松川地域地熱電気探査 小野 吉彦* 陶山 淳治* 高木 慎一郎*

Geoelectrical Prospecting at Matsukawa Geothermal Field

by

Yoshihiko Ono, Junji Suyama & Shin'ichirō Takagi

Abstract

For the purpose of investigation for the sub-surface geological structures and geophysical phenomena in Matsukawa hot spring district surrounding the Marumori volcano, Iwate prefecture (Fig. 7), the writers carried out vertical electrical sounding by means of direct current method.

Geoelectrical measurements were performed on the debris or Matsukawa riverfloor deposits in the caldera of Marumori volcano, and eighteen vertical sounding diagrams were obtained (Figs. $3\sim 5$).

From these data, the following informations are obtained.

(1) The general mode of vertical resistivity distribution is that of the descending steps.

(2) The low resistivity zone (several Ω m), which is estimated to be equivalent to the altered zone, covers the whole of surveyed area.

It seems that there are some relations between resistivity and rock alteration.

(4) Data of electrical soundings being compared qualitatively with the resistivities of rock, soil and water or with the porosities of the samples of rocks, the possible geological structures and conditions are estimated (Tables $4 \sim 6$).

(5) In particular, the figure of the upper limit of the low resistivity zone is delineated (Fig. 9). Horizontal discontinuity is suggested from it, though this phenomenon can not be completely interpreted geologically.

要 旨

昭和 33 年 10~11 月および翌 34 年 7~8 月の2回 にわたって、岩手県岩手郡松尾村松川温泉地域における 地熱調査の一環として電気探査を実施した。

その結果,同地域の地下構造ないし状態に関して次の ような知識を得た。

(1) 比抵抗の垂直分布は概して下降階段型であり, 解析結果は断面図として表わされた(第7~9図)。

(2) 特に低い比抵抗層が地下数 10m ないし 2~300 m の深さに存在することが 確認され, この拡がりは全 調査区域に及んでいる。この層は主として粘土化作用を

*物理探查部

うけた岩石に相当するものと思われる。

(3) 各岩石の比抵抗はおよそ次の範囲の値をとるものと考えられ、これから比抵抗層と地質との対比が試みられた。

岩屑・河床堆積物・非変質岩石 10²~10³Ωm 岩屑(粘土相)・弱変質岩石・き

わめて浅い所に存在する粘土化岩石 10~10²Ωm 温泉水で湿濶せる粘土化岩石 数 Ωm

(4) その他,附属的に行なわれた岩石・水の比抵抗 の測定結果および岩石孔隙率の測定結果を利用して,地 下構造や状態の推定を行なった(第 4~6 表)。

(5) 低比抵抗帯の上限の形状が等高線で示された

(第 10 図)。これによると、水平的不連続が暗示される が、地質的関係は不明である。

1. 緒 言

岩手県松川地熱地帯の地質調査に並行して電気探査が 実施された。以下その結果を報告する。

松川地域の具体的調査は昭和 28 年,地元松尾村の手 になる温泉開発用試錐工事(No. 1~7)の実施にはじま る。その際,副産物として地下約 160~300 m にかなり 著しい蒸気帯の存在が明らかとなった。

その後,昭和 31 年より東化学工業 K.K.が調査を 継続し,昭和 33 年になって本所と東化工との共同研究 として同地域の地熱調査を実施することになり,われわ れもその一端を担うべく,電気探査を実施するに至っ た。

本地域で採用された電気探査法は直流による比抵抗垂 ,直探査法であって,特に岩屑下の地下構造ないし状態推 定に役立たせようとする 意図の下に 実施したもので あ る。

本調査は昭和 33 および 34 年の2回にわたって実施 された。調査期間・分担等を第1表に示す。

- 調 査	期間	分担	調査員
第1次	33.10.下旬 え 33.11.上旬	電探	陶山淳治・小野吉彦 高木慎一郎・早川正巳
第2次	34. 7.下旬 え 34. 8.中旬	電探 測量	小 野 吉 彦・高木慎一郎 本 間 一 郎・馬 場 健 三 宮 沢 芳 紀・小野寺公児

第 1 表

なお、本調査の実施に当り、種々の便誼を賜わった東 化工 K. K.・松尾村・岩手県庁および沼宮内営林署関係 者の方々に対し紙上を借りて深甚なる謝意を表する次第 である。

