原子吸光法による岩石中の Be, V, Ba, Rb の定量と 炎光法による Rb の定量*

寺島 滋**

Atomic Absorption Analyses of Be, V, Ba and Rb in Rocks and Flame Emission Analysis of Rb

Shigeru TERASHIMA

Abstract

(1) A method was proposed for the determination of beryllium, vanadium, barium and rubidium in rocks and minerals by the atomic absorption spectrometry, and that of rubidium by the flame emission spectrometry.

(2) An interference of aluminum on the determination of beryllium was eliminated by adjusting the height of light beam about 10 mm above burner top. Some interferences of diverse ions on the determination of vanadium were suppressed by coexisting of aluminum. The molecular absorption interference on the trace analyses of beryllium and vanadium from aluminum, titanium, calcium, potassium etc. was cancelled by adding aluminum, calcium and potassium to the standards. The ionization interference on the determination of barium and rubidium by atomic absorption spectrometry, and that of rubidium by flame emission spectrometry were eliminated by adding potassium to both samples and standards.

(3) For the determination of 0.5 to 50 ppm beryllium and 5 to 500 ppm vanadium in samples of silicate rocks, clays and feldspars, the 0.5 g sample was decomposed with a mixture of $HClO_4$, HNO_3 and HF, then dissolved by dil. HCl, and the solution was made up exactly to 25 ml. A series of standard solutions containing 1 to 100 μ g beryllium and 10 to 1000 μ g vanadium were prepared in 100 ml measuring flasks, and 150 mg of aluminum, 80 mg of calcium and 80 mg of potassium ions were added to each solution.

(4) For the determination of 20 to 5000 ppm barium and 5 to 500 ppm rubidium in various rocks, the 0.25 g sample was decomposed as described above, then dissolved by dil. HCl, and add 150 mg of potassium ion, and the solution was made up exactly to 50 ml.

(5) The contents of 0.04 to 10 ppm beryllium in the samples of various rocks which include ultramafic and carbonate rocks were determined by the atomic absorption spectrometry after an extraction of beryllium-acetylacetonate with chloroform.

(6) For the determination of beryllium in a beryl crystal and beryl ores, the 0.1 to 0.2 g sample was fused with a mixture of 2 g sodium carbonate and 0.3 g boric acid, and dissolved by dil. HCl. The complete procedure of this method required about 15 min.

(7) The results on beryllium, vanadium, barium and rubidium in some standard samples agreed well with those of reported values.

要 旨

(1) 原子吸光分析法によるベリリウム (Be), バナジウ

ム (V),バリウム (Ba), ルビジウム (Rb) および炎光分 析法によるルビジウムの定量について, 測定条件, 試料 処理, 共存成分の影響, 実際試料への応用を検討した.

(2) 一般けい酸塩岩石および粘土,長石中の0.5~50ppm のベリリウム, 5~500 ppm のバナジウムは, 試

29-(469)

 ^{*} 原子吸光分析法によるけい酸塩岩石鉱物および陸水分析法の研究 (第5報)
** 技術部

地質調査所月報(第24巻第9号)

料を過塩素酸,硝酸,ふっ化水素酸で分解し,希塩酸で 溶解して試料溶液とし,標準溶液にアルミニウム,カル シウム,カリウムの一定量を添加して共存成分の影響を 補正して定量した.

(3) 超塩基性岩,石灰岩,けい石などを含む各種岩石 中のベリリウムは,ベリリウムのアセチルアセトン塩を クロロホルムで抽出して共存成分と分離し,試料中 0.04 ppm 程度まで定量できた.

(4) 緑柱石中のベリリウムは, 試料を炭酸ナトリウム とほう酸で融解したのち希塩酸で溶解し, 所要時間約15 分で定量できた.

(5) バリウムおよびルビジウムの定量では,イオン化 干渉が認められたがカリウムを添加することによって抑 制でき,一般けい酸塩中のバリウム,ルビジウムを定量 した.

(6) ルビジウムの炎光分析では、イオン化干渉のほか に共存成分による発光干渉が認められたがスリット幅を 狭くして測定することによって抑制でき、一般けい酸塩 中のルビジウムを定量した.

(7) ルビジウムの定量において,検出感度は原子吸光 法にくらべて炎光分析法が約5倍高いが,干渉は原子吸 光法の方が少なかった.

1. 緒 言

従来岩石中のベリリウム、バナジウム、バリウム、ル ビジウムの定量には発光分析法が広く用いられてきた. 岩石標準試料中のこれら成分の分析値は, FLEISCHER (1969), FLANAGAN (1969) によりまとめられているが、 発光分析による値は分析者によってかなり異なり、良好 な精度を得ることはむずかしいようである。ベリリウ ム、バナジウムには、吸光光度法も適用され、ベリリウ ムについては MERRILL ら (1960) によりアセチルアセ トン法が、SANDELL (1959a) によりモーリン法が提案さ れ,バナジウムについては、CHAN ら(1966) によりジアミ ノベンジジン法が, SANDELL (1959b) によりリンタング / ステン酸法が提案されている. これらの方法は,精度は 良好であるが試料の前処理が煩雑である. 岩崎ら(1968) は, 火成岩, 磁鉄鉱, チタン鉄鉱, クロム鉄鉱中のバナ ジウムを N-ベンゾイル-N-フェニルヒドロキシルアミ ン錯体としてクロロホルムで抽出し、吸光光度法で定量 している.この方法は前記の方法にくらべて操作が短か く,精度も良好である.

INGAMELLS ら(1971)は,岩石中のバリウムを重量 法,発光分析法,蛍光X線法,同位体希釈法などで定量 し,精度に関しては同位体希釈法がすぐれていることを 指摘している.岩石中のルビジウムは,蛍光X線法(服 部ら,1969),同位体希釈法(PETERMAN ら,1967),放射 化分析法(CABELL ら,1957)などによって良好な精度 で定量されている.村上ら(1967)は海水中のルビジウ ムをテトラフェニルほう素酸ナトリウムによって沈殿分 離したのち炎光分析法で定量している.

原子吸光法は感度が良いこと,共存成分の影響が少な いこと,測定時間が短かいことなどの利点があり,各種 成分の定量に用いられるようになった.ベリリウムの定 量については,AMosら(1966)が亜酸化窒素-アセチレ ンフレームを用いることによって高感度で測定できるこ とを報告しているが,岩石試料についての検討はなされ ていない.本実験で種々検討した結果,干渉も少なく, 良好な精度で定量できることがわかったので,一般けい 酸塩岩石のほか,ベリリウム含有量の少ない 超塩基性 岩,石灰岩,けい石などについても検討し,定量法を定 めた.また,従来複雑な分離操作をおこなったのち吸光 光度法(OWENS ら,1960),重量法(秋山,1957)などで 定量された緑柱石中のベリリウムも簡単に定量できた.

BUCKLEY ら (1971) は,岩石試料を主水とふっ 化水 素酸で分解したのちほう酸溶液として,バナジウムを含 む各種成分を定量している.この方法は,共存成分に対 する対策がじゅうぶんでなく,微量分析では良好な結果 が得られない.バナジウムに対する共存成分の干渉は, アルミニウムを添加すると抑制でき,高濃度塩による分 子吸収も標準溶液にアルミニウム,カルシウム,カリウ ムを添加すると補正できることがわかった.

