沿岸低地堆積物に記録された歴史時代の津波と高潮: 南海トラフ沿岸の例

Historical tsunamis and storms recorded in a coastal lowland deposit, along the Nankai Trough, southwestern Japan

小松原純子¹・藤原 治²・高田圭太³・澤井祐紀⁴・タン・ティン・アォン⁵・鎌滝孝信⁶

Junko Komatsubara¹, Osamu Fujiwara², Keita Takada³, Yuki Sawai⁴, Than Tin Aung⁵ and Takanobu Kamataki⁶

^{1,2,4,5,6} 活断層研究センター (Active Fault Research Center, GSJ/AIST, j.komatsubara@aist.go.jp) ³復建調査設計株式会社 (Fukken Co. Ltd.)

Abstract: Twelve cores are recovered by Geoslicer from a coastal lowland of Shirasuka, Kosai City, western Shizuoka Prefecture, where historical tsunami and storm events have been documented. Seven event deposits are discovered from those cores. Four of them are correlated with historical tsunami events and one of them with a historical storm event, based on sedimentary facies, grain size analysis, grain composition and ¹⁴C ages.

キーワード:津波堆積物,ジオスライサー,東海地震,南海トラフ,粒度分布,粒子組成 **Keywords:** tsunami deposit, Geoslicer, Tokai earthquake, Nankai Trough, grain size distribution, grain composition

1. はじめに

南海トラフ沿岸は昔から100~200年程度の間隔で 海溝型巨大地震とそれにともなう津波の被害を受け てきた(宇佐美,2003).その履歴は,過去千年程度 までなら古文書や遺跡を調べることでわかる(寒川, 2004;萩原,1995).津波が陸上に遡上した際には津 波堆積物を残す場合があり,地層中の津波堆積物を 手がかりにさらに古い津波の履歴を知ることができ る.しかし,南海トラフ沿岸のように巨大な台風に しばしば襲われる場所では,大規模な高潮によって も津波の場合と同様に浸水し,堆積物が運びこまれ ていることが推定される.したがって過去の津波履 歴を地層から復元するためには,地層中のイベント 堆積物から津波によるものを識別する堆積学的基準 が必要である.

静岡県湖西市には、東海道の宿場のひとつである 白須賀宿があった(第1図).古文書などの歴史記録 によると、白須賀では津波と高潮による両方の被害 が知られている(第1表).この地域に被害を与えた 津波のうち、歴史記録が残っている最古のものは 1498年の明応地震に伴うもので、それ以降に3回の 津波の記録がある(渡辺、1998).一方、浜名湖から 渥美半島にかけての地域に被害を与えた高潮の記録 は、16世紀以来少なくとも6回ある(荒川ほか、 1961;斎田、1942). 本研究では津波堆積物と高潮堆積物の特徴の違い を明らかにし,歴史記録に残された津波や高潮の記 録と一致する堆積物を確認することを目的として, 白須賀近くの沿岸湿地でジオスライサーを用いて地 層試料を採取した.採取した堆積物は特徴を記載し, 粒度分析および粒子組成分析を行い,堆積物の炭素 同位体年代を測定した.その結果に基づいて,地層 に残されたイベント堆積物と,歴史記録に残された 津波や高潮の記録との対比を行った.

2. 地形·地質概略

調査地は浜名湖が遠州灘に注ぐ今切口から西へ 9km弱離れた海岸沿いの低地である(第1図).こ の低地は北を中部更新統渥美層群からなる段丘(杉 山,1991)に、南は浜堤により海浜から隔てられ、 幅は約120mで東西に細長く延びている.低地内に は段丘崖の谷の出口から発達した小さな扇状地以外 に陸側からの砕屑物供給経路はない.段丘の高さは 調査地域近辺で78mである(杉山,1991).段丘構 成層の渥美層群は円磨されたチャートや砂岩の礫を 含む軟らかい砂層を主体とし、白雲母片を大量に含 むのが特徴である(礒見・井上,1972;杉山, 1991).

浜堤の高さは5mほどで,現在はその上を国道1 号バイパスが走っている. 調査地点から西へ 500 m 離れた長谷元屋敷遺跡で はトレンチ調査とジオスライサー調査によって 8 枚 のイベント堆積物が発見され,うち2枚は1605年の 慶長地震と1707年の宝永地震の際の津波に対比され ている(高田ほか,2002).