2. 位置および交通

調査地域は岩手県岩手郡松尾村松川温泉(松尾鉱山鉄 道終点屋敷台西方約7km,5万分の1地形図:八幡平参 照)にあり,松川で境された丸森山南麓一帯を占める。 なお屋敷台一松川温泉間はバスの便がある(同区間約50 分)。

調査地域の一部は十和田・八幡平国立公園に属し,当 地を起点として源太岳・大深岳および三つ石山への登山 道が走っている。第1図に本地域の位置を示す。

3. 地形および地質

地形・地質の詳細については昭和 31 年受託報告(角 清愛他)および昭和 32 年度地熱調査報告(中村久由・ 角清愛)を参照されたい。その他,参考になるものとし て八幡平地質図幅(河野義礼他)および岩手県松川温泉 地熱調査報告(安藤武ら)がある。こ、ではわれわれに 必要な部分だけの地質の概要を述べるに止める。

松川流域の地熱帯は岩手火山群に属し、これを構成す るものは第四紀安山岩類とこれを覆う丸森火山である。 これらの基盤をなすものは北又川流域に点在露出する第 三紀石英安山岩質凝灰岩および石英安山岩といわれ、そ の下部に葛根田川流域にみられる頁岩・砂岩および礫岩 からなる山津田層がくる。さらにその下部は緑色凝灰岩 および古生層になることが推測されている。

地熱帯に関連する変質帯の方向は ENE-WSW の方向にあるとのことである。

丸森火山は外輪山と丸森火口丘とからなる複式火山で ある。外輪山はおもに北部に発達しており、南部は湯の 森付近にわずかに残存するのみで、特に南西部は侵食著 しく、現在は認めることができない。また丸森火口丘南 部のカルデラは岩屑で覆われ、松川北岸に達している。

地表調査の結果によれば、無変質地帯は山地の比較的 高所に限られ、これに接して、広範囲の暗緑色変質帯が あり、それの内側部に珪化帯および粘土化帯が存在して いる。地表調査の結果から、変質帯の幅や変質の程度は かなり明らかにされたけれども、松川北岸の岩屑被覆帯 の下部の変質の模様は詳かでない。

地表に噴気がみられないので、地熱帯の位置および深 さについては試錐結果を手掛りとするだけである。試錐 の結果判明したことは松川より丸森火口丘に向かい蒸気 の噴出深度は大きくなる。またその深さは 160~300 m である。

4. 調査目的

松川地熱帯の特徴の一つは地上に噴気露頭をみないこ

12-(678)

第 2 図 松川地域物理探查測線配置図

とであり、いまなお地下に蒸気の蓄積している可能性が 充分想像できる。こうした地域の地下構造なり物理的性 状に関する基礎的資料を得ることは、本地域の地熱開発 に対する見透しを立てるうえにも、またもっと一般的に いって、同種の問題の取り扱い方をきめるうえにも一つ の手掛りとなることが期待される。

第一次調査は本地域の構造に関する基礎資料の収集を 目的として実施されたもので、多分に予備調査的性格を 有するものである。この調査結果を検討して、第二次調 査では調査地域を拡大して、本地域の地下構造に関する 資料を充足し、同時に、現在われわれが手元に保有して いる物性的知識を活用することによって、地下の性状の 一片をうかゞおうとするものである。すなわち

(1) 岩屑下の水平的あるいは垂直的地下構造の推定

(2) 特に第一次調査で認められた低比抵抗帯の拡が

りを知ることとその意味づけを行なうこと

(3) 可能な限り深い部分の構造の推定 これらが第二次電気探査の主要目的といえる。

5. 電気探査―その方法

今回の電気探査は直流法による垂直探査を主体とする ものである。直流法の詳細については別の機会にゆずる ことにして,こゝではこの報告の説明に必要な程度の概 略を記すに止めよう。

