 Ma,柴田ほ か,1977)との関連性を示唆する.事実,共にSiO2が 高い低カリウム岩系に属する点では共通している.測定 岩石は鉱化年代を示すものであり,北上山地に弱いなが らも古第三紀鉱化作用が存在していたことは明らかであ る.

— 89 —

第4表-1 白亜紀-古第三紀花崗岩地域の鉱化年代総括表(1) 西南日本のタングステン生成区と東北日本

Table 4-1 Summary table for the mineralization age data in the Cretaceous-Paleogene granitic terrain, Japan (1) Tungsten province of Southwest Japan and Northeast Japan

	Locality	Main Ores	Mineral	Age	Reference
lungs	ten Province of Southwest Japa	n			
左賀	Sugiyama(杉山)	Be, SiO ₂	Muscovite	88.8	本研究
畐岡	Tanushimaru(田主丸)	Pegmatite	do.	89.2	同上
山口	Jutoku (重徳)	W	do.	89.8	同上
	Uku(宇久)	Roseki	do.	84.3	柴田・神谷(1974)
		Pegmatite	do.	83.8	
				Avg 84.1	
	Masago(真砂)	W	do.	94.2	Shibata & Ishihara (1974)
	Tsumo(都茂)	W, Cu	Phlogopite	80.4	同上
	Fujigadani(藤ヶ谷)	W	Muscovite	94.2	同上
	Kiwada(喜和田)	W	do.	98.0	同上
島	Koyo(甲陽)	Cu	Biotite	85.1	WATANABE et al. (1984)
Ш	Ibara(井原)	w	Muscovite	86.4	Shibata & Ishihara (1974)
	Mivoshi (三古)	W	ob	86.6	同上
	Kamo(加茂)	Mo	Biotite	77 1	柴田(1979)
	Yagi (八木)	Rosebi	Sericite	80.5	柴田・藤井(1971)
	i agi () () () Higasa (日	An Ar	de	77.9	WATANABE AT AT (1004)
康	nigasa(日文/	Au, Ag	Whele reals	70.6	* FF 22
;熚	Sakosni-Odomari(奴越人伯)	Au, Ag	whole fock	79.0	
	Ikuno(生虾)	Cu, PD, Zn, Sn(W)	d0.	74.0	SHIBATA & ISHIHARA (1974)
			Adularia	63.3	週間産業省(1983)
				68.1	
				$\frac{63.0}{2}$	
	<i>/</i>			Avg 67.3	
	Omidani(大身谷)	Au, Ag	Adularia	69.6	山岡・植田 (1974)
		do.	do.	<u>67.6</u>	同上
				Avg 68.6	
	Yabu(養父)	Au, Ag	Muscovite	68.9	WATANABE et al. (1984)
〔都	Otani(大谷)	W(Cu, Sn)	do.	93.5	Shibata & Ishihara (1974)
		do.	do.	92.1	
				Avg 92.8	
	Kaneuchi(鐘打)	W	do.	93.3	同上
			do.	95.1	山岡・植田(1974)
				Avg 94.2	
专	Ebisu(恵比寿)	W	Muscovite	65.7	Shibata & Ishihara (1974)
	Fukuoka (福岡)	w	do	68.4	同上
い	Takatori (高取)	W(Sn)	do.	70.4	同上
F 潟	Shionomachi (塩野町)	W(Mo)	do.	71.1	「 同 ト
1100	omonomacin (Juli) (J)	do.	do.	75.3	通商産業省(1982)
		40.	u0.	Avg 73.2	
	Obari (大碼)	Cu	do	63 2	同上
		Ju	u0.	60.8	
				$Avg \frac{60.0}{62.0}$	
				1115 02.0	
lorth	east Japan				
畐島	Yaguki(八茎)	Cu, W	do.	107	本研究
	Date-Nagai(伊達永井)	W	Sericite	94.0	通商産業省(1987 a)
手	Akagane(赤金)	Cu	Biotite	110	同上
	Taro(田老)	Pb, Zn, Cu	Sericite	128.6	植田ほか(1970)
			do.	130.0	
			do.	125.3	
				Avg 128.0	
	77.4(胆神母)	C.u	Whole rock	38 4	太研空

第4表-2 白亜紀-古第三紀花崗岩地域の鉱化年代総括表(2) 西南日本のモリブデン生成区

Table 4-2 Summary table for the mineralization age data in the Cretaceous-Paleogene granitic terrain, Japan (2) Molybdenum province of Southwest Japan

