地表試料による泥岩強度と地質構造の相関例(予報)

-8

井波 和夫* 垣見 俊弘**

On the Relation between Mudstone Strengths of Outcrop-samples and Geologic Structure

By

Kazuo INAMI and Toshihiro KAKIMI

Abstract

A few data on the uniaxial compressive strength are obtained from mudstones of the Miocene Zushi formation, which are distributed at the northern Miura peninsula. Geologic horizons of the sampling-points are illustrated in Fig. 2. As shown in Fig. 3, the strength regularly intensifies corresponding to increasing the stratigraphic "depth" of the Zushi formation. Therefore, rock-strength of the Zushi formation seems to be closely related to compaction of the formation.

From the study of the minor-fault distribution, it has been clarified that the Zushi formation had suffered a tectonic stress which had been diminished steeply from south to north. The rock strength of this area similarly reduces its intensities northwards. It is expected, therefore, that the rock-strength of the area is in relation with the tectonic stress which had generated the minor-fault system.

はじめに

各種の代表的な岩石についての,いろいろな封圧,温 度,時間条件のもとでの物性に関する情報は,最近めざ ましく集積されつつある。そのため,ある埋没深度に相 当する封圧,温度のもとでの各種岩石の物性が,実験デ ータにもとづいて推定できるようになってきた。

ところが,一方,岩石強度の空間的分布と,地域にみ られる地質構造およびその特性との関係については,ま だあまり発表されていないようである注1)。

岩石の強度というのは,そもそもが統計的・経験的な 物理量であって,岩質・内部構造・風化条件などのわず かなちがいによって,大きく異なることが考えられる。 したがって,採取地点のちがったものについての強度を 比較する場合,確実に地質構造の相違にもとづく強度変 化のみを抽出して論ずるのが,難かしいためであろう。 しかしながら,このような研究は,地質構造の解析,と くに造構的な応力場のもとでの節理や断層の生成条件を 明らかにするためには,是非とも発展させねばならぬ分 野と思われる。

筆者らは,現在,三浦半島の地質構造を解析中である が,その途次に地表から採取した新第三系の泥岩のサン プルの強度をテストしたところ,地質構造となんらかの 関係で変化しているらしいことがわかったので,とりあ えずその資料を報告する。

測定結果の再現性については、後で述べるように、ま だ疑問があるとみなければならない。したがって、結果 の解釈については、予報的な性格のものであるとみてい ただきたい。

なお,現在,同じ地域の,より数多くのサンプルによ るテストを実施中であることを付言しておく。

試料の採取

三浦半島の北部に分布する,新第三系逗子層(中新世 後期)の泥岩について,任意の地点,任意の層準で,7 カ所の地表露頭から採取した。ただし,露頭は,1カ所 を除き天然露頭ではなく,工事中または工事直後の道路 切通し,あるいは採石場であるから,地表試料としては

49-(49)

^{*} 物理探查部

^{**}地 質 部

注1) 星野(1967)は、各地の第三系の泥岩強度をコンパイルした結果、 時代(おそらく一義的には埋没深度)と統計的な相関が認められると 述べている。

地質調查所月報(第19巻第1号)

充分新鮮なものと考えられる。ただ No.446 地点のもの だけは,海食崖から採ったので,風化の影響が考えられ る。なお,No.263のA,B,Cは,巨視的にはほぼ同 じ層準とみなされる,広い採石場から採ったもので,3 者は互いに数10~100mほど離れている。

岩質は No.446 を除き,みかけはほぼ一様で,塊状, 細粒のシルト岩からなり,新鮮な湿った状態では暗灰色 を呈する。ラミナその他の堆積構造は,肉眼ではみとめ られない。No.446 は,湿った状態で暗緑灰色を呈す る,砂質泥岩である。

