島根県都茂鉱山物理探鉱調査報告

陶山 淳治* 小林 創* 小野 吉彥*

Résumé

Geophysical Prospecting in the Tsumo Mine, Shimane Prefecture

by

Junji Suyama, Hajime Kobayashi & Kichihiko Ono

For detection of new deposits, writers performed the magnetic and electrical prospectings in the Tsumo Mine, Shimane Prefecture.

As a result, they obtained two S. P. indications by distinct magnetic anomaly near the Maruyama deposits, and other two S.P. by obscure ones near the Senninmabu pit-mouth. The writers hope to proceed farther prospecting by drilling or other methods in

the latter spot.

昭和29年6月島根県都茂鉱山において未利用鉄資源 調査の一環として,電気および磁気探鉱による調査を実 施した。

その結果,丸山鉱床官林坑附近に鉱床に起因すると考 えうる2つの磁気異常,千人間歩旧坑附近ほか2カ所に 潜在鉱床を期待できる示徴を得た。これらに対しては将 来さらに探鉱を行う必要がある。丸山鉱床附近にみられ る負電位異常および磁気異常のように,鉱床ないしスカ ルン帯によると思われるもののほかに,地形的條件,岩 質の差異等に起因すると思われる負電位異常と、火成岩 類の影響と思われる磁気異常とが認められており,将来 本調査区域外の範囲で物理探鉱を行う場合この点に留意 する必要がある。

1. 緒 言

昭和29年5月下旬より6月にわたり島根県都茂鉱山に おいて物理探鉱調査を実施した。本調査は昭和29年度 未利用鉄資源調査の一環として計画されたものである。 こゝにその結果を報告する。

調査に際し測量その他種々御支援を賜つた中外鉱業都 茂鉱業所の方々に深謝する。 2. 位置および交通

都茂鉱山は島根県美濃郡美都村字山本にある(1:50, 000 地形図 日原)。山陰本線石見益田駅の東方約20 km に位し、石見益田駅より二川行のバスを利用し美都村字 山領で下車し、都茂川沿いの県道を徒歩約2.5 km (30 分)で鉱山事務所に達する。都茂鉱床都茂坑は事務所の 南東約300 m,丸山鉱床丸山坑は同じく約1,200 m で, いずれもトラツクを通ずる。丸山鉱床山神および官林坑 等の各旧坑はさらに丸山坑より山嶺を越えて南東約600 mの地点にある。

3. 沿 革

本鉱山の発見は丸山鉱床に初まり,遠く旧幕時代に稼 行されたといわれる。化粧谷・官林。山神および千人間 歩等の旧坑附近にはその遺跡と思われる夥しい鉱滓が散 在する。また山神大切坑附近には当時の山神社があり, さらに現在葛籠部落に移築されている安養寺の寺院跡が あるのを見ても往時の殷盛さが偲ばれる。

近世に至り明治26年に都茂鉱床が発見されて盛んに 採掘が行われ,また大正初年には独人ウール氏が亜鉛鉱 を採取し本国に送鉱したといわれる。以来都茂・丸山両 鉱区とも幾多の変遷を経て,昭和13年都茂鉱山株式会 社,次いで18年には協和鉱業株式会社の経営するとこ ろとなり,丸山坑550mの立入坑道が開坑されて150t/日

* 物理探查部

35—(343)

選鉱場の建設に着手されたが終戦とともに中止となり, 昭和26年7月現鉱業権者の中外鉱業株式会社がこれを 買収し,27年10月60t/日 選鉱場を再建し,現在に至 つている。

4. 地形・地質および鉱床

本地域東方は島根・広島両県境をなして, 恐羅漢山 (1,346.4m)を中心とする1,000m 級の山岳が北東一南 西に連聳し,西方の日本海に向つて漸次高度を減ずるが, 山地が海岸に迫り僅かに益田・高津両川の流域, 益田市 附近に平野が開けている。おもな水系としては北部に都 茂川,南部に匹見川があり,北東一南西,および北西一 南東の溪谷によりはなはだしく開析された壮年期の地形 を呈している。気候は裏日本型の低温多湿で,冬季2月 頃1~2尺の積雪をみるが稼行上大きな障害ではない。

