資 料

新着資料の紹介

資料室

1) И. А. Львова (1974): ГМесторождения вермикулита СССР (ソ連の蛭石鉱床)」, ネードラ出版所レニングラード支所, 全ソ地質研究所報告, 第 216号, 231p., 図58, 表22, 参 200, 22×16 ст (露文), UDC: 553.678 (47+57)

目 次

第1章 鉱床のフォーメイション タイプ

A群:超塩基性アルカリ岩・カーボナタイト・カリ塩基性アルカリ岩コンプレックス中のバーミ キュライト - 加水黒雲母フォーメイションと加水雲母フォーメイション

B 群:新期花崗岩類とアルカリ岩類を随伴した褶曲区の超塩基性岩・塩基性岩中のバーミキュラ イト - 加水金雲母フォーメイションと加水黒雲母フォーメイション

C群:アラスカイト質花崗岩と共存するマグネシア炭酸塩岩・アルモ珪酸塩岩コンプレックス中 のバーミキュライト - 加水金雲母フォーメイション

第2章 蛭石資源の品質評価基準としてのバーミキュライトと加水マグネシア-鉄雲母の鉱物学的特徴 マグネシア-鉄雲母とその加水生成物の構造

各フォーメイション タイプの鉱床の雲母とバーミキュライトの特徴

当該鉱物中の鉄と弗素の含有量と雲母の加水度との相関関係

第3章 タイプ別蛭石鉱床生成区の特徴 褶曲区の蛭石鉱床生成区 楯状地と卓状地の蛭石鉱床生成区

中央山塊の蛭石鉱床生成区 第4章 蛭石鉱床の分布規則性 風化殻中の蛭石鉱床の広域分布規則性 各種マグネシア-鉄雲母濃集体の広域分布規則性 蛭石鉱床の局地分布規則性

第5章 蛭石資源基地の現状とソ連全体・各地方の展望

まとめ

2) А.К. Матвеев (1974): 「Угольные месторождения зарубежных стран (外国の炭田)」, アメリカ大陸・南極大陸編,ネードラ出版所,モスクワ,236p.,図54,表14,参18,22×15cm (露文), UDC: 553.94(6)

目 次

アメリカ大陸 炭田分布の規則性と埋炭量 北アメリカ カナダ アメリカ合衆国 アラスカ ラテン アメリカ メキシコ カリブ海の島々 ベネズエラ コロンビア エクアドル ペルー チリー ボリビア アルゼンチン ウルガイ

南極大陸

付図Iーアメリカ合衆国とカナダの炭田

51-(51)

地質調査所月報(第27巻第1号)

Ⅱ-ラテン アメリカの炭田

3) ソ連科学アカデミー シベリア総支部ヤクート支部地質研究所 (1974):「Минералогия эндогенниых месторождений Якутии (ヤクート地方内因性鉱床の鉱物学的研究)」,ナウカ出版所シベリ ア支所,ノボシビールスク, 211p., 22×15 cm (露文)

目 次

Б. Л. Флеров ほか 5 : チュイバガラフ錫スカルン鉱床の鉱物と成因 図 5 , 表 7 , 参 21, р. 3–41 Б. Л. Флеров ほか 2 : 銅 - タングステン スカルン鉱床 図 3 , 表 4 , 参 7 , р. 41–64 Б. Л. Флеров : バリクメイ鉱床の鉱物共生 図 3 , 表 5 , 参 21, р. 64–92 Л. Н. Индолев ほか 2 : サルィラフ金 - アンチモン鉱床の構造と鉱物組成 図 5 , 表 1 , 参 7 , р. 92–108 Л. Н. Индолев ほか 5 : 四面銅鉱に関する新資料と Аg · Cu 累質同像混合の問題

図4,表5,p.109-119

Л. Н. Индолев ほか2: ベルホヤン地方西部の鉱床群産 Pb と Ag の硫アンチモン化物について 表3, 参8, p. 119–125

Г. Н. Гамянин: ヤクート地方北東部における自然アンチモンの発見 図3,表3,参18, р. 125–133 Г. Н. Гамянин, Д. А. Кулагина: アリャスキトボエロタングステン鉱床産累帯構造燐灰石