3. 手法

試料採取は長さ2mと6mのジオスライサーを用いた.ジオスライサーとは鉄板を地層中に打ち込み, 定方向試料を採取するシステムである(中田・島崎, 1997;原口ほか,1998).2mのジオスライサーは人 力で,6mのジオスライサーは重機を用いて試料を採 取した.

掘削地点は扇状地からの堆積物供給を避けて平坦 な休耕田を選び,海岸線に直交した方向(測線1) と平行な方向(測線2)に測線を設定し,それらに沿っ て計12本の試料を採取した(第1図).最も海側の SRL1地点から現在の海岸線までの距離は250mで ある.測線2は東側の扇状地からの堆積物供給を明 らかにする目的で東側へ延ばした.採取した試料は Takada and Atwater (2004)の方法によってはぎ取り 標本を作成し,堆積物の粒径や内部構造を記載した.

砂層については、堆積物の供給源を推定するため に粒度分析および粒子組成分析を行った. 粒度分析 は、標準ふるいを使って、-1.0~4.0 ¢ について 0.25 ¢ 刻みで行った. その結果得られたモード径でプレパ ラートを作成し、実体顕微鏡下で 200~400 個の粒子 についてカウントして粒子組成を求めた.

また, 試料中に含まれる植物化石の炭素同位体年 代を測定し, イベント堆積物の堆積年代を推定した. 年代測定はパレオラボ(株)に依頼し, 暦年較正に は OxCal3.10 (Ramsey, 1995, 2001)を, 較正曲線デー タは INTCAL04 (Reimer *et al.*, 2004)を用いた.

4. 結果

12本の試料によって,海浜堆積物とそれを覆う13 世紀以降の海浜堆積物と沿岸湿地堆積物を得た.沿 岸湿地堆積物の中には最大7枚のイベント堆積物が 観察された(第2-1~2-3図,第3図).

4.1 海浜堆積物·沿岸湿地堆積物

藤原ほか(投稿中)はこの地点の海浜堆積物およ び沿岸湿地堆積物を記載し,下位より上部外浜,前浜, 後浜,沿岸湿地に区分した(第3図).沿岸湿地堆積 物は有機物に富む砂質泥および泥質砂からなる.そ の中には層厚数 cm から 30 cm 程度の砂層や砂礫層 が繰り返し挟まれ,複数のコア間で対比することが 可能である.この砂層や砂礫層の堆積学的特徴につ いては次の章で詳しく述べる.

下位から上位への堆積相の変化からは,海浜シス テムが埋め立てられ,砂丘により閉塞された沿岸湿 地が形成され、そのまま現在まで堆積が続いている ことがわかる.

4.2 イベント堆積物

沿岸湿地堆積物に繰り返し挟まれる砂層や砂礫層 は7枚である.上位・下位の境界が明瞭なことから, これらはイベント堆積物と考えられる.これらイベ ント堆積物を下位から上位ヘイベント堆積物 A~G とする(第3図).イベント堆積物 E より上位の砂 層は,海側のサイト(SRL1・SRL2)では互いに癒 着しており,単層として分離することは難しい.

4.2.1 イベント堆積物 A

イベント堆積物Aは低地中央部のSRL4では5枚 の砂礫層からなり、最上部に白色粘土層をともなう. SRL3(1)では砂層は2枚、SRL2およびSRL1では 砂層1枚となる.SRL4では全体の厚さは45 cmだが、 それより海側では16~25 cmの厚さである.砂層は 細~粗粒砂からなり、淘汰が悪い.各砂層には平行 葉理もしくは斜交層理が見られ、上方細粒化を示す 場合や(SRL3(1),(2))、上方粗粒化を示す場合が ある(SRL4).いずれの場合も砂層の構成粒子は白 雲母に富む(4.3参照).礫層は上方細粒化し、斜交 層理をともなう.斜交層理から推測される古流向の 方向は陸から海へ向かう流れを示す.