採取地点を第1図に示す。また,採取地点の層準とその位置関係を,矢崎・三梨(1962)の層序断面図に投影 させると,第2図のようになる。

強度の測定

断面が30mm角,高さ60mmの角柱に成形した,自然乾燥状態の試料について,通常の一軸圧縮試験を行ない, 圧縮最大強度をもとめ,これを圧縮強度とした。

地表から採集した7個の試料は、肉眼的には比較的均 質で、異方性はなさそうにみえたが、一応各試料とも互 いに直交する3方向(堆積面に平行な2方向と、垂直方 向^{注2)})について成形し、合計21個を試験材料とした。

断面積を30mm×30mmにしたのは,試験機の最大荷重

注2) 堆積面に垂直な方向を a 方向, 堆積面に平行し, かつ, 互いに直交 する方向を b および c 方向とする。 3 t に合わせたものである。また, 試料の縦横比は, 西 松裕一(1965)によると1:1が多く用いられているよ うであるが, 必ずしも一定したものではないようであ る。下村・高田(1961)によれば, 縦横比2:1の花崗岩 と安山岩について, 圧縮強度が最小になったと述べてい る。ここでは試験の都合を考慮して, 2:1を用いた。

試料両端面の形状は,強度に大きな影響を及ぼすの で,充分留意して成形したが,試料が軟質であったため, 平滑度,平行度とも,充分であったとはいえない。1~ 2の試料は,圧縮中にスリップあるいは挫屈したものも あるが,はたして成形の不完全によるものか,試料の保 持位置が悪かったためかは,明白でない。

試験機は,東京プラント工業K.K. 製型式60型三軸圧縮

第1図 試料採取点の位置(平面図)

第2図 試料採取点の層準 層序断面図は矢崎・三梨(1962)による. No. 203 と No. 263 はこの断面図の範囲外だが,相当する層準のところへプロットした.

50-(50)

地表試料による泥岩強度と地質構造の相関例(井波和夫・垣見俊弘)

第1表 逗子層泥岩の強度

破壊強度は一軸性圧縮強度をさす。a, b, cは圧縮軸の堆積面に対する方向性を示す(本文参照)

サンプル No.	457 The UIL	ш	走向	傾 斜	破壞強度 (kg/cm ²)			方向性(a方向100%)		
	採取地	石質			a	b	с	a	b	с
446	馬 堀	火砕質砂質 泥 岩	N 68°W	26° N E	36.7	27.8	32.2	100%	75.7	87.7
203	大仏切通し	泥岩	// 36° //	17° ″	85.6	73.3	47.8	"	85.7	55.9
440	浦 賀	"	// 60° //	19° ″	142.2	80.0	134.4	"	56.3	99.6
413	太郎崎	"	// 71° //	56° ″	135.6	134.4	156.7	"	99. 2	115.6
263-A	北 武	"	// 34° //	55° ″	188.9	97.3	81.1	"	51.7	42.9
263-B	"	"	// 25° //	63° ″	202. 2	146.7	158.9	"	72.5	78.6
263-C	"	"	// 33° //	71° ″	205.6	240.0	122.2	"	116.7	59.5

試験機を用い,側圧関係付属品はとりのぞいて,一軸試験 機として使用した。荷重の量は,3tのLoad Cellを用い て,連続的に電磁オッシログラフに記録した。加圧方式 は,ラック・ピニオンを使用した機械的方式で,Strain rate は,Vベルトの回転比を無段変速機で,ある程度任 意に変えることができる。Strain rate は,Stress-strain 曲線,圧縮強度などに影響するものであるが,荷重のか かりはじめと,破壊直前とでは必ずしも一致しないし, 試料によっても異なってくるであろう。その数値は, No. 263 では 0.9×10^{-5} /sec $\sim 1.6 \times 10^{-5}$ /sec 程度である。 No. 446 のように 0.8×10^{-5} /sec $\sim 3.2 \times 10^{-5}$ /sec と4倍 ぐらい変化するものもある。

測定値は,上記のような成形の不完全さ,試料の不均 一性,採取条件(風化)の問題などから,1個の試料だ けで,その採取地点を代表する,充分信頼性のある値と はいいきれない。ASTM の規格では,少なくとも3個 の試料について試験するようになっている。今回の試験 においては,試料の採集間隔(層序的な)が広く,ある 程度意味のある差のでる可能性をテストする目的だった ので,試料の数は,各方向について1個づつにとどめ た。