従来、わが国で適用されてきた比抵抗法はいずれの方 式にせよ、矩形波状の低周波交替直流を用いるものであ るといって過言ではなく, 直流の直接的利用はその例に 乏しい。ところで、比抵抗法の基礎理論が定常電場のみ を問題にしているという事情を考慮すれば、直流をその ままの形で用いる方が望ましいはずであるが、これまで 低周波であっても交流が主として利用されてきたのは、 次のような測定上の理由によるものと解せられる。すな わち、直流を用いれば、観測される電位は、われわれが 欲している人工的電位だけでなく,それと自然電位や分 極作用によるものとから合成されたものである。この場 合、後者はいわば、妨害電位とみなされるので、これを 除去することを考えねばならない。一方、交流を使うな らば、上記の妨害因子を除去することは比較的簡単であ るうえ, 強いて直流を 用いなくても, 10 数 サイクル程 度の低い周波数のものならば、近似的に直流として扱っ ても実際上大した差支えも起るまいと考えられる。この ような観点から、いわゆる Gish-Rooney 型転換器を用 いた電気探鉱器は最も標準的な探鉱器とみなされるに到 り、したがって、同転換器の改良に積極的努力が払われ てきた。

この方式は浅部の問題の研究には確かに効力を発揮す

地質調査所月報(第12巻第9号)

ることができたけれども、深部構造探査用としては、2, 3 の大きな欠陥を内蔵している。その一つは、周波数が 高いほど、電流は深部に透入し難いという表皮効果によ って、深部の異常の反映を求めることは次第に困難にな ること、第二の点は、転換器を用いて大電流を流すこと は一般に困難であるうえ、微少電位差の測定を精度よく 行なうこともきわめて難かしい問題である。これらの理 由によって、電極間隔を増大して深部の様子を知ろうと しても,必要な精度を保持することは著しく困難となる。

松川地域のように岩屑を被っていて、電流の流れ難い 場所で、しかも、深部では比抵抗が 10 Ωm 以下という 低い値であるために、従来の方式による垂直探査の実施 บ はきわめて困難な問題となる。 こうした 事情を考慮し て、われわれは、直流法の研究がまだその緒についたば かりであるにもかゝわらず、この方法を採用することに したのである。

観測は、自然電位分を逆起電力を与えて除去するため の自然電位補償回路を挿入した特殊電位差計によって行 なった。この電位差計の測定範囲は 0.05 mV から 550 mV までである。一方、分極作用の影響から逃れるため に、電位電極として非分極性電極(硫酸銅過飽和溶液を 入れたズック製の筒状容器に銅棒を捜入したもの)を使 用した。電流電極としてステンレス棒を採用したため、 分極現象はさけられないわけであるが、これによる影響 は実際にはそれほど 心配はないようである。なぜなれ ば、分極作用のため電流は減少するが、測定電位差の方 もそれに応じて減少し、しかも、われわれがピック・ア ップしている電位差は, 分極作用の影響の最も小さい部 分、すなわち電流電極の対の中間部に関するものである からである。いわゆる残留電荷の影響についても電流電 極を挿入した点に電位電極の点が重ならないように電極 間隔を適当に選んである(第2表参照)ので、大した問 題にするには及ばないものと思われる。以上の点は確か に直流法を採用するとき、想像される危惧ではあるが、 実際の測定では 5% 以内で 充分, 再現性が認められて いるので、少なくとも、このような地域では上記の問題 は、地形や地質の不規則性の問題より御し易いと思われ る。測定上、難儀を極めたのは、しばしば見舞われた風 雨によって もたらされた ノイズを 処置する ことであっ た。迷走電流による妨害は調査地域が山地で、付近に送 電線も架線されておらず、ほとんど認められなかった。

電極配置としては、微分型4極法(Schlumberger型) を採用した。わが国で、最も普及している等間隔4極法 (Wenner型)の採用も一応考慮に入れたのであるが, 種々の点 で 長所を有する 上の方式を 採用することにし た。なお、この方法による見掛比抵抗 pa は次式より算 出される。

$$\rho_{a} = -\frac{\pi R^{2}}{I} \frac{dV}{dR} \qquad (\Xi \widehat{m} \overrightarrow{l}) \\ \rho_{a} = \pi \left[\frac{R^{2}}{l} - \frac{l}{4} \right] \frac{dV}{I} \qquad (\Xi \widehat{m} \overrightarrow{l})$$

こゝに, R は電流電極間隔の半分(AB/2)で, l は電 位電極間隔 (MN), I は流入電流, ΔV は MN 間に生 じた人工的電位差である。 1 としては 1/2≤1/5 R にす るのが望ましい。こうすることによって、電位電極を半 固定にすることができる。電極配置の概念図を第3図に 示す。