4.2.2 イベント堆積物 B

イベント堆積物 B は堆積後の変形が著しい砂層か らなる.厚さは 50 cm (SRL1)から約 8 cm (SRL4) と変化が激しく, SRL3 (1)では砂層は確認されなかっ た.砂は淘汰がよく有色鉱物と石英の粒子に富んで いる.最上部に白色粘土層をともなう.SRL4では 基底部に中礫を伴い,SRL2とSRL3 (2)では砂層 中部に不連続な泥層が見られる,SRL1では砂層の 最上部に有機質泥の同時礫が含まれている.荷重痕 および堆積後の未固結変形が激しく内部構造はよく わからない.

4.2.3 イベント堆積物 C

イベント堆積物Cは中粒砂からなる下部ユニット, 白色粘土層からなる中部ユニット,その上の細粒砂 からなる上部ユニットにわけられる.下部ユニット はSRK10を除いてほぼ一定の厚さ(5~8 cm)で連 続して分布する.砂粒子は淘汰がよく有色鉱物と石 英粒子に富んでいる.このユニットの中部~上部に かけては有機質泥の同時礫が多数含まれ,また細礫 ~中礫が点在する.SRK7,8,9では級化層理が見ら れるが,はっきりとした堆積構造は見られない.中 部ユニットは厚さ7~8 cmの塊状白色粘土層からな る.上部ユニットは与雲母に富むことが特徴的な細 粒砂で,カレントリップルが見られる.カレントリッ プルは陸から海へ向かう流れを示している.低地中 央付近の SRL4 では中部ユニットと上部ユニットが 分離しているが,これより海側では上部ユニットが 厚く中部ユニットがなくなったり (SRK10),中部ユ ニットが同時礫化したり(SRL3 (1),(2)),両者が混 ざって白っぽい砂質泥 となったり (SRL1,2)する. また,海岸線に平行な測線2では,SRL4より東側 のSRK7で白っぽい砂質泥に変化する.さらに東で は扇状地が近いため湿地堆積物自体が砂質になって しまい,下部ユニットしか認識できない.

4.2.4 イベント堆積物 D

イベント堆積物 D は淘汰の良い石英・有色鉱物が 卓越した砂が主体であるという点でイベント堆積物 B や C の下部ユニットと似ている.しかし堆積構造 はカレントリップルが卓越するか,もしくは不明瞭 である.SRL3 (2) で確認されたカレントリップル の古流向は海から陸の方向であった.同時礫や礫は 含まれず,またマッドドレープも伴わない.海に近 いところでは厚さ 20 cm 以上の上方細粒化する中粒 ~極細粒砂層であるが (SRL2, SRL3 (1),(2)),そ れ以外では,有機質泥もしくは泥質極細粒砂からな る湿地堆積物中に,波打った不連続な砂層の集合体 もしくはパッチ状の変形した砂として分布する.一 枚の砂層の厚さは 1 cm 以下から 10 cm 程度まで様々 である.

4.2.5 イベント堆積物 E

イベント堆積物 E は淘汰の良い石英・有色鉱物卓 越砂からなり,平行葉理を伴う.SRL1,2では上下 のイベント堆積物 D,F と癒着している.厚さは最大 で約 20 cm (SRL3 (1),(2))だが,これは上位のイ ベント堆積物 F と癒着している可能性がある.SRL4 では 12 cm,さらに陸側および東側では 5 cm 以下と なる.SRL4 では有機質泥の同時礫を下部に含み,最 上部にマッドドレープを伴う.SRK10,SRL4,SRK6 では上方細粒化する.

4.2.6 イベント堆積物 F

イベント堆積物 Fは SRK10 と SRL4 にしか見られ ず,淘汰の良い石英・有色鉱物卓越砂を主体とし, 最大 10 cm の厚さ (SRL4) である. SRL4 では下部 に荷重変形,上部に平行葉理が見られ,上方細粒化 する.それより海側の SRK10 では不連続な塊状砂層 であり,下部に有機質泥の同時礫を,上位にカレン トリップルを示す砂泥互層を伴う.

4.2.7 イベント堆積物 G

イベント堆積物 G は白雲母に富む白っぽい細粒砂 で構成されており、有機質泥の同時礫や中礫を含む. SRL4 では上方細粒化し、上部に平行葉理を伴う.厚 さは 1 cm (SRK10)から 10 cm (SRK5)である. SRK10 では砂層の基底部から下位へ幅 2 mm 程の細 い割れ目に落ちこんだような砂岩脈をともなう.