バリウムの原子吸光分析については、すでに前報(寺 島、1972)で報告した.この報告では、イオン化干渉の ほかにカルシウム、チタンによる分子吸収が認められ、 これら成分の分離が必要であった.しかし今回用いた装 置ではチタンの分子吸収はほとんど認められず、カルシ ウムの干渉も少なく、分離することなく定量できた.

Vosters ら (1967) は,岩石中ルビジウムの原子吸光 分析において,干渉抑制剤としてランタンおよびカリウ ムを用いているが,検討の結果,カリウムのみを添加す れば定量できることがわかった.従来の炎光分析法で は,主として空気-水素フレーム,酸素-水素フレームが 用いられ,また,共存成分の発光干渉についての報告は 少ない.近年原子吸光法の普及とともに,噴霧音が小さ く,長時間安定した測定のできる空気-アセチレンフレ ームが用いられるようになった.このフレームを用いて ルビジウムの炎光分析法を検討し,検出感度,共存成分 の影響などを原子吸光法と比較した.その結果,検出感 度は炎光分析法がすぐれており,共存成分の影響は原子 吸光法が少なかった. なお, バナジウム, バリウムにつ いても検出感度は炎光分析がすぐれていたが、共存成分 による発光干渉が大きいため、実用分析には原子吸光法 がすぐれている.

2. 試薬,装置,測定条件

2.1 試 遨

ベリリウム標準原液:酸化ベリリウム0.2788を白 金ざらにはかりとり,過塩素酸5mlとふっ化水素酸10 ml を加え、加熱分解したのち蒸発乾固した. 塩酸(1+ 1) 100 ml を加え、加温溶解したのち水で希釈し、ベリ リウム 0.1 mg/ml の溶液とした.

バナジウム標準原液:メタバナジン酸アン モニウ ム0.460gを塩酸(1+1)100mlに溶解したのち水で希 釈し, バナジウム 0.2 mg/ml の溶液とした.

バリウム標準原液:炭酸バリウムを希塩酸に溶解 し、バリウム 1 mg/ml の溶液とした.

ルビジウム標準原液:塩化ルビジウムを希塩酸に 溶解し、ルビジウム 0.1 mg/ml の溶液とした.

干渉補正用混合溶液:塩化アルミニウム(6水塩), 炭酸カルシウム、塩化カリウムを希塩酸で溶解し、アル ミニウム 15 mg/ml, カルシウム 8 mg/ml, カリウム 8 mg/ mlを含む溶液を作った.

カリウム溶液:塩化カリウムを水に溶かし、カリウ ム 50 mg/ml の溶液とした.

10% EDTA 溶液: EDTA (2ナトリウム塩) 100g を水 1,000 ml に溶解した.

アセチルアセトンは水で希釈して5%溶液とし、クロ ロホルムはそのまま使用した.

試薬はすべて特級品または市販最純品を使用した.

2.2 装 置

ベリリウム, バナジウム, バリウム:日本ジャー レルアッシュ AA-780型原子吸光・炎光分析装置(以下 ジャーレルAА-780と略記)を使用し、ベリリウムおよ びバナジウム (単元素用,日立製),バリウム(バリウム-ストロンチウム-カルシウム用, ウエスチングハウス製) の中空陰極ランプ, 亜酸化窒素-アセチレン用 (0.4 × 50 mm) 水冷式バーナーを用いた.

ルビジウム(原子吸光法):ジャーレル AA-780 と日立207型原子吸光分析装置(以下日立207と略記)を使 用した、両装置ともルビジウム中空陰極ランプ(単元素 用,ウエスチングハウス製),空気-アセチレン用(0.5× 100 mm) 水冷式バーナーを使用した.

ルビジウム(炎光分析法):ジャーレル AA-780 と 島津 MAF-1 型原子吸光・フレーム分析装置(以下島津 MAF-1 と略記)を使用した.ジャーレルAA-780では, 上記原子吸光法と同じバーナーを使用し, 島津 MAF-1 では空気-アセチレン用 (0.4 × 100 mm) 空冷式バーナ ーを使用した.

以下とくにことわらない測定値は、 ジャーレル AA-780 によるものであり,日立 207, 島津 MAF-1 による 測定値には装置名を記した.

2.3 測定条件

各種成分の測定条件を第1表に示した.

分析線: もっとも高い感度が得られるのが 第1表の 分析線である. ベリリウム, バリウムは, 他に適当な分 析線がない. 高濃度のルビジウムは 794.8 nm で測定で きる、バナジウムは、多くの分析線があるが、装置の感 度を減少させることにより、500 ppm 程度まで測定でき るためとくに検討しなかった.

ランプ電流: 中空陰極ランプの電流値を低くすると

	JARREL AA–780				HITACHI 207	SHIMADZU MAF-1
	Ba (A.A.)	Be (A.A.)	V (A.A.)	Rb (A.A., F.E.)	Rb (A.A.)	Rb (F.E.)
Wavelength (nm)	553.6	234.9	318.4	780.0	780.0	780.0
Lamp current (mA)	18	12	15	15	18	
Slit width (mm)	0.075	0.075	0.075	0.075	1.0	0.1
H. L. B. (mm)	5	5	5	10	10	10
C_2H_2 flow (<i>l</i> /min)	4.6	4.6	4.6	3.5	3.0	1.7
N_2O flow (l/min)	6.5	6.2	6.2			
Air flow (<i>l</i> /min)				13.0	13.0	7.0
A A Atomic	absorption	F	E Flame	emission		

Table 1 Working conditions of this study.

H.L.B. Height of light beam over the burner

31 - (471)

感度は増加するが,ノイズが大きくなる.また同一電流 値で長期間使用するとノイズが大きくなる.

スリット幅:原子吸光法,炎光分析法とも共存成分 の発光干渉を抑制し,直線性の良い検量線を得るために は,できるだけ狭いスリット幅で測定することがのぞま しい.

ガス流量:ベリリウム,バナジウムの定量では,第 1表の条件よりもアセチレン流量を増加させた場合に高 い感度が得られたが,バーナーヘッドにカーボンが析出 して長時間の測定が困難であった.バリウムは,第1表 の条件で最高感度が得られた.ルビジウムは,原子吸光 法,炎光分析法とも空気流量,アセチレン流量を変化さ せても感度の変化はわずかであった.

バーナー位置: バーナー支持台を上下させて感度を 測定し,最高感度の得られる位置を求め,第1表に示し た.ジャーレル780では,光源からの光束を反射鏡を用 いて3回フレーム中を通過させることができる.3回通 過させると感度が増加する成分もあるが,フレームによ る吸収やノイズの増大があったので,本実験はすべて1 回通過させておこなった.以下の実験はとくにことわら ないかぎり,第1表の条件でおこなった.