図3,表5,参24, p. 134–147 Я. В. Яковлев, П. П. Лебедев: ヤナ川・ボルラフ川河間地域の錫鉱床の生成温度

図1,表2,参22,p.147-156

И. Я. Некрасов, Л. В. Сипавина: Sn-S-H₂O 系と SnO-Na₂S-H₂O 系における錫硫化物と錫石の生 成条件について 図5,表7, p. 156-175

4) Д. А. Минеев (1974): ГЛантаноиды в рудах редкоземельных и комплексных месторождений (稀土類・複合鉱床産鉱石中のランタノイド)」, ナウカ出版所, モスクワ, 237p., 図94, 表 78, 参 208, 26×17 cm (露文), UDC: 553.493: 550.42

目 次

はじめに

- 分析データとその解析法
- 第1章 狭義の稀土類熱水鉱床

セリウム弗素炭酸塩・セリウム燐酸塩鉱床 イットリウム弗素炭酸塩・セリウム燐酸塩鉱床 第2章 内因性複合稀有金属鉱床

稀有金属アルカリ花崗岩交代岩 稀有金属霞石閃長岩 稀有金属カーボナタイト 稀有金 属片麻岩 含タンタル変花崗岩・含タンタルペグマタイト

第3章 外因性複合稀有金属鉱床

風化殼 砂鉱 化学源堆積鉱床

第4章 放射能原料資源

ウラン鉱 トリウム鉱

- 第5章 黒色・有色・多金属鉱床
- 第6章 非金属鉱物資源

燐酸塩鉱物資源 螢石鉱物資源

- 第7章 国内外の各種生成タイプの稀土類鉱床産鉱石中のランタノイド分布
 - 稀土類鉱床の主な生成タイプ 外国における稀土類元素の用途と産地 ソ連の各生成タイプ 別稀土類鉱床産鉱石のランタノイド分布とイットリウム含有性

まとめ

新 着 資 料 の 紹 介(資 料 室)

•

5) 全ソ地質研究所 (1973): ГВопросы зональности эндогенниы	х месторождений (内因性鉱
休累帯配列の諸問題)],モスクリ,231p.,27×18 cm (露文), UDG: 553.	26: 553.062/.067(47 + 57)
А.С.Никаноров:ペグマタイト岩体とペグマタイト田の累帯配列につ	いて 図10,参46, p. 3-26
Д. В. Рундквист, В. К. Денисенко: グライゼン鉱床鉱脈田の扇状・	弧状構造と鉱体の累帯配列
	図15,参17,p. 27–50
Ж. Д. Никольская: ベト=パク=ダラー稀少金属鉱床田のメタロジェ	ニック累帯配列
	図1,表2,参42, p.51-69
$\Gamma. M. Y$ техин: ザカルパチア地方の内因性鉱床累帯配列のタイプ	図1,表1,参22,p.70-80
В. В. Чупров:中部ザバイカル地方における錫鉱床とタングステン鉱床	その累帯分布について
	図1,参13, p.81-92
В.К. денисенко:中部カザフ地方カラオバ稀少金属鉱床におけるタン	グステン鉱化作用の累帯分布性
	図4,表1,参17,p.93-101
М. И. Воин, А. П. Казак: ザウラル=オルスク地方クマク=コタンスン	擾乱帯の稀少金属鉱化作用・金
鉱化作用の累帯分布について	図3,参12, p.102–111
Н. И. Шумская: 内因性分散ハローの累帯配列と潜頭鉱体探査へのその	の意義
	図2,表1,参5, p.112-122
И.В.Ляхницкая:コラ半島ペーチェンガ銅-ニッケル硫化物鉱床の垂	直累帯構造
	図4,表1,参6,p.123-133
Г.В.Ициксон, М.Ф. Кутырева:カリ長石中のカリウム・ルビジウ	ム・セシウム濃集累帯分布要素
としての構造的解釈	図5,表3,参44, p.134-151
И.Г.Павлова, Д.В. Рундквист: 鉱脈周辺グライゼンの累帯配列の特	寺徴について 参19, p.152-161
Γ. Η. Еникеева :中部カザフ地方スカルン鉱床田の累帯配列における約	まれん岩の役割
	図4,表5,参4,p.162-178
Г. Т. Волостных:粘土化岩鉱化部・非鉱化部の累帯配列の特徴	図12,表5,参23, p.179-197
А. Д. Щеглов:鉱床生成帯の分類原則に関する批判	参28, p.198–203
Ю. В. Казицын:浅熱水性鉱床周縁粘土岩の交代累帯構造	図4,表11,参11, p.204-227
6) ウクライナ共和国科学アカデミー燃料地質・地球化学研究所(19	174) : ГГеология и полезные
ископаемые соленосных толщ (含岩塩層の地質と鉱物資源)」、ナウ	コバ ドウムカ出版所,キーエ
フ,240p., 27×18 cm(露文), UDC: 552.53+553	
目 次	
В. И. Китык, О. И. Петриченко: ウクライナの含岩塩層系, それと	関係ある鉱物資源,国民経済で
の利用の展望	図3,参37, p.5-14
Г. Н. Доленко :油田・ガス田区における岩塩ドーム構造分布規則性に	ついての問題によせて
	図 9 , p. 14-25
B. C. Журавлев:現世深海と海盆における岩塩層構造地質現象	参68, p. 25-32
Г. ЕА. Айзенштадт, М. В. Горфункель: 岩塩層構造地質形態と	マグマ作用形態の基本分類につ
いて	表1,参7,p.32-36
В.К.Гавриш, Л.И.Рябчун:ドニエプル=ドネツ凹地岩塩層系の形	成における深在断層の役割
	図3、参6、p.36-41
В. А. Разницын: 大ドネツ盆地のアウラコゲンの発達とドニエプル=	ドネツ凹地におけるデボン系岩
塩層 堆積 作用	参18、p. 41-47
М.П. Фивег:火山作用と岩塩層堆積作用	参20、p.47-52
Н. М. Джиноридзе, В. И. Раевский : ハロジェネシスの諸問題	図3,表2,参26, p.52-60