4.3 イベント堆積物の粒度組成および粒子組成

SRL4に見られるイベント堆積物 A~G のうち, A・ C・D・E・F とその下の後浜堆積物,また段丘崖を 構成する渥美層群と調査地点南方の現世前浜堆積物 について砂層の粒度分布および粒子組成を分析した. 砂層が複数枚あるイベント堆積物の場合はできる限 りそれぞれの砂層について分析し,Eは下部と上部 に分けて分析した.イベント堆積物Bは砂層の変形 が激しいため周辺の泥質堆積物と混ざってしまい, +分な量の砂を分離できなかった.イベント堆積物 G は表層の耕作土と近接しているため試料採取が難 しく,試料を採取していない.

分析結果を第4-1 図,および第4-2 図に示す.分 析した試料は石英含有量が53~80%,有色鉱物が0 ~35%,白雲母が1~19%,岩片およびその他が3~ 21%である. 粒度分布と粒子組成に基づくと,(1)2.00 ~2.50 ϕ にピークを持ち,有色鉱物に富むもの(有 色鉱物>白雲母),および(2)2.50~3.25 ϕ にピーク を持ち,白雲母に富むもの(有色鉱物<白雲母),の ふたつに分けられる.(1)に該当するものは,イベ ント堆積物F・E(上部・下部)・D・C(下部)・後 浜堆積物および現世前浜堆積物である.一方(2)に 該当するものはイベント堆積物C(上部)・Aの各層 および段丘崖の表層堆積物である.

粒度分布および粒子組成の特徴と現在海岸堆積物 との比較から、イベント堆積物 F・E・D・C(下部) は海浜からこの沿岸湿地内に持ち込まれたものであ ると考えられる.同様にC(上部)・Aの各層は背後 の段丘崖から供給されたものと考えられる.

4.4 炭素同位体年代

堆積物中の貝・木片・植物片から測定した炭素同 位体年代とその暦年較正値を第2表に示す.採取し た試料には堆積年代の手がかりとなる火山灰や遺物 は含まれていなかった.

得られた炭素同位体年代を深度に対してプロット したところ第6図のようになった.年代値から、こ の沿岸湿地が形成されたのは12世紀から13世紀前 半,海側から砂丘に覆われはじめるのが18世紀初頭 と推定される.

イベント堆積物の上位および下位から得られた年 代値を元にイベント堆積物の堆積年代を求めると次 のようになる.A:AD1270~1360,B:AD1390~ 1500,C:AD1440~1640,DおよびE:AD1630~ 1810,F:AD1730~1930,G:AD1930~現在.

5. イベント堆積物の成因と歴史地震との対応

イベント堆積物は堆積物の特徴から4種類に分け られる.

- (1) 段丘崖から供給されたもの…AG
- (2) 海浜から供給されたものと段丘崖から供給さ れたものからなり,間にマッドドレープをは さむもの…C
- (3) 海浜から供給され、マッドドレープ、同時礫, 礫,平行葉理のいずれかを伴うもの…BEF
- (4) 海浜から供給され,(2)(3)のような構造を 伴わないもの…D

(1) は堆積物の粒度分布や粒子組成から現在の段 丘崖を構成する渥美層群に対比され,段丘崖から供 給されたと考えられるものである.礫を含み,おお むね陸側で厚く海側へ薄くなることや,陸から海へ 向かう流れを示す斜交層理が見られることもこれを 支持する.

(2) は最初に海からの流れによって海浜砂がもた らされ、その後水流が一旦停止したためにマッドド レープが形成され、さらにその後陸側から海へ向か う流れによって段丘崖から堆積物がもたらされたも のと考えられる. 高潮の場合水塊は暴風による波で 激しくかく乱されているので、もしこの海岸低地が 高潮によって浸水し海浜砂が持ち込まれたとしても、 このようにマッドドレープを伴う「浸水→滞水→ 排水」の一サイクルが堆積物に残されるとは考えに くい. それに対し津波の場合は暴風によるかく乱は なく、20 分以上の周期を持った遡上流と戻り流れの サイクルが卓越するため(Nagarajan et al., 2006)、こ のような堆積物として記録されやすいと考えられる. つまり(2) は津波堆積物であると考えられる.