3. 定量方法と定量結果

3.1 けい酸塩中のベリリウム,バナジウムの定量

3.1.1 定量方法

試料0.58を正しく白金ざら (100 ml) にはかりとり, 過塩素酸 8 ml, 硝酸 3 ml, ふっ化水素酸 15 ml を加え, かき混ぜたのち常温で約30分間 静置 する. 熱板上に移 して加熱,分解したのち蒸発 乾固 する. 塩酸 (1 + 1) 2.5 ml と水約 10 ml を加えて沸とう近くまで加 温 し, 内容物を溶解する.メスフラスコ (25 ml) に移し,水を 加えて定容にする.この溶液を用いて,下記標準溶液系 列とともに第1表の条件で測定し,ベリリウム,バナジ ウムの含有量を求める.

標準溶液系列は、ベリリウム 0 ~ 100 µg、パナジウム 0 ~ 1000 µg を、段階的にメスフラスコ (100 ml) に分取 し、干渉補正用混合溶液 (アルミニウム 15 mg/ml, カル シウム 8 mg/ml, カリウム 8 mg/ml) 10 ml を加え、塩酸 濃度約.0.6N となるようにし、水を加えて定容とする.

本法は,酸性岩から塩基性岩までの各種岩石および粘 土,長石などに含まれる 0.5 ~ 50 ppm のベリリウム, 5 ~ 500 ppm のバナジウムの定量に適用できる.

3.1.2 定量結果

3.1.1の方法で,各種岩石標準試料中のベリリウム, バナジウムを定量した結果を他の方法による値と比較し

Table 2Analytical data for beryllium and vana-
dium in standard samples.

	Be(Be(ppm)		ppm)
Samples	Á.A.	O.M.	A.A.	О.М.
JG-1	3.3	<3*	21	24*
JB–1	1.6		215	200*
G-1	3.3	3**	15	16**
W-1	0.8	0.8**	281	240**
G-2	3.0	2.4	34	37
GSP-1	1.3	0.8	53	52
AGV-1	2.3	1.8	121	121
BCR-1	1.6	2.6	423	384
NBS –98	4.4		192	_
NBS-99a	2.3		$<\!\!2$	—

A.A. : Atomic absorption proposed method (Average of three analyses).

O.M. : Values reported by FLANAGAN (1969); *Values reported by Ando et al. (1971); **Values reported by FLEISCHER (1969).

NBS-98 : Plastic clay NBS-99a : Sodium feldspar

て第2表に示した.

ベリリウムの定量値は、必ずしも良い一致を示してい ないが、これは他の方法による値が主として発光分析法 によるためと思われる. MERRILL ら (1960) によれば、 吸光光度法による G-1, W-1中のベリリウムの定量値 は、それぞれ $3.0 \sim 3.7$ ppm, $0.56 \sim 0.79$ ppm である. また、共存成分を分離したのち、 JG-1, JB-1 中のベリ リウムを定量したが本法の定量値とほとんど同様な値が 得られた.

バナジウムの定量値は、他の方法による値と良い一致 を示している. JG-1, JB-1 については、5回分析した が定量値の範囲はそれぞれ 19 ~ 22 ppm, 205 ~ 222 ppm であった.しかし超塩基性岩中のバナジウムの定量で は、試料が完全に分解せず、良好な結果は得られなかっ た.

3.2 抽出法を併用する各種岩石中の ベリリウムの 定量

3.2.1 定量方法

試料0.1~0.5gを3.1.1の方法で分解し,蒸発乾固する. 塩酸 (1 + 1) 1.0 ~ 1.5 ml と水数 ml を加えて沸とう近くまで加温して溶解する.

塩化ナトリウム 2 g, 10% EDTA 溶液 20 ml, 5% ア セチルアセトン溶液 5 ml を加えたのち,水酸化ナトリ ウム (約 3N)を滴加して,溶液の pH を7.0~7.5に調 節する.

分液ロート (100 ml) に移し, 溶液量を約 50 ml にし

てよく振り混ぜたのち10~15分間静置する.クロロホルム 10 ml を加えて約3分間はげしく振り混ぜる. 静置 して2層に分離し,有機相を別の分液ロート(100 ml) に移す.水相にクロロホルム10 ml を加えて抽出を繰返 えし,有機相を合せる.

有機相に水約 30 ml と5 %アセチルアセトン 2 ml を 加え振り混ぜて洗じょうし,有機相をビーカー(50 ml) に移す.洗液にクロロホルム 10 ml を加えて振り混ぜ抽 出したのち分離し,有機相をビーカーに加える.有機相 に塩酸 (1 + 1) 2 ml を加えて蒸発乾固する.硝酸 2 ml と過塩素酸 2 ml を加えて再びほとんど乾固 するまで蒸 発する.塩酸 (約 0.6 N) 5 ml を正しく加えて溶解し, 試料溶液とする.下記標準溶液系列とともに第 1 表の条 件 (ただしバーナー上の光束の高さは約 10 mm にす る)で測定し,ベリリウム含有量を求める.

標準溶液系列は、ベリリウム 0 ~ 100 μg を メスフラ スコ (100 ml) に段階的に分取し、塩酸 (1 + 1) 10 ml を 加えたのち水を加えて定容にする.

本法は,酸性岩から超塩基性岩までの各種岩石および 石灰岩,けい石中の0.04~10 ppmのベリリウムの定量 に適用できる.

3.2.2 定量結果

3.2.1 の方法で各種岩石中のベリリウムを 定量した結 果を第3表に示した.比較する適当な分析値 は 少 な い が, JG-1, JB-1 についての値や, 4.5 でのべる合成 試 料による検討の結果から,じゅうぶん信頼できる値と思 われる.

3.3 緑柱石および鉱石中のベリリウムの定量

3.3.1 定量方法

試料0.1~0.2gを正しく白金ざら (100 ml) にはかり とり、炭酸ナトリウム2g、ほう酸0.3gを加えてかき 混ぜる.弱い炎で加熱融解したのち約1000℃で4~5分 間強熱し、完全に融解する. 放冷後時計ざらで ふたを し、塩酸 (1 + 1) 27 ml を加え、内容物を溶解する. 溶 Table 3 Analytical data for beryllium using acetylaceton extraction-atomic absorption method (Be, ppm).

Samples	E.A.A.	O.M.
JG-1 (Granodiorite)	3.28	3.3*
JB-1 (Basalt)	1.62	1.6*
PCC-1 (Peridotite)	0.06	<0.5**
DTS-1 (Dunite)	0.05	<0.5**
NBS-1a (Limestone)	0.74	
NBS-102 (Silica brick)	0.39	
E.A.A. Average of three	analyses of t	the proposed

method. See notes in Table 2.

** Values reported by FLANAGAN (1969).

解しにくいときは、少量の水を加え、ガラス棒でかき混 ぜる.メスフラスコ (200 ml) に移し、水を加えて 定 容 にする.下記標準溶液系列とともに第1表の条件で測定 し、ベリリウム含有量を求める.

標準溶液系列は、炭酸ナトリウム18,ほう酸0.158 をメスフラスコ (100 ml) にはかりとり、水約20 ml を 加えたのち、塩酸(1+1)を滴加して中和する.ベリ リウム0~5 mgを段階的に加え、塩酸濃度約0.6 N に なるようにしたのち水を加えて定容にする.