本地域の地質鉱床については元本所技官清原信之,中 外鉱業太田節司氏らの調査がある。それらによると,本 地域にはその南東部および北西部を占める中国花崗岩類 に属する深成ないし半深成火成岩類に挾まれて古生代の 頁岩類が分布する。このほか古生層を貫ぬく各種岩脈類 が存在する。

南東部では丸山坑の南東空山部落附近でNE-SWの 境界をもつて花崗斑岩と古生層とが接し,北西部では都 茂坑北西の大神楽部落でNE-SWの境界をもつて山黒 雲母花崗岩と古生層とが接している。中間の古生層部は 北部の都茂部落附近で走向NE-SW,傾斜NWの単斜 構造を示すが,鉱床附近は各種岩脈に貫かれて断層や小 褶曲が多い。都茂坑附近ではおゝむね走向N40~60°W, 傾斜NEを示し,丸山坑附近では走向NE,傾斜SEを 示している。

古生層は見掛上の下部より上部へ粘板岩(砂岩・石灰 岩・珪岩を挾む)・緑色岩・千枚岩の累層よりなるが, これらの岩相はおのおのその境界が明らかでない。

(1) 粘板岩層は灰黒色を呈する粘板岩を主とし,処々 に厚さ数m~数10mの暗緑色細粒ないし中粒砂岩およ び灰色板状珪岩が介在する。全般的にホルンフェルス化 しており,局部的に千枚岩状を呈し,またレンズ状石灰 岩および石灰質粘板岩の薄層を挾有し,これらは丸山坑 南部に多くみられる。本調査区域は主としてこの種粘板 岩層よりなつている。

(2) 緑色岩層は山本一葛籠間に好露出があり,緑色部 (緑泥石・緑簾石・角閃石)と白色部(石英)との細か い美麗な縞状構造を呈する。

(3) 千枚岩層は北部の都茂部落附近に広く分布し,主体は石墨千枚岩である。

火成岩類は主として底盤状,一部岩脈状に現出する花 崗岩類,岩脈として古生層を貫ぬく多数の石英斑岩・ 分 岩がある。

(1) 花崗岩および花崗斑岩は南東部および北西部の2 カ所にわかれて分布し,両者とも底盤状でその周辺は花 崗斑岩に移化している。いずれも帯灰色粗粒で正長石斑 晶を有し,一部岩脈状に貫入しているものもある。

(2) 玢岩は都茂坑以北でネバダイト質石英斑岩と平行 して古生層に貫入している。

(3) 石英斑岩はネバダイト質のものとリソイダイト質 のものとがあり(前者は径 0.5~1.0cm の石英斑晶を多 く含む) 岩脈として古生層を貫ぬく。その延長方向は一 般にNE-SWを示すが、一部選鉱場附近のように不規。 則岩瘤状に現出する場合もある。

本調査区域の南東部には花崗斑岩、北部より北西部にかけては石英斑岩が分布する。

鉱床は都茂・丸山の2鉱床よりなり、両鉱床はほゞ南 北に 600m 距たつた類似の鉱床で,ともに古生層中に介 在する石灰岩ないし石灰質粘板岩を交代した含銅亜鉛磁 硫鉄鉱鉱床である。

今回調査を行った丸山鉱床附近には官林坑露頭,山神 坑大露頭を初め,山神中坑東の小露頭等が雁行するほか これらを結ぶ南西延長上の溪谷斜面には約 300m にわた り小露頭が点在する。

丸山鉱床は石灰岩質粘板岩を交代したと思われる(見. 掛上の)多量の磁硫鉄鉱に閃亜鉛鉱・黄銅鉱・方鉛鉱を 伴なう下盤鉱体と,石灰岩を交代したと思われる(見掛 上の)磁硫鉄鉱の比較的多くない上盤鉱体とからなつて いる。鉱床露頭のうち山神大露頭が上盤鉱体を,官林・ 山神・千人間歩旧坑は下盤鉱体を代表するものと思わ れ,いずれも地層の一般走向,傾斜にほゞ一致して走向 N40~70°E, 傾斜40~70°SEを示す。上盤鉱体は走 向延長約50m,幅約10mで,結晶質石灰岩を交代し

第1図 位 置 図

36 - (344)

島根県都茂鉱山物理探鉱調査報告 (陶山淳治·小林 創·小野吉彦)