地 質 調 査 所 月 報 (第 27 巻 第 1 号)	
Н. А. Кудрявцев: 「蒸発岩」の交代起源に関する新資料	図3,参19, p.60-66
В. И. Созанский: ハロジェネシス問題に対する諸批判	参23, p. 66–70
О. И. Петриченко:岩塩層生成条件に関する情報源としての鉱物中の包有物	表1,p.70-73
О. И. Петриченко ほか2: ウクライナ地方古期塩水盆の塩水組成について	参7,p.73-77
В. Н. Утробин:前カルパチア前陸盆地モラッセ中のハロゲン層の位置と役割	図3,参17, p.77-86
Д.В.Гуржий:前カルパチア盆地と後カルパチア盆地ハロゲン層の堆積相と堆積	責条件
	参14, p.86-90
О. Д. Казанцев ほか6:沿カスピ海凹地南西部のハロジェネシスとテクトジェジ	ネシスの研究法
E	48,参31,p.91-100
М. В. Горфункель, Г. И. Слепакова: 沿カスピ海凹地の二畳紀後期, 中生代,	新生代における撓下
の性質について	6,参9,p.100-108
В. Г. Кузнецов, Л. В. Каламкаров: 東ヨーロッパ卓状地南部古生代含岩塩層の)比較解析
	図1, p.108-119
A. E. AreeB:ソ連の稼行岩塩鉱床の地質構造と探査法	図 6 , p. 119-127
A. H. Бокун: ソロトバ凹地岩塩層構造の構造物理的モデル化の諸結果について	
X	1,表2,p.127-133
С. М. Кореневский: ハロゲン層系とその母岩に関係ある有用鉱物コンプレック	スの分布規則性
図3,表	1,参25,p.133-146
М.А.Климов:前カルパチア地方含カリ岩塩層系とカリ塩鉱床探査の展望	
	3,参7,p.146-156
E. Ф. Станкевич, Ю. В. Баталин: 大陸ハロジェネシスとそれに関係ある鉱物	資源
	3, 参18, p. 156-162
B. B. DARFOBNAOB: 中央アジア陸成宕臨層糸 区	1,参6, p. 162-165
A. J. Dphr4ehko はかう:トニエクル=トネク回地南線帝アホン糸宕塩層糸の	相父替と石油・大公刀
	$5, \otimes 5, p. 100-171$
で、 いいのの時にから、 ないなど、 石温いーム層と同飲後層の地下水の水理力 子的・水理地 で の の ・ ま の の ・ ま の の ・ ま の の ・ ま の の ・ ま の の ・ ま の の ・ ま の ・ ・ ・ ・	
 Μ. Γ. Валяшко ほか4: ステブニク加用指約床今岩指粘土 3 階水の化学組成の 	.2,参3,p.170-103 形成
	14 - 夷 1 - n. 183–190
	太12, p. 191-196
A. И. Отрешко: 岩塩ドーム構造の幅岩のタイプと磁音环胎性の展望 表	》1. 参9. p. 196-204
Л. И. Павлов: 細粒支計岩貫入体接触帯における岩塩の変成と含鉄数水の生成	周題 参24. p. 204-208
В. Ф. Малеев : 前カルパチア地方の火山作用とその岩塩モラッセ鉱床形成に対	れる シニリ 1
	参27、p. 209-214
M. Диаров, C. Утегалиев: 風化残留層の構造の特徴—カリ塩探香の指標 図	16,参11,p. 214-224
Н. И. Банера, А. Л. Протопопов: ハロジェネシス過程の周期性に関する問題	· · · · · · ·
	【1,参17,p.224-229
per la constante de la constante	