本法により,緑柱石および各種岩石中の0.01~10%の ベリリウムが所要時間約15分で定量できる.

3.3.2 定量結果

3.3.1の方法で緑柱石, その他の試料中のベリリウム を定量した結果を第4表に示した.

緑柱石は佐賀県杉山産である.同一試料ではないが, 同地区の緑柱石中の酸化ベリリウム含有量について, 11.65%および11.98%の値が報告されている(長島ら, 1960).

石原ら(1969)により、ベリリウム鉱床の探査に用い られるベリロメーターと吸光光度法によるベリリウムの

Table 4 Analytical data for beryllium in minerals and ores (BeO, $\frac{0}{10}$).

		Atomic absorption		Berylometer*
Sai	amples	Na ₂ CO ₃ +H ₃ BO ₃	$Na_2CO_3 + K_2CO_3$	
1	Beryl, Sugiyama, Saga	11.66	11.70**	
2	Beryl-muscovite ore, do.	2.25	2.23	6.2
3	Beryl-quartz ore, do.	1.81	1.83	8.8
4	Beryl-quartz ore, do.	0.53	0.55	5.1
5	"Greisen", Komaki, Shimane	0.037	0.038	_
6	Muscovite adamellite, Sugiyama	0.012	0.011	0.04
	*Values reported by Ishihara et al. (1969).	$**Na_2CO_3+K_2CO_3$	3+H3BO3	

33-(473)

地	質	調	査	所	月	報	(第	24	巻	第	9	号)
---	---	---	---	---	---	---	----	----	---	---	---	----

Samples	E	sa (ppm)	Rb (ppm)		
	A.A.	O.M.	A.A.	F.E.	O.M.
JG-1	463	430-470*	182	184	168-207*
JB-1	485	320-454*	40	41	34-45*
G2	1804	1500-3000	167	172	108-513
GSP-1	1238	855-2000	258	264	200-690
AGV-1	1208	1047-2700	67	70	58-130
BCR-1	663	480-1230	45	49	45-150
NBS-98	515		159	161	
NBS-99a	2410		105	110	

Table 5 Analytical data for barium and rubidium in standard samples.

A.A. Atomic absorption proposed method (Average of three analyses).

F.E. Flame emission proposed method (Average of three analyses).

O.M. Values reported by FLANAGAN (1969).

*Values reported by ANDO, et al. (1971).

定量値が一致しないことが指摘されているので、いくつ かの試料について検討し、結果を第4表に示した.ベリ ロメーターは高い定量値を与えるが、0.01%程度の酸化 ベリリウムが検出でき、鉱床探査には有用と思われる.

3.4 けい酸塩中のバリウムおよびルビジウムの定量

3.4.1 定量方法

試料0.1~0.25 g を白金ざら (100 ml) に正しくはかり とり,過塩素酸 5 ml,硝酸1 ml,ふっ化水素酸 10 ml を 加え,熱板上に移し加熱分解し,蒸発乾固 する.塩酸 (1 + 1) 5 ml と水約 20 ml を加えて沸とう近くまで加 温して溶解する.

メスフラスコ (50 ml) に移し,カリウム (50 mg/ml) 溶 液 3 ml を加えたのち水を加えて定容にする. 下記標準 溶液系列とともに第1表の条件で測定し,バリウム,ル ビジウムの含有量を求める.

標準溶液系列は、 バリウム 0 ~ 2000 µg, ル ビジウム 0~200 µg を段階的にメスフラスコ(100 ml) に分取し, カリウム (50 mg/ml) 溶液 6 ml を加え,塩酸濃度約 0.6 Nとなるようにしたのち水で定容にする.

本法により,各種けい酸塩岩石中の20~5000 ppm のバリウムおよび5~500 ppm のルビジウムが定量で きる.装置によっては,バリウムの定量においてカルシ ウムによる吸収が生じ,精度良く定量できないので,あ らかじめカルシウムの影響を検討する.

3.4.2 定量結果

3.4.1の方法で各種標準試料中のバリウム,ルビジウ ムを定量した結果を第5表に示した.バリウムの定量値 は共存成分を分離したのち原子吸光法で定量した値(寺 島,1972)とほとんど同じである.

ルビジウムについても良好な定量値が得られた. JG-1, JB-1 については, 試料処理, 定量操作を5回おこな ったが, 定量値の範囲は 178 ~ 184 ppm, 38 ~ 41 ppm であった.

表には示してないが,日立207を用いてもほとんど同 じ値が得られた.

3.5 炎光分析法によるけい酸塩中のルビジウムの定量

3.5.1 定量方法

3.4.1と同じ操作をおこなって, 試料溶液 と標準溶液 系列を作る. 第1表の条件(島津 MAF-1 を用いる場合 はスリット幅を 0.05 mm にする)で測定し, ルビジウ ム含有量を求める.

本法により, 各種けい酸塩中の 5 ~ 500 ppm のルビ ジウムが定量できる.

3.5.2 定量結果

3.5.1 の方法で各種標準試料中 のルビジウムを定量した結果を第5表に示した.いずれも原子吸光法にくらべてわずかに高い定量値であるが,その他の方法にくらべ良好な精度といえる. 島津 MAF-1 を用いてもほとんど同じ値が得られた.

高い定量値の原因は,共存成分の発光によるもので, 試料溶液と標準溶液のマトリックスをほぼ等しくするこ とにより抑制できるものと思われる.

3.6 検 量 線

原子吸光分析では、装置の感度の切換え、記録計の目 盛拡大装置、バーナーヘッドの回転などにより、ベリ リウムは 0.004 ~ 50 ppm、パナジウムは、0.05 ~ 500 ppm、バリウムは 0.05 ~ 40 ppm、ルビジウムは 0.02 ~ 100 ppm の範囲で直線に近い検量線が得られる.

ルビジウムの炎光分析においても感度を変化させるこ とにより, 0.005 ~ 30 ppm の範囲でほぼ直線の検量線 が得られた.

34-(474)

各種成分の検量線の一例を第1図および第2図に示した.

2. 定量条件の検討

4.1 試料の分解方法に関する検討

けい酸塩中のベリリウムの定量において、MERRILL ら(1960)は試料を硫酸とふっ化水素酸で処理したのち 硫酸水素カリウムで融解している.SANDELL(1959a) は、硫酸とふっ化水素酸で処理したのち、水酸化ナトリ ウムで融解している.原子吸光分析では、これらの融剤 が多量に含まれることは好ましくない.蒸発 乾 固 に よ り、ほとんど除去できる酸による分解法を検討した.

第2表に示した各種岩石試料0.58 を, 3.1.1の方法 で分解し,溶解したのち沪紙(5種B)を用いて沪過し, 自金るつぼで沪紙を灰化した.炭酸ナトリウム0.58 を 加えて強熱融解し,希塩酸で溶解し,ベリリウムおよび バナジウムを定量した.粘土(NBS-98)からはベリリウ ムが,塩基性岩(BCR-1)からはバナジウムが総含有量 の1%程度検出されたが,その他の試料からはいずれも 検出されなかった.超塩基性岩についての実験では,ベ リリウムは検出されなかったが総含有量の10~20%のバ ナジウムが検出された.