て閃亜鉛鉱・方鉛鉱・黄銅鉱・磁硫鉄鉱および灰ばん柘 榴石・透輝石・珪灰石等のスカルン鉱物が生じている。 下盤鉱体は走向延長約200m,幅約2~10m で断続した 富鉱部からなり、富鉱部の形成には鉱体を横切る裂罅が

重大な役割を果している模様である。上下両鉱体とも鉱 体に接して著しく珪質な岩石を伴なつている場合が多く はなはだしい場合には鉱体が珪質岩に移化しているよう な場合もあり、この珪質岩と富鉱部との間には何等かの

> 関係があるもののようであ る。

鉱石は鉱石鉱物として磁 硫鉄鉱·磁鉄鉱·閃亜鉛鉱· 黄銅鉱・黄鉄鉱および方鉛 鉱を,脈石鉱物として透輝 石・白雲母・珪灰石・石英 および柘榴石を含む。

5. 物理探鉱

5.1 調査目的および調 查方法

丸山鉱床およびその南西 方にある旧坑ないし露頭に 対して現在探鉱が進められ つつあるが, この区域に賦 存する潜在鉱床を探査し将 来の探鉱に対する指針をう る目的で, 第2図に示した ように 300×600m の区域 において北西一南東方向に 長さ 300m の測線を 40m 間隔に設定し, 各測線上に 10m毎に測点を配置して, 電気および磁気探鉱法によ り物理探鉱調査を行つた。

電気探鉱は自然電位法, 比抵抗法(電極間隔 a = 10, 20,40mとして2極法によ る水平探査) による調査を 行い,磁気探鉱は鉛直磁力 測定のみを行つた。このほ か、これら地表調査の結果 の解釈に資するため,丸山 通洞坑内において第3図に 示すように5mごとに測点 を配置して、自然電位を測 定した。自然電位法による 地表調査の電位基準点と, 坑内調査の電位基準点とは 別個に設けており,両基準

地質調查所月報(第6巻第6号)

第3図 都茂鉱山丸山坑 (0m Level) 测点分布図

点間の電位差は知られていない。

5.2 調査結果

自然電位法による坑内および地表調査の結果は第4お よび第5図に示した。

丸山通洞坑内における自然電位測定結果は第4図に示 したように「103~119」,「S5~12」,「N2~7」,「N 12」 および「N17~20」附近等に自然電位降下が認められる ほか,他の場所には余り著しい電位降下はみられない。

第4図 丸山坑 (0m Level) 自然電位分布図

地表調査の結果は第5図に示したように,区域北部で は「ろ-11」および「は-9」附近を中心とする約(-) 200mVの負電位異常(4)と,「へ-11」附近を中心とす る約(-)200mVの負電位異常(中)を含む負電位帯が丸 山鉱床上に分布している。区域南部には「を-20」千人 間歩旧坑附近より「わ-21」を経て「か-26」へ伸びる約 (-)50mVの負電位異常(4)と,「わ-17」より「か-18」へ伸びる(-)100mVの負電位異常(4)および「た -20」旧坑附近の(-)50mVの負電位異常(4)とが分布 している。このほか「る-3」より「わ-2」にかけての

第5図 丸山鉱床自然電位分布図 単位 mV

稜線附近には(-)50mV の負電位異常()が, また 「ろ-30」~「と-30」の附近より南東にかけては(-)50 mV 内外の負電位が分布している。

次に比抵抗法による調査の結果は電極間隔 a = 10m の場合のみを比抵抗分布図として第6図に示し、「は」、 「に」、「へ」、「ち」、「ぬ」、「わ」および「か」の各測線に 沿う比抵抗 (2極法a = 10, 20, 40mの見掛比抵抗およ

38-(346)

島根県都茂鉱山物理探鉱調査報告 (陶山淳治・小林 創・小野吉彦)

びこれより計算で求めた平均3極法a=10mの見掛比抵 抗)曲線図ならびに自然電位および鉛直磁力の曲線図を 第8~14図に示した。

a=10mの場合の見掛比抵抗は「い」~「り」線の間の 区域では「ろ-12」よりその南西へ伸び「ち-9」に至 る 30kΩ-cm 以下の低比抵抗帯および「は-19」よりそ の南西へ伸び「ち-20」に至る 30kΩ-cm 以下の低比抵 抗帯が分布する。この両低比抵抗帯に挾まれる部分およ びこの外側の部分は 30kΩ-cm 以上の比抵抗を示し、な かでも「い-2」~「に-2」 附近,「へ-2」 附近 および 「ろ-22」~「に-24」 附近は 60kの-cm 以上の高比抵抗 を示している。次に「ぬ」~「か」線の間の区域ではこの 区域の東部には 30kΩ-cm 以上の比抵抗が分布しており、 「を-20」~「か-20」 附近にかけては 45kΩ-cm 以上の 比抵抗を示し、「ね-3」~「わ-3」附近は 60~80kΩ-cm の比抵抗を示している。