ここで(2)を構成する3種類の堆積物のうち海浜 由来の堆積物に注目すると,(3)と同じ特徴(マッ ドドレープ,同時礫,礫)を持っている.このため(2) と(3)は同じ成因によると考えられ,(3)も津波堆 積物である可能性が高い.(3)に海へ戻る流れの痕 跡が伴わない原因として,海へ戻る流れがこの場所 を通過したとしても堆積物を残さなかったか,もし くは地形的に低い場所に集中したために,この場所 を通過しなかった可能性が考えられる.

(4) は海浜由来であることは(2)(3) と共通して いるが、マッドドレープ、同時礫、礫を伴わず、堆 積構造としてカレントリップルが卓越し、比較的薄 い砂が複数枚重なったものであるというところが異 なる.(2)(3)よりは弱い流れによって繰り返し砂 が移動してできたものと考えられる.

最初に述べたとおり、13世紀以降この地域では4回の津波被害記録と6回の高潮被害記録がある(第1表).この中で最も被害が大きかったのは1707年の宝永地震による津波で、当時海岸低地にあった東海道の白須賀宿は全滅し、その後更新世段丘上へ移動し再建された(建設省、1987;静岡県、1996).宝永地震以前の1680年と1699年には静岡県下で大規模な高潮被害が記録されているが、その際に白須賀宿は少なくとも全滅はしていない.従って宝永地震

による津波のほうが、その直前の高潮に比べ地層中 に痕跡を残している可能性が高いと考えられる.

さらに,渡辺(1998)によれば宝永地震による白 須賀宿での津波の高さは5mと推定されているが, それ以外の津波の白須賀での高さは1498年の明応地 震で6~8m,1605年の慶長地震で6~7m,1854年 の安政東海地震で6m(ただしこれは東へ3km離れ た新居宿大倉戸での値)と,いずれも宝永地震の際 の津波よりも高い値が出されている.すなわち宝永 地震以外にも明応地震・慶長地震・安政東海地震の 痕跡が記録されている可能性が高い.

以上のことを念頭に炭素同位体年代を用いてイベ ント堆積物と歴史地震との対応を検討すると、イベ ント堆積物 B が 1498 年の明応地震、C が 1605 年の 慶長地震、F が 1854 年の安政東海地震に対応する(第 6 図). 1707 年の宝永地震にはイベント堆積物 D と E のどちらかが該当することになるが、堆積学的特 徴を考慮するとイベント堆積物 E が宝永地震に対応 すると考えられる.

イベント堆積物 D は 1605 年の慶長地震と 1707 年 の宝永地震の間に堆積したもので,この期間に南海 トラフでの大きな津波は知られていない.一方 1680 年と 1699 年に「大風雨」(高潮)があり,浜名湖の 南岸では家屋が流出するなどの被害が出ている(荒 川ほか,1961;齋田,1942).イベント堆積物 D は おそらくこのどちらかの高潮によるものと推測され る.荒川ほか(1961)によればどちらの「大風雨」 も9月であり,台風による高潮と考えられる.Dに カレントリップルが卓越するのは台風の暴風雨によ る周期の短い風波が堆積物表面をかく乱したためで あろう.

イベント堆積物 C のように陸上に遡上した津波の 遡上・戻りの両方の痕跡が残っている例はこれまで も 1993 年北海道南西沖地震の際の津波堆積物(七山・ 重野, 2004) や 2004 年インド洋大津波の堆積物(チョ ウワォンほか, 2005; Fujino et al., 2006) で報告され ているが, 遡上流の堆積物と戻り流れの堆積物の間 にマッドドレープが残っている例はこれまで報告が なかった.本研究でも両者の間のマッドドレープが 確認されたのは津波堆積物と考えられる4層のイベ ント堆積物のうち1層だけで,しかも12本採取した コアのうち2本だけである.遡上流による堆積物に 比べ,マッドドレープや戻り流れの堆積物が保存さ れる可能性は局地的な地形に左右され,結果的に地 層として残されにくいのかもしれない.