第3図 微分型4極法の概念図

さて、得られた観測値(見掛比抵抗値)を両対数方眼 紙(横軸に AB/2 を,縦軸に pa をとる)上に比抵抗 曲線として図示する。(1)の括孤内の R および L とし

第 2 表

А

В

<i>AB</i> /2 m	MN/2 m	AB/2 m	<i>MN</i> /2 m	<i>AB</i> /2 m	MN/2 m	AB/2 m	$\frac{MN/2}{m}$
2	0.5	40	5	3	1	100	5
3	0.5	50	1	4.5	1	100	20
4	0.5	50	5	6	1	150	20
5	0.5	60	5	9	1	225	20
6	0.5	80	5	12	1	225	75
6	1	100	5	15	1	325	20
8 -	0.5	100	20	15	5	325	75
. 8	1	120	5	25	1	500	.75
10	1	120	20	25	5	750	75
12	1	150	20	40	5	750	250
15	1	200	20	65	5	1000	75
20	1	250	20	65	20`	1000	250
25	1	300	20		۱ <u>۱</u>		
32	1	400	20				
. 40	1	(· · ·)					

14-(680)

40

て第一次調査では第2表 A を,第二次調査では同表 B を採用した。たゞし,作業上その他の理由から,同表か ら若干外れた値を採用することもあった。しかしなが ら,いずれの場合においても,電位電極間隔 MN を変 えるときには,2つの AB/2の値に対し,それぞれ2つ の1に対応する測定値 ρ_a を得るように努めた。これは 電位電極の近傍における不規則性の影響をチェックする ためと,測定値に漏洩電流の影響の入りこんでいるか否 かのチェックに役立たせるためである。

6. 電気探查一比抵抗曲線

電気探査の測点(垂直探査中心点)を第2図に示す。 図中矢印は電極展開方向(測線方向)を表すものである。 初年度のデータには100台,次年度には200台の番号を 附して,両者を区別することとした。

ほゞバス道路に沿って, 西から 101, 102, 103, 211, 104, 105, 281 および 106 の 8 点, 源太岳旧登山道沿 いに (104), 241, 242, 243 および 244, 同新登山道沿 いに 251, 261 の各点, 丸森山腹道路(丸森川沿いの) に沿って 271 と 272, 峡雲荘東南の松川河床上に 221, キャンプ場に 231 と合計 18 測点が設定された。

電極間隔としては, AB/2 を努めて 500 m 以上拡げ ることを目標にしたのであるが, 測定および作業上の制 約から必ずしも実現できなかった。第3表に各測点にお ける最大電極間隔を表示しておく。

測点番号	最大電流電極間隔 $\frac{1}{2}AB$	(m)
101	60	
102	150	
103	250	
104	400	
105	80	
106	200	
211	1,000	
221	100	
231	150	
241	150	
242	500	
.243	500	
244	400	
251	300	
261	300	
271	400	
272	300	
281	400	

第3表 電極間隔の長さ

第6図 松川地域比抵抗曲線 (その3)

測点の大半は岩屑上に属しているが,221と231のみ は松川河床堆積物上にある。そのほか,244 は松川支流 の中倉川河畔の平地上におかれた。

本地域で得られた比抵抗曲線の特性を第4~第6図に 示す。それらの曲線群を通覧して最も著しい特徴の一つ は、電極間隔の小さい部分で高比抵抗を示し、AB/2を ますにつれて急激に降下するいわゆる下降階段型比抵抗 曲線を示すものが多いことである。最もはげしい下降は 曲線 231 にみられる。この場合には見掛比抵抗値は数千 Ω m から数 Ω m まで3桁も下っている。変動の少ない

15-(681)

曲線 105 の場合でさえも,電極間隔をさらに増大してゆ けば曲線が下降を辿ることはすぐ近くの曲線 281 等から 容易に判断できるであろう。曲線 244 は一見して凸型曲 線的特性を示すけれども, *AB*/2 の小さいところで曲線 の上昇がはじまることから,最初の低比抵抗部はごく浅 い部分を 覆っているにすぎず,これを除外して考えれ ば,浅部高比抵抗,深部低比抵抗という一般性は毫も失 われないと思われる。