次に第7図は磁気探鉱の結果を分布図として表わした ものである。区域のほゞ中央部には、「ち―18」附近を 中心とし約(-)3,000γに達する負の磁気異常(a)があ り、区域の北東部には、「ろー13」附近を中心とする約 (+)1,900 yの正の磁気異常(b)と、これに随伴する「ろ -12」附近を中心とする約(-)1,400γの負の磁気異常, 「ろ-11」附近を中心とする約(+)1,700 yの正の磁気異

第7図 丸山鉱床鉛直磁力分布図 単位 y

常(c)と、これに随伴する「は-8」附近を中心とする 約(-)500yの負の磁気異常,(b)・(c)両正磁気異常を含 みその周辺に拡がる(+)100 y 以上の正の磁気異常,「ほ -12 |~ [~-12 | 線附近で約(+)400 % に達し, さらに その周辺より「ほ-22」附近迄拡がる(+)100γ以上の 正の磁気異常(d)とこれに随伴する「ほ―9」附近を中心 とし最小約(-)1,000γに達する比較的広範囲にわたる 負の磁気異常が分布する。区域南西部では、「ぬー16」、 $\lceil 3 - 20 \rfloor, \lceil b - 18 \rfloor, \lceil b - 22 \rfloor, \lceil b - 22 \rfloor, \lceil b - 26 \rfloor,$ 「を-17」および「を-13」~「わ-15」附近に(+)100 ~(+)200 y の正の磁気異常が,「を-11.5」,「を-15」, 「を-19」、「わ-19.5」、「わ-23」、「か-16.5」~「よ-14」附近に約(-)20~(-)60γの負の磁気異常が点々と 分布し,北西部にみられるような広範囲に拡がるまとま った磁気異常は余り認められない。 この ほか「ち―7」 附近, 「を-2」 附近には (+) 100~(+)200γの正の磁 気異常が分布する。

5.3 調査結果に対する考察

39 - (347)

以上の結果について考察するに、第4図に示すように 丸山通洞坑内における自然電位は数カ所で著しい電位降 下が認められるが、これらの地帯はいずれもスカルン帯 に該当する。また第5図によれば、地表の自然電位分布

地質調査所月報(第6巻 第6号)

は丸山鉱床上で負電位を示し、かつ見掛上の下盤鉱体の 露頭附近には(4)および(中)の負電位異常が分布している。 従って(4)、(中)の両負電位異常およびこの両異常を含み, その周辺に拡がる負電位帯は丸山鉱床下盤鉱体ないしそ の周辺に発達するスカルン帯に起因する現象と考えられ

る。次に上記 (4) 負電位異常部には(b) および(c) 正磁 気異常が分布するが、これらの正の磁気異常は地形的條 件およびその他の條件を考慮してもなお鉱床中に含まれ る磁硫鉄鉱に起因する現象と考えることができるので、 (b) および (c) 両正磁気異常部にそれぞれ鉱体が胚胎す る可能性があり、将来の探鉱に際してはこの点に留意す る必要がある。(P) 負電位異常部に分布する(d) 正磁気異 常もまた同様に鉱床中に含まれる磁硫鉄鉱による現象と 考えられるが, この部分に鉱床の賦存することは既に知 られている。(イ)および(中)負電位異常を含み,その周辺に 発達する負電位帯にみられる(+)100~200γの正の磁気 異常もまたスカルン帯中に含まれる磁硫鉄鉱に起因する 現象と考えられる。