6. まとめ

南海トラフ沿いの静岡県湖西市の海岸低地でジオ スライサーによる試料採取を行い、7枚(A~G)の イベント堆積物を記載した.このうち5枚(B~F) は浜堤を越えた海からの水流によって形成された. うち1枚(C) は堆積物の特徴から津波堆積物であ ると考えられ、3枚(BEF) も津波堆積物の可能性 が高いと考えられる.歴史記録と炭素同位体年代に 基づくと、それぞれ下位より1498年、1605年、 1707年、1854年の地震に対応する.イベント堆積物 Dは異なった堆積構造を持ち、歴史地震に対応しな い.これは1680年もしくは1699年の高潮によるも のと考えられる.

本研究で津波堆積物 (BCEF) および高潮堆積物 (D) と認定されたものはどちらも海浜由来の砂から構成 され,湿地堆積物との境界は明瞭で,荷重痕などの 変形構造を伴う.しかし津波堆積物は同時礫,礫, 平行葉理,マッドドレープのいずれかの特徴を持ち, 場合によってはマッドドレープが厚く発達しその上 に戻り流れの堆積物を伴うことがある.高潮堆積物 にこれらの特徴は見られず,カレントリップルが卓 越し,比較的薄い砂が複数枚重なったものである.

堆積構造から津波堆積物と高潮堆積物を識別する ことは一般に難しい.しかし条件がよければ,津波 の持つ周期の長い波形や,高潮に伴う周期の短い風 波による特徴的な堆積構造が地層中に残されること があり,それを手がかりに津波堆積物と高潮堆積物 を識別できる可能性があるということが本研究で示 された.

文 献

- 荒川秀俊・石田祐一・伊藤忠士(1961)日本高潮史料. 気象研究所, 272p.
- Fujino, S., Naruse, H., Fujita, K., Suphawajruksakul, A. and Jarupongsakul, T., 2005, Tsunami sedimentation: an example from Indian Ocean Tsunami in southwestern Thailand. Proceedings of Internatinal Symposium on Fluvial and Coastal Disasters (CD-ROM).
- 藤原 治・小松原純子・高田圭太・宍倉正展・鎌滝 孝信,投稿中,静岡県湖西市元白須賀付近の砂 丘海浜システムの発達過程.地学雑誌.
- 萩原尊禮 (1995) 古地震探究 海洋地震へのアプロー チ.東京大学出版会,306p.
- 原口 強・中田 高・島崎邦彦・今泉俊文・小島圭二・ 石丸恒存(1998)未固結堆積物の定方位連続地 層採取方法の開発とその応用.応用地質, 39,3, 306-314.
- 礒見 博・井上正昭(1972)浜松地域の地質,地域 地質研究報告(5万分の1地質図幅).地質調査所.
- 建設省中部地方建設局・静岡県教育委員会・湖西市 教育委員会(1987)国道1号線潮見バイパス(湖 西地区)埋蔵文化財発掘調査報告書長谷元屋敷 遺跡.79p.
- モントリ チョウワォン・パンヤ チャルシリ・村越直 美・久田健一郎・ウィロット ダオレーク・ティ

ティマ チャロエンティティラット・ヴィチャイ チュタコシットカノン・クルアワン ジャンケオ・ ピッサヌポング カンジャナパヨウン・チュラロ ンコン大学津波調査団(2005)プーケット島周 辺の津波堆積物-2004年12月26日スマトラ沖 地震津波による-.地質学雑誌,111,7.