岩崎ら(1968)は、硫酸、硝酸、ふっ化水素酸で試料

を分解し、磁鉄鉱、チタン鉄鉱、一般火成岩中のバナジ ウムを吸光光度法で定量し、クロム鉄鉱およびこれを多 量に含む火成岩中のバナジウムは、過酸化ナトリウムで 融解して定量している.炭酸ナトリウムで融解し、温水 で溶解したのち沪過し、沪液からバナジウムを定量する SANDELL(1959 b) による方法では、沈殿中に数%のパナ ジウムが残留するため良好な結果が得られない(岩崎 ら、1968).

緑柱石中のベリリウムの定量において、OWENS ら (1960)は炭酸ナトリウムで融解し、秋山(1957)は炭 酸ナトリウム、水酸化カリウム、硝酸カリウムの混合物 で融解する方法を推奨している.しかし、いずれも融成 物を希塩酸で処理するとけい酸が沈殿し、ベリリウムも 一部共沈するため均一な溶液が得られない.各種の融解 法について検討した結果、炭酸ナトリウムとほう酸で融 解すると短時間で融解し、希塩酸で溶解しても沈殿を生 じない利点があることがわかった.

第4表に示した緑柱石,その他の試料0.18を炭酸ナト リウム18と炭酸カリウム18で融解し、ベリリウムを 定量した.酸化ベリリウム2%以下の試料では、炭酸ナト リウムとほう酸で融解する方法と同様な値が得られた.

また,3.1.1 の酸分解による方法では,酸化ベリリ

地質調查所月報(第24巻第9号)

ウム0.04%以下の試料では融解法と同様の値が得られた が、0.5%以上の試料は完全に分解しなかった.

一般けい酸塩中のバリウムの定量では, 3.4.1の分解 方法で問題ないが,イオウを含む試料では硫酸バリウム が生成し,希塩酸に溶解しない場合がある. この場合 は,処理する試料をできるだけ少なくし,分解の際に乾 固直前で蒸発をやめることが必要である.

どうしても硫酸バリウムが生成する場合は, 沪別して 炭酸ナトリウムで融解し,希塩酸で溶解して定量する.

4.2 無機酸の影響

各種成分に対する塩酸,硝酸,過塩素酸,硫酸の影響 を検討し,結果を第6表に示した.各種酸とも0.06Nの 影響を基準にした相対偏差である.いずれの成分に対し ても,高濃度の酸は負の偏差を与える.以下の実験はと くにことわらないかぎり塩酸0.3 N溶液でおこなった. 4.3 共存成分の影響と干渉の抑制

4.3.1 ベリリウム

ベリリウム 0.4 ppmに対する各種イオンの影響を第7 表に示した.高濃度のアルミニウムは負の偏差を与える が,他の成分の影響はほとんど無視できる.ベリリウム に対するアルミニウムの干渉とバーナー上の光束の高さ の関係を第3図に示した.バーナー上の光束の高さを 9~10.5 mm にすることにより,アルミニウムの干渉は 抑制できる.

検出限界に近いベリリウムの定量では、高濃度のアル ミニウム、チタン、カルシウム、カリウムなどによる分 子吸収が生じ、正の偏差が認められた(第4図).この干 渉は、試料溶液と標準溶液のマトリックスをほぼ等しく することによって補正できる.一般けい酸塩中の各種成 分含有量を考慮し、標準溶液にアルミニウム、カルシウ

Acida (M)		Be (0.4 ppm)	V (8 ppm)	Rb (2 ppm)	Rb (2 ppm)
Acids (N)		A.A. (1)	A.A. (1)	A.A. (2)	F.E.
HCl	0.06	0.	0	0	0
	0.12	0	0	0	-1
	0.30	0	0	-1	
	0.60	—3	0	-6	-10
	1.20	-4	0	-14	-23
	2.40	-6		36	36
HNO ₃	0.06	0	0	0	0
	0.12	0	0	+2	0
	0.30	0	+2	+1	-1
	0.60	+1	+3	0	-2
	1.20	0	0	-2	-4
	2.40	2	-2	-6	-8
HClO ₄	0.06	0	0		
	0.12	0	0		
	0.30	0	0		
	0.60	0	-1		
	1.20	0.	-5		
,	2.40	-3	—7		
H_2SO_4	0.06	0	0	0	0
	0.12	0	0	-2	0
	0.30	0	+2	—3	1
	0.60	0	+3	5	3
	1.20 .	-1	-1	6	4
	2.40	-6	8	-21	-8

Table 6 Effect of inorganic acids (Relative error, %)*.

*Standard solution was 0.06 N acidic.

A.A. Atomic absorption; (1) JARREL AA-780, (2) HITACHI 207

F.E. Flame emission; SHIMADZU MAF-1

原子吸光法による岩石中の	Be, V, Ba, Rb	の定量と炎光法による	Rb の定量	(寺島	滋)
--------------	---------------	------------	--------	-----	----

Ions	Concentration (ppm)	Be (0.4 ppm)	V (8 ppm)	V (8 ppm)+Al (1000 ppm)
Na ⁺	$100 \sim 4000$	$0 \sim +2$	$+6 \sim +12$	$0 \sim +3$
K+	$100 \sim 4000$	$0 \sim +2$	$+7 \sim +5$	$0 \sim +4$
Mg^{2+}	$100 \sim 4000$	$0 \sim -1$	$+2 \sim +10$	$0 \sim 0$
Ca^{2+}	$100 \sim 4000$	$0 \sim 0$	$0 \sim +11$	$0 \sim +5$
Sr^{2+}	$100 \sim 4000$	$0 \sim 0$	$+5 \sim -10$	$0 \sim +2$
Mn^{2+}	$100 \sim 4000$	$0 \sim -3$	$+3 \sim +6$	$0 \sim 0$
Fe^{3+}	$100 \sim 4000$	$0 \sim -4$	$-2 \sim -12$	$0 \sim -3$
Al ³⁺	$100 \sim 4000$	$0 \sim -25$	$+6 \sim +13$	
Ti ⁴⁺	$100 \sim 1000$	$0 \sim -2$	Fig. 5	$0 \sim 0$
BO ₃ ³⁻	$700 \sim 8400$	$0 \sim -4$	$-9 \sim -6$	$0 \sim 0$
PO43-	$288 \sim 5750$	$0 \sim 0$	$-6 \sim -22$	$0 \sim 0$

H: Height of light beam above burner (num) 第3図 ベリリウムに対するアルミニウムの干渉 Interference of aluminium for beryllium.

ム,カリウムの一定量を添加して補正した. ベリリウム 含有量 0.5 ppm 以下の試料やマトリックスが 著しく 異 なる試料は 3.2.1 の方法で定量する.