	Locality	Main Ores	Mineral	Age	Reference
福岡	Fukuoka-Suien(福岡水鉛)	Mo, Cu	Muscovite	94.6	本研究
島根	Osa(大佐)	Мо	do.	53.8	Shibata & Ishihara (1974)
	Kakeya(掛合)	Мо	do.	56.9	通商産業省(1987 b)
				57.3	
				Avg 57.1	
	Hinotani (火の谷)	Sericite	do.	51.3	Ishihara et al. (1980)
	Komaki(小馬木)	Mo, (W)	do.	63.3	Shibata & Ishihara (1974)
			do.	63.3	
			do.	65.7	
				Avg 64.1	
	Seikyu(清久)	Мо	Biotite	47.7	同上
			Muscovite	49.0	
				Avg 48.4	
鳥取	Okura(大倉)	Pb—Zn, Ag	do.	75.5	WATANABE et al. (1984)
			do.	73.3	本研究
	(• >			Avg 74.4	
	Sekigane(関金)	Mo, W	do.	66.8	Shibata & Ishihara (1974)
		do.	do.	$\frac{64.0}{65.4}$	通商産業省(1987 b)
京都	Busshoji(佛性寺)	Мо	do.	63.3	Shibata & Ishihara (1974)
福井	Nakatatsu(中竜)	Pb-Zn, (Mo)	do.	61.5	同上
岐阜	Hirase(平瀬)	Мо	K—feldspar	61.7	同上
			Muscovite	61.2	同上
				Avg 61.5	
	Kamioka(神岡)	Мо	K—feldspar	58.6	同上
	Tochibora(栃洞)	Au, Ag (Pb-Zn)	Sericite	65.3	長沢・柴田(1985)
			do.	65.1	同上
			do.	66.1	同上
				Avg 65.5	
	Mozumi(茂住)	Pb—Zn	do.	63.8	同上
			do.	67.5	同上
				Avg 65.7	
	Nagato(長棟)	Pb—Zn, Cu	do.	63.2	金属鉱業事業団(1984)
				68.4	
		-		Avg 65.8	1 mm 1
	Akigami(秋神)	Pb–Zn	do.	64.8	本研究

4. まとめ

11ケ所の鉱床,鉱化地域からの雲母と全岩の K-Ar 年代を測定し、これまでの既発表データと合せて、1987 年における総括を試みた.結果は次のようにまとめられ る.

- (i) 同一地域ではチタン鉄鉱系鉱床が磁鉄鉱系よりも古い(兵庫の明延地区,新潟の塩野町(チタン鉄鉱系)に対する大張(磁鉄鉱系)など).
- (ii) 一方,年代に差がないものも認められた(福岡水鉛 鉱床対田主丸,岐阜県秋神に対する苗木地区の鉱床な ど).
- (iii) 浅熱水性 Au-Ag, Pb-Zn 鉱床と言えども近傍の花 崗岩類と同様な年代を示し、これら鉱床も Mo, W-Sn 鉱床と同様に花崗岩類との成因的関係を想定させる (兵庫県坂越大泊,岐阜県秋神など).

(iv) 北上山地に古第三紀始新世の鉱化作用(Cu)が確認された(岩手県門神岩).

地質調査所月報(第39巻第2号)

第6図 日本の白亜紀-古第三紀花崗岩に関係する鉱床の鉱化年代 Fig. 6 K-Ar ages of ore deposits related to Cretaceous-Paleogene granitoids in Japan.

文 献

- 豊 遙秋・島崎英彦・山田直利・原山 智 (1984)
 濃飛流紋岩に伴う鉱床について、三鉱学会
 (松山)講演要旨集, p. 132.
- 土井啓司(1951) 鳥取県大倉鉱山調査報告書.地 質調査所鉱床部資料,12p.,図2.
- 服部 仁(1978) 上石見地域の地質.地域地質研 究報告(5万分の1地質図幅),地質調査所, 70p.
- HATTORI, H. and SHIBATA, K. (1974) Concordant K-Ar and Rb-Sr ages of the Tottori granite, western Japan (with chemical analyses by E. OHMORI). Bull. Geol. Surv. Japan, vol. 25, p. 157-173.
- 平林 武(1917) 重徳鉱山.本邦鉱業の趨勢,農 商務省鉱山局,419p.
- ISHIHARA, S. (1978) Metallogenesis in the Japanese island arc system. Jour. Geol. Soc. London, vol. 135, p. 389-406.

白亜紀-古第三紀花崗岩類に伴う鉱床の鉱化年代-1987年における総括(石原ほか)