得られた測定値を第1表に示す。

破壊後の試料は、大部分が圧縮軸に平行な割れ目によ って分割(2~5片ぐらい)されている。一部には、軸 方向と10数度の角度をなす斜めの割れ目や、まったく不 規則な割れ目もみられた。しかし、割れ目にそうすべり の証拠はまったくなく、破壊様式は張力性割れ目による ぜい性破壊である。

強度測定結果について

測定値は方向によって大きな違いを示す。一般に地層 面と垂直な a 方向の強度がもっとも大きく,層面に平行 な方向のそれに較べて 2 倍以上を示すものがある。しか し,なかには b・c 方向の 1 つが a 方向より大きなもの もある。これらが,どの程度岩石の異方性をあらわして いるかは,今後の課題である^{注3)}。

得られた測定値を、サンプリング地点の平面的な位置 関係は一応無視し,層序的な位置だけに着目して表わし てみたのが,第3図である。

この図での「層序的な深度」とは、矢崎・三梨(1962) の層序断面図のなかに、採取地点の層準を記入し、池子 層の基底を基準面と仮定したときの、採取層準までの層 厚にひとしい。矢崎らの層厚は、地表調査から得られた 柱状資料を傾斜方向につなぎ合わせて求められたもので あって、その場所から鉛直方向に測って得られるであろ う層厚とは、必ずしも一致するとはいえない。また、この 層序断面図は、東西方向で厚さに変化のあることを示し ている。これを無理に1つの図で表わすため、第3図で は試料の「深度」は、矢崎らの層序断面図において、も っとも厚いところと薄いところの平均をとって示した。

一方,強度にも a 方向と b ・ c 方向とに差があるので, これを横線であらわし, a 方向の数値のところに×印を つけておいた。

この図によれば,「層序的な深度」が増すほど,岩石 強度が増していることは一目瞭然である。したがって, ここに示されたシルト岩の強度は,それらがかつて地下

注3) 今回の試験はみかけの一様さの割には測定値の方向性による差が ありすぎるように思われる (DONATH, 1961を参照)。

地質調査所月報(第19]巻第1号)

に埋没していた深度と一義的な関係にあるのではないか

?との予想が,ごく自然に導びかれるであろう。

ちなみに,第3図の強度の対「深度」勾配は,岩石の 自然密度を 1.8としたときの垂直方向の応力(自荷重) の勾配と,ポアソン比を 0.3としたときの水平方向の応 力の匂配との,ちょうど中間の値を占めているのは興味 ぶかい。

一方、この地域は北にゆるく傾く単斜構造を示してい るが、この構造は、おもに第四紀以降、基盤(葉山層群) の著しい上昇に伴って形成されたことがわかっている (垣見・平山・影山,1966)。したがって,基盤の上昇 部にちかいほど逗子層の泥岩は強い造構的応力の場にお かれたため、強度もそれに伴って増したと考えられぬこ ともない。第3図をみると、たかだか1,300mの「深さ」 の差にしては、強度の差がありすぎるようにも思われ る。しかも、三梨ら(1966)によれば、この地域の逗子 層は、その最大層厚部が北方へ移動する「将棋倒し構造」 を示しているという。とすると、この1,300mの「深さ」 はもっと減るものと考えねばならない。したがって、こ れだけの強度の差を生じさせた原因として、埋没深度の ほかに造構的応力の差も関係しているのかもしれない。 造構的応力と強度の関係については、あとでもう一度ふ れることにする。

密度と孔隙率の測定

強度を測定したものと同じサンプルを用い,2種のち がった方法で,密度と孔隙率を測り比較した。

1) 空気比較式比重計による

ベックマン比重計を用い,まず自然乾燥注4) させた試 料の粒子密度と,粒子部分だけの容積を測定する。次に 試料を水銀に浸して全容積を測り,孔隙部の容積と孔隙 率を計算で求め,最後に,これらの値から,孔隙に水を 満たしたものと考えた岩石の自然密度注5) を計算した。 結果を第2表に示す。