7) А.Б. Каждан (1974): ГМетодологические основы разведки полезных ископаемых (鉱物資源探査の方法論)」, ネードラ出版所, モスクワ, 271p., 図97, 表18, 参81, 24×18 сm (露文), UDC: 550.8

目 次

第1章 地質学的探查原則 概要

54-(54)

新着資料の紹介(資料室)

鉱物資源と地質構造単元・同空間配列規則性との関係 鉱物資源の鉱物組成と化学組成の特徴 鉱床の工業的タイプと鉱床田の構造

第2章 鉱物資源の不均一性研究の原則

概要

地下における岩石の不均一性と有用鉱物集積体の地質学的性質 不均一現象の規模とその分類原則 自然鉱物資源生成体の構成単位 不均一性要素の線尺度と試料の大きさによる不均一性の分類 不均一性要素の線尺度と測点間隔による不均一性の分類 自然鉱物資源生成体の構成の異方性 有用鉱物の性質研究の特質とその測定易変性についての概念

- 第3章 探査の工学的・経済的前提
 - 基本概念と用語

自然鉱物生成体の地質的・工業的評価に対する,またその性質の易変性の概念に対する生産需要の影響

地質探査過程と地質的・経済的評価過程における研究対象についての概念の変化

最低品位決定の理論と応用の現状

不毛岩部の最高許容規模と鉱床胚胎係数の限界値

鉱物資源構成体の地質的一工業的モデル

第4章 探査の方法と原則

概要

探鉱坑道などのシステム 探鉱坑道内での観察とサンプリング 探査量の評価 探査の基本原則

第5章 地質調査過程における基本認識法としてのモデル化

モデル化の課題,対象,種類 鉱床・鉱体のグラフィック=モデル化と立体モデル化 有用鉱物の性質の鉱山幾何学的モデル化 地質数理的モデル化の原理 地下の鉱物資源の性質のモデル化 地下の鉱物資源の観察可能な性質の不均等性のモデル化 地質調査過程のモデル化

第6章 統計的モデル

研究史概説 統計的モデルの本質と適用条件 地質調査課題解決へのモデルとして利用される理論散布度 経験的資料と理論的モデルの調和チェック法 パラメータの評価 各種散布度条件下における間隔の評価 仮説の検討 2次元モデル 多元モデル

第7章 固体力学的モデル

55-(55)

地質調査所月報 (第27巻第1号)