磁気異常についてはズリの影響を充分考慮しなければな らない。次に上記の負電位帯は「ほ」および「へ」線で は南東へ (「ほ」および「へ」線一「20」 に向かい) 拡がる 傾向をもち、「ほ」および「へ」線---「20」と(1)負電位異常 とに挾まれる部分には(+)100~(+)200 yの正の磁気異 常が分布するが、この区域の下部、丸山通洞坑地並にお いて上盤鉱体と下盤鉱体の間にはスカルン帯が発達し, 坑内自然電位はこの部分で著しく降下している。従つて 「へ」線「20~2」附近にある上盤鉱体およびその周辺に 発達するスカルン帯と「へ」線「9~14」附近にある下盤 鉱体およびその周辺に発達するスカルン帯とに挾まれた 部分にはスカルン帯が発達するために上記のような傾向 を生じたものと思われる。この負電位帯が「ち―14」へ 向け伸びる傾向もまた同様にこの方向へ向けスカルン帯 が発達しているために生じたものと思われる。

次に区域北東部の比抵抗(a=10m)は,北東一南西 へ伸びる2つの低比抵抗帯と、これらを挾みほゞ同方向 へ伸びる3つの高比抵抗帯が帯状に分布するが、北側の 低比抵抗帯中には(4)および(中)負電位異常があり、この低 比抵抗帯の分布と上記負電位帯の分布とがほゞ一致して いる。従つて高比抵抗帯に挾まれる低比抵抗帯中に鉱床 ないしスカルン帯による負電位帯が分布しているように みえる。一方地質調査の結果からは、丸山鉱床下盤鉱床

鉛直磁力曲線図

は珪質粘板岩に挾まれる石灰質粘板岩を交代してできた ものと考えられている。従つて丸山鉱床下盤鉱体附近で は鉱床両盤の珪質粘板岩の多い部分に高比抵抗が、スカ ルンおよび鉱床の発達する部分に低比抵抗が分布するも のと考えられる。しかしながら鉱床周辺部では両盤珪質 粘板岩帯にまでスカルン帯が発達し,そのため周辺部高 比抵抗帯にまで負電位帯が拡がることがあると考えられ る。例えば、負電位帯が上盤鉱体へ向け拡がる「ほ」お よび「へ」線「14~20」附近、および丸山鉱床の南東延長 部に当る「ち-15」附近には 30~50kΩ-cm の高比抵抗 が分布している。丸山鉱床南南東周辺部でスカルン帯が 発達するため生じたものと考えられる負電位帯の拡がる

40 - (348)

部分(「ほ」および「へ」線「14~20」,「と」および「ち」 線「11~17」附近) が一般に 30~50 ko-cm の高比抵 抗を示すのは、このような場合にほかならないと思う。 次に「と」線においては「4~14」附近が電位低く, 「4~6」および「10~14」に高比抵抗を、「7~9」に低比 抵抗を示しており、「ち」線においては「2~7」および 「12~16」が電位低くかつ高比抵抗を示し、 その間に挾 まれた低比抵抗部は電位が高く、低電位部に高比抵抗が 分布するようにみられる(第11図)。この中「と」線「7 ~14」および「ち」線「12~16」附近の低電位部は, 既

述のように、丸山鉱床負電位帯の一部であり、その低電 . 位異常はスカルン帯によるものと考えられるが、「と」線 4~6」および「ち」線「2~7」附近の高比抵抗の分布 する低電位異常はともに稜線附近にみられるものであつ て、スカルン帯によるものではなく、むしろ後に述べる 「る-3」より「わ-2」にかけて分布する負電位異常と 同様に地形およびその他の條件によつて生じた電位異常 であるように思われる。

区域南西部の負電位異常については、い負電位異常部 の「わ―19.5」の北東約 20m 附近に は 千人間歩旧坑坑 口附近の露頭があり、(=)負電位異常部の「か-18」の東 方約5mの地点には良好な露頭がある。従つてこれら 両負電位異常はともに鉱床ないしその周辺に発達するス カルン帯による現象と考えられる。しかしながら、これ

島根県都茂鉱山物理探鉱調査報告 (陶山淳治·小林 創·小野吉彦)

ら両負電位異常部ないしその周辺には小規模な磁気異常 が点在するのみで、化および(の)負電位異常にみられるよ うなかなりの範囲にわたつて拡がる纒つた磁気異常は認 められず、この部分の浅所にかなりの量の磁硫鉄鉱が纒 つて胚胎するとは考え難い(たゞし、磁硫鉄鉱には磁性 の比較的強いものと、著しく弱いものとがあり、磁気異 常の有無,大小およびその範囲のみより磁硫鉄鉱胚胎の