2) 比重天秤による

強制乾燥^{注6}) させた試料の重さ W₁, 強制湿潤状態^{注7}) の試料の空中での重さ W₂, 同じ試料の水中での重さ W₈ から, 孔隙率は, W₂-W₁/W₂-W₈, 自然密度は^{注8}) W₂ /W₂-W₈として近似的に求めた。結果を第2表に示す。 粒子密度は, どの試料も一般の泥質岩のそれ(2.6~

______ 注4) これらの用語は、物理探鉱技術協会(1962)の基準に従う。

注5) 自然密度は松村(1961)によれば湿潤密度と同義とされている。ここでは、1)と2)の手法では、げんみつには密度の内容がちがうのだが、両者とも自然密度として扱う。

52-(52)

注6),7) 注4と同じ。

注8) 注5と同じ。

サンプル	空気比	胶式比重詞	比重天秤による							
No.	粒子密度	自然密度	孔隙率	自然密度	孔隙率					
446	2.65	1.90	45.2	1.85	42.4					
203	2.63	1.80	51.0	1.76	50.3					
440	2.64	1.85	48.6	1.80	49.1					
413	2.71	2.01	40.9	1.87	43.5					
263-A	2.64	1.98	40.4	1.91	40.8					
263-B	2.64	1.97	40.6	1.91	40.9					
263-C	2. 58	1.95	39. 5	1.90	40.9					

第2表 逗子層泥岩の密度と孔隙率

2.7)にちかいので、自然密度と孔隙率は、試料の相対 的な圧密度をあらわしているとみてよいであろう(松村 1961,62)。両方法で測定した値を比較してみると、比 重天秤から得られた値は、空気比較式から得られた値よ り、自然密度がやや少なくなっている。この原因は、多 分、閉塞孔隙があったためと、水を含ませることにより 体積がいくらか膨張したためではないかと思われる。

ただし,数値こそちがってはいるが,第3図で見られ るように「層序的な深度」の順にならべて比較すれば, 両方法とも同じ傾向をもっていることがわかる。

強度と圧密および地質構造との関係

第3図によれば, 逗子層のシルト岩の密度および孔隙 率は,時代の新旧と相関しているように見える。しか し,そのように見えるのは,松沢(1961,62)によれば, 旧い地層の方が過去における埋没深度が大きかった結果 にすぎず,本来は密度,孔隙率とも,過去に埋没された 深度と一義的な関係にあるものである。第3図におい て,強度が孔隙率や密度と相関しているのであるから, 強度もまた,あきらかに逗子層の埋没深度と相関してい るといい得るであろう。ただし,本地域の密度や孔隙率 の数値そのものは,松沢(1961)や宮崎(1965)によっ て作られている,油田地帯の試錐孔から得られた埋没深 度一密度曲線上にプロットしてみると,第3図で示した 「層序的深度」に較べて密度差が少なすぎるように思わ れる。

また,南雲 (NAGUMO 1965 a, b)の仮定によれば,孔 隙率の対数の対深度曲線(圧密曲線)の勾配から圧密係 数を求め,それから埋没深度による封圧に付加された造 構的応力の量が推定できるとされている。そこで,試み に,南雲によって埋没深度のみの関数と仮定された圧密 曲線(蒲原 GS 1 号 #)と, 封圧の約50%に相当する造 構的応力が加わっていると仮定されたもの(藤岡 GS 1 号 #)のなかに,本地域の孔隙率から得られた"曲線" (資料数が少ないのでやや不確実だが)を記入してみた が,予期に反し,造構的応力が加わっている徴候はみら れなかった。

密度や孔隙率のような統計的な量を問題にするには, 今回の試料数は少なすぎるし,また特定の路線にそって 採取したものでもないので,これ以上の推定はさしひか えたい。