研究史概説

固体力学的モデルの本質と適用条件

固体力学の基本概念

地下における鉱物資源の性質変化状況把握のためのモデルの応用

第8章 静遇然函数型モデル

研究史概説

静遇然函数型モデルの本質と適用条件

遇然函数理論の基本概念

地質調査パラメータのモデル化への静遇然函数計算適用の可能性

地質調査課題解決への遇然函数特性の適用

第9章 多調和遇然函数型モデル

研究史概説

多調和遇然函数型モデルの本質と適用条件

遇然函数のスペクトル組成の概念

地質調査課題解決への本モデル適用の可能性

第10章 地質調査の実際における各モデル適用効果を規制する要素

- 第11章 サンプリングの理論的基礎
- 第12章 探査鉱量の評価と地質調査パラメータ平均値の評価

まとめ

8) ソ連科学アカデミー バシュキール支部地質研究所ほか (1974):「Тектоника и магматизм Южного Урала (南ウラルの構造地質とマグマ作用)」,ナウカ出版所,モスクワ, 291p., 27×18 cm (靄文), UDC: 551.24; 551.21; 551.22 (470.5)

目 次

参44, p. 3-8

Γ. С. Сенченко: 南ウラルの構造地質の基本問題

П. Ф. Сопко, М. А. Кулагина: 地塊構造に関連したマグニトゴルスク大複向斜マグマ作用の発達 図1,参30, p.8-22 В. А. Романов: 南ウラルのテクトジェネシスの主要段階と主要相 図7,参14, p.22-34 О. А. Кондиайн, А. Г. Кондиайн: ウラルにおけるタンジェンシャルな転位とその変種・生成期・落 表1,参19, p.35-41 差 И. С. Огаринов, Г. С. Сенченко: 南ウラルの潜優地向斜帯 図2,参30, p.41-53 М. А. Камалетдинов, Т. Т. Казанцева: ウラルその他の褶曲区のオフィオライト=コンプレックス 参22, p. 53-58 の構造的位置 К.П.Плюснин: ウラルの褶曲構造の累帯性と発達段階性 図1,参17, p.59-66 П. Н. Швецов ほか4: ウラル=バシュキール地方西斜面のリーフェイ期構造フォーメイション帯 図1,参19, p.66-75 П. Е. Оффман, Э. А. Буш: 押しかぶせ構造問題と関連づけた南ウラルの構造地質について 図3, p. 76-79 O. B. Беллавин, И. Ф. Таврин: ウラル地方地殻中での花崗岩山塊と超塩基性岩山塊の配列 参23, p. 79-83 参49, p. 84-90 А. П. Рождественский:南ウラルの後ヘルシニア構造発達史 И. C. BaxpomeeB ほか2:マグニトゴルスク大複向斜の構造とマグマ作用の発達段階 図2,参37,p.90-101 A. C. Бобохов: 南ウラル地方バシュキール地域のデボン紀中期の火山作用と構造地質 図1,表1,参21, p.101-107

56-(56)

新着資料の紹介(資料室)