4.3.2 バナジウム

バナジウム 8 ppm に対する各種イオンの影響を第7 表および第5 図に示した.ほとんどの成分が正または負 の偏差を与える.チタン,鉄の干渉は特異である.ベリ リウムと同様に,検出限界に近いバナジウムの定量で は,高濃度のアルミニウム,チタン,カルシウムなどに よる分子吸収が認められた(第6図).遠藤ら(1969) は、ピロ硫酸カリウムを添加してバナジウムに対する共

Calibration curve for beryllium and molecular absorption of some elements.

存イオンの干渉を抑制している.本実験では,バナジウ ムの吸光度を高め,ほとんどのけい酸塩に含まれている アルミニウムの干渉抑制効果を検討した.アルミニウム 1000 ppm を共存させた場合の各種イオンの影響を第7 表および第5 図に示した.アルミニウムは各種イオンの 干渉を抑制する.一般けい酸塩中にはアルミニウムが含 まれるためとくに添加する必要はない.高濃度塩による

37-(477)

ムの影響

Effect of iron, titanium and aluminium for vanadium.

Calibration curve for vanadium and molecular absorption of titanium, calcium and aluminium.

分子吸収は、ベリリウムと同様に標準溶液にアルミニウ ム、カルシウム、カリウムを添加して補正する.

4.3.3 バリウム

バリウムは、亜酸化窒素-アセチレンフレーム中でイ オン化するため、他のイオン化しやすい成分が共存する と中性原子が増加し、吸収が増加する.バリウム 2 ppm に対するカリウムの影響を第7図に示した.カリウム 1,000 ppm 以上が共存するとほぼ一定の吸収が得られる ようになる.以下の実験では、カリウム 3,000 ppm を共 存させてイオン化を抑制した.

日本ジャーレルアッシュAA-IE型原子吸光分析装 置を用いてバリウムを定量し,カルシウム,チタンの分 子吸収を報告した(寺島,1972).この場合,カルシウム 100 ppm,チタン 500 ppm で約1 ppm のバリウムに相当 する吸収が生じ,これら成分と共存するバリウムを定量 することは困難で,バリウムを硫酸塩として分離したの ち定量した.

ジャーレル AA-780 を用いてカルシウム, チタンの干 渉を検討し,結果を第8図に示した.高濃度のカルシウ ムが共存するとノイズが増大し,カルシウム,チタンの みを噴霧してもノイズがあらわれるが,バリウムの吸収 とは区別できる.その他のイオンの影響を第8表に示し た.アルミニウムがわずかに負の偏差を与えるが,実際

Ba: 2 ppm Rb: 1 ppm A. A.: Atomic absorption F. E.: Flame emission

Effect of potassium for barium and rubidium.

38-(478)

原子吸光法による岩石中の Be, V, Ba, Rb の定量と炎光法による Rb の定量(寺島 滋)

Table 8 Effect of diverse ions for barium and rubidium in the presence of 3000 ppm potassium (Relative error, %).

Ions	Concentration (ppm)	Ba (4 ppm)	Rb (2 ppm)		
		A.A.	A.A.	F.E.	
Na ⁺	$100 \sim 4000$	0~ 0	$0 \sim -5$	$0 \sim -5$	
Mg^{2+}	$100 \sim 4000$	$0 \sim 0$	$0 \sim -19$	$0 \sim -18$	
Ca ²⁺	$100 \sim 1000$	$0 \sim +5$	$0 \sim -3$	$0 \sim -4$	
Fe ³⁺	$100 \sim 4000$	$0 \sim 0$	$0 \sim -12$	$0 \sim -9$	
Al ³⁺	$100 \sim 4000$	$0 \sim -12$	$0 \sim -11$	$0 \sim -10$	
Ti ⁴⁺	$100 \sim 1000$	$0 \sim -6$	$0 \sim -2$	$0 \sim 0$	

Ba: 2 ppm Ti: 1000 ppm Ca(1): 1000 ppm Ca(2): 400 ppm

試料の分析では無視できた.

以上のことから,一般けい酸塩中のバリウムは,カリ ウム 3,000 ppm を共存させ,試料溶液中のカルシウム量 を 500 ppm 程度以下にすることによって定量で きる.

4.3.4 ルビジウム(原子吸光法)

空気-アセチレンフレーム中でルビジウムがイオン化 するため,他のイオン化しやすい成分が共存すると吸収 が増加する.ルビジウム 1 ppm に対するカリウムの影 響を第7図に示した.ナトリウム,セシウムも同様に影 響した.カリウム3,000 ppm を共存させた場合の他のイ オンの影響を,ジャーレル AA-780,日立207で検討し, 結果を第8表,第9表に示した.いずれの装置でも低濃 度イオンの干渉は認められず,また,標準試料について の検討から,カリウム約3,000 ppm を共存させること によって,けい酸塩中のルビジウムが定量できることが

第9図 ルビジウムに対するマグネシウムの干渉 Interference of magnesium for rubidium absorbance (Нгглсні 207).

わかった.

高濃度のイオンは負の偏差を与える場合が多い.日立 207 でマグネシウムの干渉を検討し,結果を第9図に示 した.マグネシウムは,ルビジウムの吸収を減少させ, マグネシウムのみを噴霧するとバックグランドが負の方 向に変動した.同じ実験をジャーレル AA-780 でおこな ったところ,マグネシウムによる吸収の減少は認められ たが,バックグランドの変動はなかった.

4.3.5 ルビジウム(炎光分析法)

原子吸光法と同様にイオン化干渉がある.

カリウムの影響を第7図に示した.イオン化を抑制す るためカリウム 3,000 ppmを共存させ,他のイオンの影 響を検討し,結果を第8表,第9表に示した.いずれの 装置を用いても低濃度のイオンは,ほとんど影響しない.装置,測定条件によって異なるが,高濃度イオンは 正または負の偏差を与える.

地質調査所月報(第24巻第9号)

た.鉄およびマグネシウムの発光は、フレームの上部で 強く下部で弱いが、下部ではルビジウムの発光も弱く良 いによ 好な抑制法でない.スリット幅と発光強度の関係を第12 図に示した.スリット幅を狭くすると、いずれも発光強 国に示 度は減少する.ルビジウムにくらベマグネシウム、鉄な 後討 どの発光強度の減少が著しく、干渉抑制効果がある.ス

Emission spectra of rubidium, iron and magnesium (Shimadzu MAF-1)

検出限界に近いルビジウムの定量では,各種成分によ る発光干渉が認められた.ルビジウム 5 ppm,マグネシ ウムおよび鉄 5,000 ppmの発光スペクトルを第10図に示 した.測定条件を変えて発光干渉を抑制する方法を検討

40-(480)

Table 10 Emission interferences of variouls elements in the determination of rubidium by flame emission spectrometry (Emission intensity).