- 石原舜三 (1982) 岩手県門神岩の角礫岩. 地質 ニュース, no, 333, p.45-49.
 - ・唐木田芳文・佐藤興平(1979) 北九州
 -西中国地域の磁鉄鉱床とチタン鉄鉱系花
 崗岩類の分布 特に小倉-田川断層帯の再
 評価 —. 地質雑, vol. 85, p.47-50.
- ・佐々木昭・寺島 滋(1983) 羽越地域
 の花崗岩類と鉱化作用. 地調月報, vol. 34,
 p. 11-26.
 - ・佐藤興平・月村勝宏(1981) 明延鉱床 に関する若干の問題について、鉱山地質, vol. 31, p. 147-156.
- ・関根節郎・原田種成・肥田 昇 (1969)
 ベリリウム探査器による Be 鉱物の探査と
 野外 Be 分析方法の検討.地調月報, vol.
 20, p. 151-160.
- 河野義礼・植田良夫(1965) 本邦産火成岩の K-A dating(Ⅱ) 北上山地の花崗岩類. 岩鉱, vol. 53, p. 143-154.
- ーーーー・ーーーー (1966) 本邦産火成岩の K-A dating(V) 西南日本の花崗岩類. 岩 鉱, vol. 56, p. 191-211.
 - —・ (1967) 本邦産火成岩の
 K-A dating(YI) 花崗岩類の総括. 岩鉱,
 vol. 57, p. 177-187.
- 菊地 豊・松木正義・後藤寿幸(1982) 坂越大泊 鉱山の調査と開発.鉱山地質, vol. 32, p. 361-368.
- 松隈寿紀(1942) 福岡市付近の水鉛鉱床. 九州鉱 山学会誌, vol. 13, p. 141-150.
- 長沢敬之助・柴田 賢(1985) 神岡鉱山産セリサ イトの K-Ar 年代とそれに基づく鉱床生 成年代の考察. 鉱山地質, vol. 35, p. 57-65.
- 中東 策・香村明美・相沢 恒(1961) 赤金鉱山 の探鉱,とくに米里,山彦,磁石山鉱床に ついて.鉱山地質,vol. 16, p.124-131.
- 小川敬三・志田彰夫(1975) 八茎鉱山の深部タン グステン鉱床について. 鉱山地質, vol. 25, p. 109-122.
- 柴田 賢(1979) 東中国における花崗岩類の K-Ar 年代. 地質学論集, no. 17, p. 69-72.
 ・藤井紀之(1971) 岡山県三石地区のろう石鉱床の研究 - 第2報 八木鉱山産セリサイト鉱の K-Ar 年代 --. 地調月報, vol. 22, p. 575-580.

- 柴田 賢・石原舜三(1974) 広島花崗岩中央部の 黒雲母 K-Ar 年代の南北変化. 地質雑, vol. 80, p. 431-433.
- SHIBATA, K. and ISHIHARA, S. (1974) K-Ar ages of the major tungsten and molybdenum deposits in Japan. *Econ. Geol.*, vol. 69, p. 1207-1214.
- 柴田 賢・神谷雅晴(1974) 山口県阿武地区ろう 石鉱床の K-Ar 年代 — 阿武地区ろう石鉱 床の研究 その2 — 地調月報, vol. 25, p. 323-330.
- ・柳 哮・浜本礼子(1977) 北上山地の中生代花崗岩・火山岩の年代(演旨).
 岩鉱, vol. 72, p. 119-120.
- STEIGER, and JÄGER, (1977) Subcommission on geochronology : convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett., vol. 36, p. 359-362.
- 塚越重明・橋本守男・日比福二(1974) 神岡鉱山 栃洞坑における金銀鉱床について. 鉱山地 質, vol. 27, p.111-118.
- TSUKIMURA, K., SATO, K. and ISHIHARA, S. (1987) Regional and temporal variation in FeS content of sphalerite from Japan and its relation to granitoid series. Bull. Geol. Surv. Japan, vol. 38, p. 227-245.
- 通商産業省(1982) 昭和50年度広域調査報告書. 羽越地域(I), 164p.
 - (1983) 昭和57年度広域調査報告書.
 播担地域,72p.
- ・ (1987 a) 昭和61年度希少金属鉱物資 源の賦存状況調査報告書. 阿武隈東部地域, 119p.

———·(1987 b) 同上, 松江地域, 149p.

- 植田良夫・山岡一雄・大貫 仁(1970) 岩手県田 老鉱床母岩の K-Ar dating 一 特に鉱床成 国説に関連して —. 岩鉱, vol. 63, p. 259-265.
- WATANABE, M., SHIBATA, K. and SOEDA, A. (1984) K-Ar ages of base and precious metal mineralization in the Tungsten Province, Southwest Japan. Geochem. J., vol. 18, p. 189-193.

山田直利・足立 守・梶田澄雄・原山 智・山崎晴

— 93 —

	友	±۰	豊	遙種	阦	(198	5)	·	高山	地力	或の)地分	質.	
	坩	也词	战地:	質研究	宠幸	報告	(5	万	分の	1 ±	地質	図	偪).	
	比	也質	調	査所,	1	11p.								
ाज्य	+#-	44	k m	<u>н</u> н	(1	074)		-	+17) ~	2	17	0	0	

の金属鉱床の K-Ar 年代. 鉱山地質, vol. 24, p. 291-296.

山岡一雄. 植田良夫(1974) 本邦における2,3 (受付:1987年6月9日;受理:1987年10月9日)