В.А. Маслов, П. В. Аржавитин: マグニトゴルスク大複向斜の火山	原コン	プレッ	クス生	戓期と火山
作用段階		図1,	参6,	p. 108–114
С.В.Руженцев: ウラル地方サクマル帯の構造的位置と内部構造		図2,	参12,	p. 114–121
В. И. Козлов, А. А. Пацков: 南ウラル地方のバシュキール大複向斜と	: ウラル	レタウ袍	夏背斜の)関係
		図1,	参11,	p. 121–129
В. И. Ленных, В. И. Петров:構造発達史と関係ある南ウラル西斜面	岩層の	変成と	マグマ	作用につい
ての新資料	図2,	表4,	参36,	p. 129–141
И. Б. Серавкин:マグニトゴルスク大複向斜西翼における初成火山構造	皆と地位	本構造の)関係	
	図2,	表1,	参13,	p. 141–148
Б. М. Садрисламов:南ウラル地方シルル系・デボン系下部火山源堆利	慣層系の	つ古構造	生地質的	的堆積条件
		図2,	参7,	p. 149–155
А. М. Виноградов ほか5: ウラル山脈オレンブルク地方の古火山復元	による	硫化鉄	鉱鉱層	の構造
			参15,	p. 155–162
С. Г. Грешнер: ウラル地方タギル=マグニトゴルスク帯の地向斜火山	乍用の	進化と相	毒 造発法	童の諸特徴
		図2,	参7,	p. 163–167
Н.И. Халевин ほか4: 地震観測データによるマグニトゴルスク凹地の)地殻	図3,	参35,	p. 168–176
B. B. Carлo ほか6: ウラル山脈オレンブルク地方の地質構造・マグマ	作用発	展の特	徴	
		図1,	参10,	p. 177–185
Р.Г.Гарецкий, И.Б. Дальян: 石油・天然ガス胚胎性の展望に結び	ついた	西およ	び南プ	リムゴジャ
ル地域の深部構造		図2,	参14,	p. 185–192
Я. А. Рихтер, М. А. Кригер: マグニトゴルスク大複向斜東翼におけ	るデボ	ン紀中	期火山	源コンプレ
ックスの地質構造の特徴		図1,	参7,	p. 192–198
Д. Н. Салихов:マグニトゴルスク大複向斜の造山性花崗岩類			参7,	p. 198–200
В. Г. Кориневский ほか3:ムゴジャル地方サクマル緑色岩帯・西緑	色岩帯	のマグ	マ作用	とその構造
帯区分上の意義	図1,	表1,	参8,	p. 200–206
Б. Д. MarageeB: ウラル山脈地質発達史の構造地質-マグマ作用周期性	によせ	た	参15,	p. 207–209
А. А. Скрипий:南ウラルにおける地向斜褶曲生成機構のタイプ		図5,	参9,	p. 209–220
А. М. Косарев, Л. Н. Сопко: 南ウラル地方マカン=ブリバイ地区プロ	レンド.	ィク累履	冒石英领	安山岩-流紋
岩層の構造と生成条件	図3,	表2,	参15,	p. 220–232
В. В. Радченко, А. В. Клочихин:南ウラル地方クラカ超塩基性岩山	塊区の	構造的	位置	
	図2,	表2,	参11,	p. 232–241
Д. Г. Ожитанов: クラカ山塊区の地質とその押しかぶせ構造説に対す	る批判		参10,	р. 242–249
А.К. Замаренов:前ウラル前陸盆地南部の構造		図2,	参17,	p. 250–257
Г. И. Самаркин ほか3: ウラル山脈オレンブルク地域ヘルシニア期後	期花崗	岩山塊	の岩石	化学組成と
鉱床胚胎性に対する構造地質的生成条件の影響	図2,	表2,	参6,	p. 257–269
И.В. Жилн, Ю.П. Бердюгин: ニャゼペトロフスク地区火山源岩の	組成と	構造的	立置	
			参3,	p. 269–271
M. A. Гаррис ほか2:同位体年代研究によるウラル地方のマグマ作用	・構造	地質の	討論問	題
			参34,	p. 271–279

9) ソ連科学アカデミー実験鉱物学研究所(1973):「Фазовые равновесия и процессы минералообразования (相平衡と鉱物生成過程)」, (Очерки физико-химической петрологии), вып. Ш, ナ ウカ出版所, モスクワ, 255р., 27×18 сm (露文), UDC: 550.4

目 次

Л. Л. Перчук: 深成岩中の Са-単斜輝石との平衡

図4,表5,参39, p.3-11

57-(57)

地質調査所月報(第27巻第1号)