Wavelength (nm)	780.0	780.0	794.8
Slit width (mm)	0.05	0.10	0.10
Rb (2 ppm)	23.0	23.0	23.0
Ag (1000 ppm)	0.0	0.0	0.0
Al (")	0.0	0.0	0.0
Ba (")	0.5	1.5	2.8
Ca (//)	0.2	0.9	1.0
Cd (//)	0.0	0.0	0.0
Co (//)	0.0	0.0	0.3
Cr (//)	0.5	1.5	2.3
Fe (//)	0.2	2.8	0.3
K (")	0.8	2.0	1.2
Li (")	0.2	1.0	0.5
Mg (")	1.0	2.5	1.8
Mn (//)	0.3	1.5	1.5
Na (″)	0.2	0.6	0.5
Ni (//)	0.0	0.0	1.0
Pb (//)	0.0	0.0	0.0
Sr (//)	0.3	1.4	1.8
Ti (")	1.0	2.5	4.3
Zn (")	0.0	0.0	0.0
Shimadzu MAF-1			

リット幅および分析線を変えて,各種イオン(1,000 ppm) の発光強度を測定し,結果を第10表に示した.比較のた め装置の感度を調節してルビジウム 2 ppm の発光強度 が等しくなるようにした. 794.8 nm の分析線でも発光 干渉は抑制できない.分析線 780.0 nm,スリット幅 0.05 mm で測定すると,銀、アルミニウム,カドミウム,コ バルト,ニッケル,鉛,亜鉛の発光干渉は認められない が,その他の成分はいずれも干渉する.

4.4 干渉に関する考察

原子吸光分析において,共存成分による負の偏差は主 として難解離性化合物の生成によるものと考えられてい る.バナジウムに対する鉄,チタンの干渉が難解離性化 合物の生成であるとすれば,鉄,チタンの定量でバナジ ウムが負の偏差を与えることが予測できる.鉄,チタン に対するバナジウムの影響を検討し,第13図の結果を得 た.

鉄を空気-アセチレンフレームで測定すると, バナジ ウムは塩酸溶液中では干渉しないが,硫酸溶液中では負 の偏差を与える.亜酸化窒素-アセチレンフレームで測 定すると,硫酸溶液中でも干渉しない.チタン 40 ppm に対してバナジウムは, 100 ppm 程度で負の偏差を与 え,さらに濃度を増加させると正の偏差となる.このよ うに,鉄,チタンがバナジウムに負の偏差を与えても,

トル

Emission spectra of barium, calcium and titanium.

必ずしもバナジウムが鉄, チタンに負の偏差を与えない. これらのことから, 負の干渉は, 主として原子吸光に関与する中性原子以外の物質によって起こり, バナジウム, チタンなどの中性原子化を促進する作用 (MARKSら, 1970)をもつアルミニウムの添加によって, 中性原子が増加し, 吸収が増加するとともに干渉が抑制される

ものと思われる.

バリウムの原子吸光分析において、カルシウム、チタ ンが干渉したが、炎光分析法でこれら成分の発光強度を 測定し、結果を第14図に示した.カルシウム、チタン は、バリウムの分析線付近でかなり発光する.第8図に 示したカルシウム、チタンによるノイズの原因は、これ ら成分の分子種による発光および吸光によるものと思わ れる.用いる原子吸光分析装置によって、バリウムに対 するカルシウム、チタンの干渉が異なる原因は明らかに できなかった.

4.5 ベリリウムの抽出に関する検討

クロロホルムによるベリリウム・アセチルアセトン塩 の抽出は、重松ら (1959), MERRILL ら (1960) の報告 をもとに、原子吸光法に適した操作を定めた. 重松ら (1959) によれば、抽出 pH 域は6~9であり、共存成 分をマスクするため EDTA を加えると抽出率が減少す るが、塩化ナトリウムを加えることによって、一回の抽 出で95%以上のベリリウムが抽出できる.本法では、2 回抽出するため、99.5%以上抽出できる.

 548 悪く、多量のサトリウムなどが混入するため、分離した 有機相をアセチルアセトンを含む水で洗じょうする操作 を加えた.この操作で数%のベリリウムが水相に移るた め、クロロホルムで抽出回収する.操作を簡単にする目 的で、有機相中のベリリウムを、1.2 Nの各種無機酸溶 液中に逆抽出して測定する方法を試みたが、約10%が抽 出されるのみであった.試料溶液の濃縮と有機物除去の ため、有機相を蒸発乾固したのち、硝酸と過塩素酸で処 理する.

各種岩石試料 0.5 g を処理する場合の主成分含有量を 考慮して合成試料を作り, 0.05 ~ 1.00 μg のベリリウム を添加し,以下 3.2.1 の操作をおこなったのちベリリウ

taken		added				
Be (μg)	Al (mg)	Fe (mg)	Ca (mg)	Mg (mg)	Be (μg)	
1.00	0	0	0	0	0.99	
1.00	100	0	0	0	0, 98	
1.00	0	100	0	0	1.01	
1.00	0	0	200	0	0.99	
1.00	0	0	0	150	0, 98	
0.05	40	20	20	20	0.05	
0.10	40	20	20	20	0.10	
0.40	40	20	20	20	0.39	
1.00	40	20	20	20	1.00	

Table 11 Determination of beryllium in synthetic samples.

ムを定量した.結果は第11表に示したが,97.5~101% の回収率が得られた.多量の鉄,アルミニウムが共存す ると一部抽出されるが,鉄の干渉は認められず,アルミ ニウムの干渉もバーナー上の光束の高さ約 10 mm で測 定することにより抑制できる.

4.6 ガラス容器へのルビジウムの吸着

ルビジウムに対する無機酸の影響についての実験で, まったく酸を添加しない場合に低い定量値が得られるこ とがわかった.この原因について種々検討した結果,ガ

Effect of hydrochloric acid and aluminium for rubidium

ラス容器へのルビジウムの吸着が明らかになった.

ガラスおよびポリエチレンのメスフラスコ (100ml) に ルビジウム 50 μg を分取し,塩酸とアンモニア水で pH を 0 ~12に変化させ,炎光分析法で溶液中のルビジウム を定量し,結果を第15図に示した.pH 0~3 および10.5 ~12では,ガラス容器,ポリエチレン容器の差は認めら れない.中性付近では,ガラス容器を用いた場合再現性 ある結果が得られない.

ルビジウム 1 ppmの塩酸 0.06 N 溶液と水 溶 液 を 作 り、時間変化と発光強度の関係を検討し、結果を第16図 に示した.塩酸を含まないガラス容器では、時間がたつ にしたがって溶液中のルビジウムが減少する.ポリエチ レン容器では変化がない.約5時間後にすべて塩酸 0.06 Nの溶液となるように塩酸を添加してルビジウムを測定 した.ポリエチレン容器では、塩酸添加と同時に最初か ら塩酸を含む溶液と同じ値となり、ガラス容器でも約5 時間後ではほとんど同じ値になった.ガラス容器に吸着 したルビジウムが溶出したものと思われる.

ポリエチレン容器への吸着の有無を確認するため,酸 を含まないルビジウム溶液を作り,すべてを噴霧して発

43-(483)

光強度を測定したが,最後まで一定の値であった.この 容器に塩酸(0.06 N)のみを加えてルビジウムの溶出の有 無を調べたが検出されなかった.この結果,ポリエチレ ン容器への吸着は認められず,低濃度の塩酸,アンモニ アでわずかに高い値が得られる(第15図)のは,これら 成分の影響によるものと思われる.