第2の特徴は下部の低比抵抗物(おそらく数Ωm 程 度のものと考えられる)の水平的拡がりは,全調査区域 にわたるほど規模の大きなものであろうと想像すること ができるほど,各曲線とも,電極間隔をますにつれ,下 降を辿る。

第3に、上記の低比抵抗部までの深さが各測点で、相 当変動していることを暗示するかのように、例えば曲線 104 や 251 では急激な降下が *AB*/2 の小さいところで みられるのに対し、曲線 242 や 243 の場合にはかなり 大きい電極間隔でようやく現われている。

ところで, 垂直探査の基礎的理論は成層構造を前提に して成立することは論をまたないところであるが、本地 域のような変化のはげしい火山性の地形や地質のところ ではこの仮定が近似的にせよ成立することはきわめて疑 わしいと考えられる。したがって、何らかの補正ないし 修正を施さずにそのま、探査理論をあてはめようとする ならば、当然、解析結果は誤差の大きいものとなるであ ろう。残念ながら、現在のところ、複雑な構造に対する 一般的補正法は見出されていない。そこで、明らかに水 平的な不規則性の異常の影響を受けていると判断される ものの中で、曲線修正の行ないうるものはこれを行な い,行ない得ないものはそのまいにして解析を行なっ た。第4~第6図はこのように修正された曲線である。 山地で得られた曲線, 例えば曲線 242~244 等は水平異 常の影響をうけていることが直観的に明らかである。ま た、電位電極付近に著しい異常の存在した例として曲線 104 がある。このような部分的修正にもかゝわらず,な お、前述のような一般特性を示すことは、局部的な変動 の影響が遮蔽し得ないほど、充分大きな拡がりの構造が 存在するとしか考えられない。

たゞ,曲線106における大きな電極間隔での曲線の上 昇は水平的異常によるものと判断する方が妥当であろう が,確認するには至らなかった。曲線221 も同様であ る。

最後に,曲線 211 は *AB*/2 が 1,000 m まで拡げら れた唯一の例であるが, *AB*/2~250 m 付近で 曲線は上 昇傾向を示し,約 500 m から再び下降を辿る。このこ とは全調査区域を覆っていると思われる低比抵抗物の下 部に高比抵抗層が、そのまた下部に低比抵抗層が存在す ることを暗示するものとして注意すべきであろう。曲線 204 でも 曲線の上昇が みとめられるが、 AB/2 の値が 400 m までであるので、この高い 比抵抗が 211 の場合 の高比抵抗に相当するかを断定することはできない。

7. 解析結果

第 4~6 図の各曲線を解析し,得られた結果をまとめ たものが第 7~9 図である。解析は先に筆者らの一人 (小野)が提唱した方法^{注1)}に従って行なった。前に述べ たような水平的異常の吟味と補正は,一般的にはなかな か難しい問題であるけれども,大勢を見失しなわないな らば,多少の誤差はあってもやむを得ないと考え,若干 の修正を行なった。修正を行なうに当って,次の点に留 意した。すなわち,

1) 明らかに水平異常の影響をうけていると思われる 部分に関しては、その部分を除けば最も標準曲線に重ね 合うように修正した。

2) 水平異常についての修正が多様に考えられるもの は、そのようにして修正を行なった。

3) 電位電極移動によって生ずる食い違いは、どちら かを基準にして平行移動的に修正を行なった。

解析結果では、比抵抗変化は境界、すなわち、線によ って分けられているが、実際には漸次的変化をしている 場合もありうる。本地域のように、変質、非変質の部分 が入りくんでいたりするところでは、堆積岩地域のよう な境界を地表の測定から決定するのは困難でむしろ、い かなる深さでいかなる状態(電気的な)が卓越している かということが推定できるだけである。