- Nagarajan, B., Suresh, I., Sundar, D., Sarma, R., Lal, A. K., Neetu, S., Shenoi, S. S. C., Shetye, S. R. and Shankar, D. (2006) The Great Tsunami of 26 December 2004: A description based on tide-gauge data from the Indian subcontinent and surrounding areas. Earth, Planets and Space, 58, 211-215.
- 中田 高・島崎邦彦 (1997)活断層研究のための地層 抜き取り装置 (Geo-slicer). 地学雑誌, 106, 1, 59-69.
- 七山 太・重野聖之(2004) 遡上津波堆積物概論 沿岸低地の津波堆積物に関する研究レビューから得られた堆積学的認定基準-. 地震イベント 堆積物 – 深海底から陸上までのコネクション -. 地質学論集, 58, 19-33.
- Ramsey, B. C. (1995) Radiocarbon Calibration and Analysis of Stratigraphy: The OxCal Program. Radiocarbon, 37, 425-430.
- Ramsey, B. C. (2001) Development of the Radiocarbon Program OxCal. Radiocarbon, 43, 355-363.
- Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, F. G., Manning, S. W., Ramsey, C. B., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J. and Weyhenmeyer, C. E. (2004) IntCal04 Terrestrial radiocarbon age calibration, 26-0 ka BP. Radiocarbon, 46, 1029-1058.
- 齋田時太郎(1942)濱名湖口地変の沿革.東京帝國 大學地震研究所彙報, 20, 360-374.
- 寒川 旭(2004)遺跡で検出される地震の痕跡.地 震イベント堆積物-深海底から陸上までのコネ クション-,地質学論集第58号,11-18.
- 静岡県 (1996) 静岡県史 別編 2 自然災害誌. 静岡県, 808.
- 杉山雄一(1991) 渥美半島 浜名湖東岸地域の中部 更新統 -海進 - 海退堆積サイクルとその広域 対比-. 地質調査所月報, 42, 2, 75-109.
- Takada, K. and Atwater, B. F. (2004) Evidence for liquefaction identified in peeled slices of Holocene deposits along the lower Columbia River, Washington. Bulletin of the Seismological Society of America, 94, 550-575.

高田圭太・佐竹健治・寒川 旭・下川浩一・熊谷博之・ 後藤健一・原口 強(2002)静岡県西部湖西市

- における遠州灘沿岸低地の津波堆積物調査(速報).活断層・古地震研究報告, 2,235-243.
- 田辺久之(1985)第三章 災害史. 新居町史 第三巻, 73-118.
- 字佐美龍夫(2003)最新版日本被害地震総覧.東京 大学出版会,605p.
- 渡辺偉夫(1998)日本被害津波総覧【第二版】. 東京 大学出版会, 238p.
- (受付:2006年8月15日,受理:2006年9月26日)

- 第1表.調査地域周辺の津波と高潮の歴史記録.
- Table 1. Ancient tsunami and storm events recorded in historical documents around the study area.

Historical	Tsunami	event

Year		Inundation Hight (m)	Documented Damage
1498	Meio	6-8	drastic change in coastline
1605	Keicho	6-7	
1707	Hoei	5	towns damaged beyond recovery
1854	Ansei	6	
1944	Tonankai	0.9	no damage
			All data from Watanabe (1998)

Historical large storm event

Year	Reference
1499	Tanabe 1985
1509	Saita 1942
1510	Tanabe 1985, Saita 1942
1680	Arakawa et al. 1961, Saita 1942
1699	Arakawa et al. 1961, Saita 1942
1860	Arakawa et al. 1961

Core No.	Depth	Laboratory No.	Conventional	Calibrated	Dated										
	(m)		Age (y BP, 2σ)	Age (AD, 2 σ)	Material										
SRL2	109	PLD-5147	350 ± 20	1460-1530	shell	*									
	100			1540-1640		^									
SRL2	132	PLD-4694	420 ± 25	1430-1500	plant										
SRL2	215	PLD-4695	535 ± 25	1390-1440	seed										
	225	PI D-51/18	565 + 20	1310-1360	plant	*									
	225		505±20	1380-1420		т 									
SRL2	250	PLD-4696	840 ± 25	1160-1260	plant										
SRL2	290	PLD-4697	755 ± 25	1220-1285	plant										
SRL3	60	PI D-4698	275 ± 25	1520-1600	plant										
	00	FLD-4090		1610-1670											
SBI 3	80	00	80	PI D-5144	350 ± 20	1450-1530	nlant	*							
		PLD=0144	330-20	1550-1640	plant	-1-									
SDI 2	101	DI D-51/15	355 ± 20	1450-1530		*									
				1550-1640		-1									
SRL3	113	PLD-4414	285 ± 20	1520-1600	plant										
SRL3	120	PLD-4699	500 ± 25	1400-1445	plant										
SRL3	156	PLD-4415	400 ± 20	1440-1520	plant										
SRL3	215	PLD-4700	940 ± 25	1020-1160	plant										
SRL3	235	PLD-5146	945 ± 20	1020-1160	plant	*									
SRL3	260	260	260	260	260	260	260	260	260	260	DI D-4701	660 + 25	1270-1320	nlant	
			000-20	1350-1390	plant										
SRL4	30	PLD-4702	555 ± 25	1380-1430	shell										
SRL4	56	PLD-4703	95±25	1800-1930	plant										
SRL4	88	PLD-4704	195 ± 25	1730-1810	plant										
SRL4	141	PLD-4705	250 ± 25	1630-1670	plant										
SRL4	192	PLD-4706	425 ± 25	1420-1500	plant										
SRL4	224	PLD-4707	565 ± 25	1300-1360	plant										
SRK1	107	PLD-4412	340 ± 20	1460-1640	plant										
SRK1	144	PLD-4413	590 ± 20	1300-1380	plant										