有無を断定することは困難であり,また,たとえ,磁硫 鉄鉱が磁性をもつ場合でも、その磁性は一般に磁鉄鉱に 比べ遥かに弱く、深所に賦存する場合にはそれによつて 生ずる磁気異常は著しく小さくなるので,磁気探鉱の結 果より深所に胚胎する磁硫鉄鉱の有無を判定することは 一層困難となる)。

次にいおよび印面負電位異常附近は高比抵抗を示し、

(イ)(中)両負電位異常部の場合と異なり、高比抵抗帯に負電 位異常が分布する(第13・14図)。 この場合の高比抵 抗は元来の珪質粘板岩によるものか、後から珪化作用を 蒙つた粘板岩によるものかいずれか判然としないが、千 人間歩旧坑坑口附近の露頭および「わー18」附近の露頭 には珪化作用を蒙つたと思われる粘板岩が認められるの で、この高比抵抗は珪化作用を蒙つた粘板岩に起因する 現象ではないかと思われる。

「た-20」にある旧坑附近の紛負電位異常については 余り資料がなく判然としないが、おそらく出自電位異常 と同様な異常に属するものと思われる。「る-3」より「わ

41 - (349)

地質調查所月報 (第6巻 第6号)

-2 にかけて分布する(~)負電位異常部は、稜線附近に 分布する高比抵抗部とほぶ一致するが, 地質調査の結果 からは鉱床との関連はないと考えられぬものである。と ころで、高比抵抗の岩石が地形的に高い所に分布し、こ のような低電位異常を伴なうことがしばしばあるが、(~) 自電位異常もまたそのように地形その他の條件によるも のではないかと思われる。

「ろ-30」~「と-30」附近より南東にかけて分布する **負電位は、この附近に分布すると推定されている花崗斑** 岩と調査区域に分布する粘板岩との岩質の差異に起因す る現象と思われる。

「ね」線においては「0~5」および「24~30」附近に余 り顕著ではないが高比抵抗(平均3極a=10m)を示し 低電位が分布する(第12図)。このうち「0~5」附近の 低電位は地形的條件その他によるものであり、「24~30」 附近の低電位は岩質の差異によるものと思われる が, 「11~14」附近の低電位は「ち」線「12~16」附近の低電 位と酷似しており、スカルン帯によるものではないかと 思われる。しかも、その周辺「ね―16」には (+)160γ の正の磁気異常が分布している。 スカルン帯周辺の 磁 気異常は鉱床による現象と考えることもできるので一応 探鉱してみる必要がある。

「ち--7」附近,「を-2」附近の正の磁気異常および「ち ―18」附近の負の磁気異常に対しては鉱床との関連は余 り考えられず,前2者は区域内に分布すると推定される。 火成岩類、後者は区域南西に広く分布する花崗岩体の影 響ではないかと思われるが、その原因については余り判

然となしい。

6. 結 語

1) 丸山鉱床下盤鉱体附近には2つの負電位異常を含 む負電位帯が分布し、この負電位異常部は一般に低比抵 抗を、周辺部は高比抵抗を示しており、また負電位異常 部には纒つた磁気異常が認められる。このうち、官林坑 附近の(b)および(c)磁気異常はともに鉱床によるもの。 と考えうるので、将来探鉱に際しこの点に留意する必要 がある。

2) 千人間歩旧坑附近および「か-18」附近の負電位 異常(いおよびに)はともに鉱床と関連あるものと考え られるので探鉱を進める必要がある。たゞこの異常部お よびその周辺には小規模な磁気異常が点在するのみで纒 つた磁気異常はみられないので, 磁硫鉄鉱が多量に胚胎 されるとは考え難い。

3) 丸山鉱床と(ハ)、(=) 異常部との間には顕著なスカル ン帯の発達を考え難いが、「ぬ―16」の磁気異常附近に は鉱床の賦存を考えうる故、探鉱してみる必要がある。

4) 以上述べたような鉱床ないしスカルン帯によると 思える電位ないし磁気異常のほかに、地形的條件、岩質 の差異等に起因すると考えられる負電位異常と、火成岩 類の影響と思える原因の判然としない磁気異常が認めら れた。かゝる現象は将来本地域に物理探査を進めるに際 し留意を要することである。

(昭和29年6月調查)