ともあれ,解析結果をみると,道路沿い断面(第7図) では、地下数 10 m で数 Ω m の低比抵抗帯に達する。 281 のみはずっと深く、百数 10 mにしてこの低い比抵 抗部に達する。曲線 106 と 221 とにおける曲線の上昇 が疑問視されたのは、単に付近の曲線が下降を示してい るだけからではなく、解析を行なうことができないか、 もしくは不自然な上昇のし方をしているからである。そ こで、解析に当っては水平的な影響によると仮定して解 析を行なった。104 と 251 とにおいてはこの低比抵抗 部の上限は浅く判定される。いずれも 10²~10³ Ω m の高 比抵抗層が表層として厚さ 10~20 m で連続し、次の 10 ~10² Ω m の層につらなる。この下部が上に述べた数 Ω m の低比抵抗層になる わけであるが、101 と 102 では、

16 - (682)

註1) 小野吉彦: 垂直 探査法の 解析法の 改良 につい て, 地質調査所月報, Vol. 10, No. 8 (1959) 参照。

10~10² Ω m 層に相当する層が不明瞭である。また,東 の方の3点は単に低比抵抗部が深いだけでなく,上部層 でも104との続き工合が判然としない。低比抵抗部の下 部層は211 で約280 m,104 で200 mの深部にあり, その下部の低比抵抗層は600 m 前後と判断される。

山沿いの断面(第8図)では上記低比抵抗帯は次第に 深くなり、例えば 243 では深さ二百数 10 m にも及んで いる。103,241~243 はいずれも 10³ Ω m 台の比抵抗層の 下部に 10² Ω m 台の層がその下部に 10 Ω m 台の層がく る。低比抵抗層の深さを大きく変動させるのはこの 10 Ω m 台の層の厚さであって、この層は 同時に比抵抗の 値もかなり 変動し、103 の 20 Ω m から 243 では 10² Ω m をこえるほどになっている。そして、不連続的に 261 で 40 Ω m, 244 で 25 Ω m と変っている。なお、 261 と 244 では 10² Ω m 層の上部に 10 Ω m 台のものが くることは特記してよいであろう。

第9図で明らかなように 271 と 281 とではきわめて 特性が類似しており、271 と 272 との間には 若干の差 異が認められる。271 および 281 で認められる 10 Ω m 台層の存在が 272 では明らかではなく、低比抵抗帯ま での深さも 272 で幾分浅くなっている模様である。

8. 結果の解釈と考察

得られた結果をどのように解釈して地熱の問題と結び

17 - (683)

つけたらよいかということははなはだ難しい問題であ る。ことに試錐柱状図や,電気検層の資料の乏しい現状 では,果して,有効適切な資料となりうるかは若干疑問 ではあるけれども,これまで述べた結果からどのような 事柄が考えられるかについて論じてみよう。

解析結果から分類された比抵抗層を次のように格付け するとしよう。

$10^{3}\Omega$ m	台比抵抗	了層一上	上抵抗	層[I]
$10^2 \Omega m$	11	. —	//	[11]
$10 \ \Omega m$	"			[11]
数 Ωm	"	<u> </u>	//	$[\mathbf{w}]$

[I] が岩屑,あるいは松川河成堆積物であるとは自 明である。[II] は岩屑あるいは非変質ないし弱変質岩石 (松川安山岩,外輪山熔岩等)に相当するものと一応考 えられる。[II] は地表近くに存在する粘土化作用をう けた岩石か,粘土もしくは泥土質の岩屑を主体にしたも のと推定される。[[IV] は地下の温泉水等で湿潤した粘 土質岩石であると考えられる。もちろん,上の区分は概 念的なものであって,互いに重複していることは想像に 難くない。なお 10 Ω m 台比抵抗層の著しい変動は概し て変質の程度を表わす可能性も考えられる。

これらの区分の基礎は第4表として表示した松川地域 で得られた地表付近の岩石・土壌の比抵抗の実測結果に ある。なお、第5表に付近の水の比抵抗を示す。これら からうかゞえることは、地表に露出している粘土化岩石 でも10 Ωm 以上あり, 暗緑色 変質部ではそれより1桁 高い値を示していることである。これらの値は地表水な いし地下浅所を流れている淡水もしくはこれに近い水で 飽和していると思われるものについて測定して得られた ものである。この飽和水の比抵抗値は第5表から,一般 に 100 Ωm 以上あると考えてよいであろう。一方, 松 川温泉峡雲荘で 得られた 温泉水はこれより 1 桁小さい 10 数 Ωm の比抵抗値をもつにすぎない。しかも、われ われが地表の電気探査から求めた数 Ωm の低比抵抗値 は数 10 m あるいは数 100 m にわたっての 平均的な値 とみなされるので,部分的にはもっと低い値の物質も存 在すると考えられる。これらの事情を考慮すれば、上の 低比抵抗は各種イオンを溶解している温泉水の影響によ ってもたらされたものと考えて差支えないであろう。