И. П. Иванов, В. Ф. Гусынин : SiO ₂ -NaAlSi ₃ O ₈ -Al ₂ O ₃ -H ₂ O 系の T-	-P 平衡	
	図2,表1,参9,p.11-1	5
Л. Л. Перчук, В. А. Суворова: 黒鉛ーダイアモンド相転移領域におり	ナる CO · CO ₂ の逃散能の葬	熟
力学的計算	図2,表3,参4,p.15-1	8
К. И. Шмулович: CaO-MgO-SiO ₂ -CO ₂ 系の鉱物平衡ダイアグラムと	と接触変成問題への2・3の通	5
· 用	図7,表4,参29,p.19-3	35
В. И. Сорокин, Н. И. Безмен: 600°С•1,000 kg/cm ² の場合に塩化物溶	§液と平衡する Zn−Fe−S 系の∂	流
化物	図4,表1,参7,p.36-4	ł2
B. Ф. Гусынин : パラゴナイトの熱力学的性質	表1,参11,p.43-4	15
И. Я. Некрасов:熱水条件下の MgO-CaO-B ₂ O ₃ -H ₂ O 系の実験的研究	铊 図10,表11,参35,p.46-7	71
С. П. Кориковский:変成作用による白雲母-フェンジャイト質雲母の	組成の変化	
	図18,参35, p.71-9	€5
В. И. Фонарев ほか 3 : 三斜晶系ポリタイプ 1 Tk の合成葉蠟石	図4,表4,参15,p.95-10)3
P. А. Некрасова, И. Я. Некрасов: 500℃, 1,000 気圧下での La ₂ O ₃ -	SiO ₂ -B ₂ O ₃ -H ₂ O 系の相関係	
	図5,表7,参27, p.103-1	18
Г. П. Зарайский, В. Н. Зырянов:花崗岩のアルカリ交代作用の実験的	的研究	
	図19,表14,参38, p.119-1	56
Ю.В.Алехин: 沪過過程の流体力学と沪過効果	図3,表4,参65, p.157-1	93
Л. Д. Куршакова: ヘデンベルグ輝石の熱水合成に対する溶液の酸度-	ーアルカリ度の影響	
	図10,表7,参14,p.194-2	06
Ю. Е. Горбатый, Г. В. Бондаренко:高温・高圧下での水の分子スペ	ペクトル	
	図10,表4,参79, p.207-2	31
В. В. Суриков, Г. В. Бондаренко:赤外線吸収スペクトル法によるカ	リミングトン角閃石の構造の結	晶
状態別 Mg²+ および Fe²+ 配置の研究	図4,表4,参14,p.231-2	40
Т. А. Зиборова, И. Я. Некрасов: La ₂ O ₃ -B ₂ O ₃ -SiO ₂ -H ₂ O ₃ 系硼素珪	E酸塩溶液の赤外線吸収スペク	ト
N	図4,表2,参15,p.240-2	46
М.Б.Эпельбаум:高温・高圧下の液体密度および液体 - 液体限界張	力測定装置	
	図4,表1,参16,p.246-2	48
10) ソ連科学アカデミー シベリア支部プリヤート出張所(1970):	ГРудоносность и структур	ры
рудных месторождений Бурятокой АССР (ブリヤート自治共和	国の鉱床胚胎性と鉱床の構造)],
地質学部門報告,地質学編, выпуск 2 (10), ウラン = ウデー, 153р.,	27×18 cm (露文)	
目 次		
Ю. М. Бажин, А. Д. Дарижанов:北バイカル高原の含マンガン鉱下	「部古生層 図3,参6, p.3-	-18
Ю.П. Гусев ほか2: ザバイカル地方南西部モルスキー山脈原生代後	後期イタンツァー累層の堆積相	15
マンガン鉱床胚胎性について	参 5 , p. 19-	-27
Ю.П.Бутов: ビチム高原北西部の古生代前期堆積岩層系と火山源一	堆積岩層系の鉱床胚胎性	
	図2,参18, p.28-	-40
E. E. Батурина:地塊構造とジダー鉱床生成域中生代メタロジェニー	との関係について	
	図1,参13, p.41-	-51
С.А.Гурулев:鉱脈と岩脈に充塡された空隙の生成機構について	図10,参12,p.52-	-64

- Γ. C. Punn: クルバ鉱床生成域多金属鉱床群の鉱石組成と地球化学的特徴 図4,表3,参9,p.65-78
- **Γ. Α. Φεοφилактов**: 東サヤン地方トゥマヌィ地区金鉱脈群分布位置の構造条件 図1, p. 79-82
- P. 3. Архипчук: 西ザバイカル地方螢石鉱化体の生成条件について 表1,参7, p. 83-89
- **Г. А. Феофилактов**: 東サヤン地方キトイ=ウリク鉱床生成節の花崗岩類山塊と金鉱床との成因的関係

について 図1,参19, р. 90–100 C. А. Гурулев: アルミニウム資源としてのプリバイカル地方北部藍晶石片岩利用の見通し 図3,表2,参21, р. 101–109 П. В. Осокин: モルスキー山脈燐灰土の物質組成とタイプについて 参1, р. 110–116 К. Г. Башта: モロデジュノエ温石綿鉱床 図5,表1,参9, р. 117–131 O. В. Соколов: チェレムシャン鉱床石英資源のタイプと品質 表5,参2, р. 132–146 В. И. Кирасирова, Г. И. Туговик: バイカル湖南東沿岸の鉱床生成区と鉱物共生 図1,表1,参5, р. 147–152