一方,垣見・平山・影山(1966)は,三浦半島北部の 小断層系のうち、新期(第四紀に発生)・胴切り性の正 断層系は、基盤上昇部のちかく(南部)では発達が著し く,それから離れて,層位的な上部(北部)へ行くに従 って発達が悪くなり、池子層付近では正断層系がまった く見られなくなることを報告している。彼らは、その原 因として、①造構的応力の作用が北方に及ばなかったこ とと、②池子層付近の岩石の強度が大きかったことの相 乗作用ではないかと考えた。しかし、今回の強度試験の 結果では、②の要素は否定されねばならない。この地域 は、層位的な上位へ行くに従って、岩石の強度は著しく 減っているにもかかわらず,却って小断層の発達は悪 くなることになる。その理由は、造構的応力が北方へ急 速におとろえて、池子層分布地域までは及ばなかったた め、と考えねばならない。孔隙率の方からは確かな結論 は出せなかったが、強度測定の資料は、この地域におけ る造構的応力の存在と、その強い勾配の存在を示唆して いる。

あとがき

三浦半島北部の正断層系は,基盤の隆起の後半期に, 地表のちかくで,破断にちかい状態で生じたものである (垣見・他,1966)。このような地質構造の形成機構を明 らかにするためには,一軸強度試験のような簡単な試験 でも,造構的応力の及んだ範囲,その勾配,その大きさ などを推定するうえで,果す役割はきわめて大きいと考 えられる。封圧・温度・孔隙圧などの影響を考慮した三 軸試験が,さらに重要なことはいうまでもない。

今回の試験は、わずか数個のサンプルで予備的に行な われたものにすぎないが、泥岩の強度が密度や孔隙率と よい相関を示し、したがって地質構造をあらわす指標と なる可能性が認められた。今後はとりあえず、

①傾斜方向の路線に沿って,なるべく連続的に採った 試料,および

②特定の層準に沿って採った同層準試料によって強度

53-(53)

試験を行ない,埋没深度および地質構造との量的な関連 性を追求したい。

この研究にあたって、サンプル採取、物性試験、結果 の解析の各段階で、地質調査所の岩石物性グループおよ び地殻活構造グループの方々から、種々の御協力と御討 論をいただいた。これらの方々、とくに物理探査部佐野 浚一氏、地質部平山次郎氏に厚く御礼申上げる。

文 献

- 物理探鉱技術協会(1962):岩石試料の速度測定 要綱,物理探鉱, vol. 15, no. 1, p. 46~53
- DONATH, F. A. (1961): Experimental Study of Shear Failure in Anisotropic Rocks. Geol. Soc. America Bull., vol. 72, no. 6, p. 985~990.
- 3) 星野一男(1967): 裏日本第三系泥岩の高圧物 性について(演旨),石油技協誌, vol. 32, (印刷中)
- 4) 垣見俊弘・平山次郎・影山邦夫(1966):小断層 から求めた三浦半島北部の造構的応力場, 地質雑, vol. 72, no. 10, p. 469~489
- 5) 松沢 明 (1961,62): 堆積岩の密度と地質構造, 物理探鉱, vol. 14, no. 4, p. 36~45, vol.

15, no. 1, p. 1~13

- 三梨 昻・垣見俊弘 (1964): いわゆる異常堆 積について,地質ニュース, no. 117, p. 8 ~14
- 宮崎 浩 (1965): 秋田油田地域における泥質 岩の圧密について,地質雑, vol. 71, no. 839, p. 401~413
- NAGUMO, S. (1965a): Compaction of Sedimentary Rock—A Consideration by the Theory of Porous Media. Bull. Earthq. Res. Inst., vol. 43, p. 339~348.
- NAGUMO, S. (1965b): An Estimation of Tectonic Stress from Compaction of Sedimentary Rock Strata. Bull.Earthq. Res. Inst., vol. 43, p. 565~576.
- 西松裕一(1965): 岩石強度の標準試験法,日
 本鉱業会誌, vol. 81, no. 926, p. 563~570
- 下村弥太郎・高多 明(1961):岩石の力学的挙 動と破壊について(第1報)一圧縮におけ る試験片の形状効果と寸法効果一,日本鉱 業会誌,vol.77,no.876,p.377~382
- 12) 矢崎清貫・三梨 昂(1962):日本油田ガス田図
 3「横須賀」,地質調査所