第2表. 調査地域から得られた炭素同位体年代. 暦年較正は OxCal3.10 (Ramsey, 1995, 2001) を用いた. Table 2. Table. 2 Radiocarbon ages from Shirasuka. Ages are calibrated by OxCal3.10 (Ramsey 1995, 2001).

* data from Fujiwara et al. (submitted)

- 第1図. 調査地点位置図. A: 南海トラフの位置. B: 移転前と移転後の白須賀宿の位置. C: 白須賀低地での試料採取位置. SRL はロングジオスライサー (長さ6m), SRK はハンディジオスライサー (長さ2m) による採取地点を示す.
- Fig. 1. An index map of the sampling site. A: Southern coast of Japan facing the Nankai Trough. B: Location of previous and current Shirasuka towns. C: Location of sampling site in the Shirasuka lowland. SRL* by Long Geoslicer (6 m-long), SRK* by Handy Geoslicer (2 m-long).

第 2-1 図. 白須賀低地で採取されたジオスライサーコアの写真および柱状図 (1). Fig. 2-1. Photos and columnar sections of cored samples from the Shirasuka lowland. Localities are shown in Fig. 1.

第 2-3 図. 白須賀低地で採取されたジオスライサーコアの写真および柱状図 (3). Fig. 2-3. Photos and columnar sections of cored samples from the Shirasuka lowland.

- 第3図. 白須賀低地で採取されたジオスライサーコアの柱状図および炭素同位体年代値(AD, 2σ). A:海岸線に直交した測線. B:海岸線に平行な測線.
- Fig. 3. Stratigraphic columns and ${}^{14}C$ ages (AD, 2σ) of the Shirasuka lowland. A: Along the line perpendicular to the coastline (Line 1). B: Along the line parallel to the coastline (Line 2).

第4-1 図. 砂の粒度分布および粒子組成(1). 後浜堆積物およびイベント堆積物 A. 供給源として考えられる 段丘崖と現世前浜堆積物のデータを右上に示す. グラフ内の数字(例:A 235-238) は深度を示す. Fig. 4-1. Grain size distribution and grain composition of event deposits (Backshore deposit and event deposit A) and expected sources of deposits (terrace cliff and modern beach, upper right). Numbers in graphs (ex. A 235-238) show sampling depth.

第 4-2 図. 砂の粒度分布および粒子組成 (2). イベント堆積物 C, D, E および F. Fig. 4-2. Grain size distribution and grain composition of event deposits (Event deposits C, D, E and F).

Fig. 5. Sketch (above) of the event layer C based on photographs (below). Note an obvious bi-directional flow separated by a stagnant stage. The photo of SRL4 is a peeled-off sample, others are cores. See Fig. 1 for a locality and Fig. 3 for a stratigraphic position.

- 第6図. 各深度から得られた炭素同位体年代. 灰色の帯はイベント堆積物を, 数字は 年代幅 (AD)を示す. 年代の暦年較正は OxCal3.10 (Ramsey, 1995, 2001)を用い て行った. 歴史記録のある津波と高潮についても示した. 1944 年の南海地震で は津波被害はなかった.
- Fig. 6. An age-depth profile of the costal lowland succession in Shirasuka. Gray lines show stratigraphic position of event deposits with possible event ages (AD). Radiocarbon ages were calibrated to calendric ages using OxCal3.10 (Ramsey, 1995, 2001). Horizontal lines represent 2σ age range. Historical tsunami and storm events that affected the coastal lowland are also shown. The tsunami of the 1944 Nankai Earthquake did not reach the lowland.