変質の程度が比抵抗値に影響する度合は第4表のよう な地表で得られた資料から想像することができるが,地 下においても,類似の傾向を示すのではなかろうか。

第4表 松川地熱帯付近で得られた浅所の岩石・土壌の比抵抗値

地点	変質の状況	比抵抗 Ωm	電流
キャンプ場南赤川南岸崖	粘土化帯と珪化帯の接触部	80	交 流 (10数サイクル)
キャンプ場北松川西岸屋 キャンプ場西赤川北岸	暗緑色変質安山岩 粘土化	110 15	
峡雲荘西北方	11	18	11
251 付近湿地	【表土泥 【2∼3 m 下部変質状況不明	40 9	// // //
105	岩屑(粘土質)	70	直流
岩屑上	岩屑 非変質	数100~3,000	·
河床 (221, 231)	河成堆積物 非変質	1,000 ~ 3,000	

第5表 松川地熱帯付近の水比抵抗値

採取地	最近測点	比抵抗 Ω m	温度 (°C)	備考
五葉沼	211	130		沼 水
影 沼	104	120		//
五葉沼東方	211	190	й.	流水(岩屑中)
104 付近沢	104	120		11
105 付近沢	105	110		11
251 付近湿地	251	110	11	11
赤川	231	52	16	キャンプ場付近
松 川	231	110	15	〃(赤川と合流前)
キャンプ地水道	231	80	16	
温泉水		16	40	峡雲荘の湯口

18-(684)

 些	時 伊	4572 Hirz 444	71 126 安元
	۳ <u>۳</u> ۱۷	林 収 地	小原华
松川安山岩	第四紀	No.7 試錐孔 96m コア	1% >
石英安山岩質凝灰岩	第三紀(橋 場 層)	No. 3 試錐孔 204m コア	5.8
石英安山岩	// (//)	葛根田川	1>
石英安山岩質凝灰岩	// (//)	//	26.3
頁 岩	〃 (山津田層)	<i>II</i>	18.7
緑色凝灰岩	11	際ノ巣	6.5
チャート	古生代	弘 前	1>
粘 板 岩	//	"	1 >

第6表 松川付近の岩石の孔隙率

附記 試料はいずれも地質部角清愛技官より拝借したもので, 測定は小野が行なった。

第6表に、松川付近で得られた岩石試料についての孔 隙率の測定結果を示す。定性的にいえば、孔隙率の大き いものほど、比抵抗は一般に小さくなり、また、粘土分 が多くなれば、比抵抗は同様に小さくなる。

コア採取率の関係から、必ずしも、これらの試料がそ れぞれの岩石を代表するものとは考えられ難いけれど も、一つの目安として孔隙率の測定結果と比抵抗との対 応を考えてみると、数 Ωm 低比抵抗帯は粘土化せる岩 石(松川安山岩・外輪山熔岩および石英安山岩質凝灰岩 その他)に相当し、211 でみられる低比抵抗層の下部の 高い比抵抗層は石英安山岩質凝灰岩の下部にくると推定 される石英安山岩もしくは熔結凝灰岩が主体を占めるの

ではないかと考えられる。また、その下部の低比抵抗層 はほゞ、山津田層に相当するものと考えられる。

次に、低比抵抗部 [I]の上限の形状を等高線によっ て示したものを第 10 図に示す。測点密度が充分でない ので、粗雑の感をまぬかれないが、概略の傾向を把握す るのには役立つであろう。これが真であるならば、地熱 帯に斜行して、断層状のギヤップがみられる。それが果 して断層を示すものか否かは今後の調査にまたなければ 判然としない。

第 10 図 低比抵抗上面の形状

将来, 岩屑等を被覆していない地域の電気的性状を知 って, これと現在の結果とを比較することも重要である が, 電気検層資料の充足によって, われわれの得たデー タを再検討することはこれに劣らず大切なことであると 考えられる。

(昭和 33 年 10 月, 34 年 8 月調査)