ルビジウム濃度と吸着量との関係および,他のイオン の影響について検討し,第17図の結果を得た.ルビジウ ム濃度が減少してもすべて吸着することはなく,一定量 が吸着すると平衡に達する.アルミニウムイオンも塩酸 と同様に吸着量を減少させる.

他のアルカリ金属のガラス容器への吸着を検討した結 果,カリウム,セシウムがルビジウムと同様に吸着した が,リチウム,ナトリウムは吸着しなかった.

5. 結 言

(1)ベリリウムの定量では、感度も良く、干渉も少ない ことがわかり、含有量の少ない超塩基性岩などから多量 のベリリウムを含む緑柱石まで、試料に応じた定量法を 定め、それぞれ良好な結果を得た.

(2)バナジウムに対しては、多くの成分が干渉したがア ルミニウムの添加によって抑制でき、超塩基性岩をのぞ く各種けい酸塩中のバナジウムが精度良く定量できた.

(3)バリウムの定量におけるカルシウムの干渉は, 試料 溶液中 500 ppm 程度まで無視できることがわかり, カ リウム 3,000 ppm を共存させてイオン化を抑制すること により, 各種けい酸塩中のバリウムが定量できた.

(4)ルビジウムの原子吸光分析および炎光分析において もイオン化干渉が認められた.炎光分析で低濃度のルビ ジウムを定量する場合は,共存成分による発光干渉を考 慮する必要がある.一般けい酸塩中のルビジウムは,カ リウム 3,000 ppm を共存させてイオン化を抑制し,原子 吸光法,炎光分析法のいずれでも定量できた.

(5)バリウムの定量におけるカルシウム,チタンの干渉 は、用いる装置によって異なるが、その原因は明らかに できなかった.

(6)ルビジウムの中性溶液をガラス容器に保存すると, 一部吸着して濃度が減少する.同じ現象が,カリウム, セシウムについても認められた.これらの成分は,ポリ エチレンの容器か酸性溶液としてガラス容器に保存する 必要がある.

本実験をおこなうにあたり,貴重な岩石試料をいただ いた化学課関根節郎技官ならびに種々有益な助言をいた だいた化学課の方々に厚く御礼申し上げる.

文 献

- 秋山知行(1957):ベリリウムの分析化学的研究, 佐賀県杉山産緑柱石よりベリリウムの抽出 および分離.分化, vol. 6, p. 26–31.
- AMOS, M. D. and WILLIS, J. B. (1966): Use of high-temperature premixed flames in atomic absorption spectroscopy, Spectrochim. Acta, vol. 22, p. 1325–1343.
- ANDO, A., KURASAWA, H., OHMORI, T. and TAKEDA, E. (1971): 1971 compilation of data on rock standards JG-1 and JB-1 issued from the Geological Survey of Japan, *Geochem. J.*, vol. 5, p. 151–164.
- BUCKLEY, D. E. and CRANSTON, R. E. (1971): Atomic absorption analyses of 18 elements from a single decomposition of aluminosilicate, *Chem. Geol.*, vol. 7, p. 273–284.
- CABELL, M. J. and SMALES, A. A. (1957): The determination of rubidium and caesium in rocks, minerals and meteorites by Neutron-activation analysis, *Analyst*, vol. 82, p. 390–406.
- CHAN, K. M. and RILEY, J. P. (1966): The determination of vanadium in sea and natural waters, biological materials and silicate sediments and rocks, *Anal. Chim. Acta*, vol. 34, p. 337–345.
- 遠藤芳秀・畑 俊彦・中原悠紀(1969) :原子吸光 分析法による鉄鉱石中の酸化チタン,パナ ジウム,ニッケル,クロム,鉛,ビスマス の定量.分化,vol.18,p.833-838.
- FLANAGAN, F. J. (1969): U. S. Geological Survey standards-II. First compilation of data for the new U. S. G. S. rocks, *Geochim. Cos*mochim. Acta, vol. 33, p. 81–120.
- FLEISCHER, M. (1969): U. S. Geological Survey standards-I. Additional data on rocks G-1 and W-1, 1965-1967, Geochim. Cosmochim. Acta, vol. 33, p. 65-79.
- 服部 仁・柴田 賢(1969):蛍光X線分析法によ る岩石中の Rb および Sr の定量. 地質調 月報, vol. 20, p. 51–76.
- INGAMELLS, C. O., SUHR, N. H., TAN, F. C. and ANDERSON, D. H. (1971): Barium and

原子吸光法による岩石中の Be, V, Ba, Rb の定量と炎光法による Rb の定量(寺島 滋)

strontium in silicates -A study on the development of analytical methods-, Anal. Chim. Acta, vol. 53, p. 345-360.

- 石原舜三・関根節郎・原田種成・肥田 昇(1969) ニベリリウム探査器による Be 鉱物の探査 と野外 Be 分析方法の検討.地質調月報, vol. 20, p. 151–160.
- 岩崎岩次・小沢竹二郎・吉田征子(1968) : 磁鉄鉱, チタン鉄鉱,クロム鉄鉱および火成岩中の バナジウムの吸光光度定量.分化,vol.17, p.986-990.
- MARKS, J. Y. and WELCHER, G. G. (1970): Interelement interferences in atomic absorption analyses with the nitrous oxide-acetylene flame, *Anal. Chem.*, vol. 42, p. 1033–1040.
- MERRILL, J. R., HONDA, M. and ARNOLD, J. R. (1960): Methods for separation and determination of beryllium in sediments and natural waters, *Anal. Chem.*, vol. 32, p. 1420-1426.
- 村上敏治・上杉勝弥(1967):フレーム分光分析に よる海水中のルビジウムの定量.分化, vol. 16, p. 781-785.
- 長島乙吉・長島弘三(1960):日本希元素鉱物. 271 p.,日本鉱物趣味の会,京都.

- OWENS, E. G. and YOE, J. H. (1960): Spectrophotometric determination of beryllium with 2-phenoxyquinizarin-3, 4'-disulfonic acid, Anal. Chem., vol. 32, p. 1345–1349.
- PETERMAN, Z. E., DOE, B. R. and BARTEL, A. (1967): Data on the rock GSP-1 (Granodiorite) and the isotope-dilution method of analysis for Rb and Sr, U. S. Geol. Surv. Prof. Paper, 575 B, p. 181-186.
- SANDELL, E. B. (1959a): Colorimetric Determination of Traces of Metals, 3 rd ed., p. 319– 321. Interscience, New York.

(1959b): *ibid.*, p. 934–936.

- 重松恒信・田伏正之(1959):アセチルアセトンに よるベリリウムの光度定量法とアルミニウ ム合金中のベリリウムの定量への応用.日 化, vol. 80, p. 162–165.
- 寺島 滋(1972): 亜酸化窒素—アセチレンフレー ムを用いるけい酸塩の原子吸光分析.地質 調月報, vol. 23, p. 287–304.
- VOSTERS, M. and DEUTSCH, S. (1967): Atomic absorption spectrometry of rubidium in rocks and minerals-comparison with isotope dilution, *Earth and Planet. Sci. Letters*, vol. 2, p. 449–452.